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Vectorization Technology To Improve Interpreter Performance

ERVEN ROHOU, KEVIN WILLIAMS, and DAVID YUSTE, Inria Rennes – Bretagne Atlantique

In the present computing landscape, interpreters are in use in a wide range of systems. Recent trends in
consumer electronics have created a new category of portable, lightweight software applications. Typically,
these applications have fast development cycles and short life spans. They run on a wide range of systems
and are deployed in a target independent bytecode format over Internet and cellular networks. Their authors
are untrusted third-party vendors, and they are executed in secure managed runtimes or virtual machines.
Furthermore, due to security policies or development time constraints, these virtual machines often lack
just-in-time compilers and rely on interpreted execution. At the other end of the spectrum, interpreters are
also a reality in the field of high-performance computations because of the flexibility they provide.

The main performance penalty in interpreters arises from instruction dispatch. Each bytecode requires
a minimum number of machine instructions to be executed. In this work, we introduce a novel approach
for interpreter optimization that reduces instruction dispatch thanks to vectorization technology. We extend
the split compilation paradigm to interpreters, thus guaranteeing that our approach exhibits almost no
overhead at runtime. We take advantage of the vast research in vectorization and its presence in modern
compilers. Complex analyses are performed ahead of time, and their results are conveyed to the executable
bytecode. At runtime, the interpreter retrieves this additional information to build the SIMD IR (intermediate
representation) instructions that carry the vector semantics. The bytecode language remains unmodified,
making this representation compatible with legacy interpreters and previously proposed JIT compilers.

We show that this approach drastically reduces the number of instructions to interpret and decreases
execution time of vectorizable applications. Moreover, we map SIMD IR instructions to hardware SIMD
instructions when available, with a substantial additional improvement. Finally, we finely analyze the
impact of our extension on the behavior of the caches and branch predictors.
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1. INTRODUCTION

In the present computing landscape, interpreters are in use in a wide range of systems.
Recent advances in portable consumer electronics have created a new category of
computing applications. These applications are lightweight, mobile, and have reduced
development costs and time. It results in a culture of very fast deployment times
and often short application life-times. These applications run on many devices from
portable electronics to home entertainment systems. They are deployed over networks,
to many different hardware targets. Their authors are typically untrusted third-party
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vendors. For these reasons, mobile executables must be distributed in a secure,
target-independent format, namely bytecode. These bytecodes run in secure managed
environments called virtual machines. Virtual machines ensure the integrity of the
system and control the access of the deployed application to privileged resources.
Traditional virtual machines for languages such as Java and .NET use interpreters for
fast startup time and augment them with JIT (Just-In-Time) compilers for increased
performance [Paleczny et al. 2001; Oracle 2010]. Developing a JIT compiler, however, is
much more complex and time consuming than an interpreter, and vendors may decide
to content themselves with interpretation. Some vendors of modern consumer electron-
ics require code to be digitally signed and secured before deployment, and their policies
prohibit dynamic code generation on their targets [Xamarin 2011], including JIT
compilers.

At the other end of the spectrum, interpreters are also in use in fields where high-
performance computations are necessary, such as physics. The added flexibility and
the faster development cycles favor such environments. Scientists from both CERN
and Fermilab report [Naumann and Canal 2008] that “many of LHC experiments’
algorithms are both designed and used in interpreters”. As another example, the need
for an interpreter is also one of the three reasons motivating the choice of Jython for
the data analysis software of the Herschel Space Observatory [Wieprecht et al. 2004].

Finally, many domain specialists turn to languages such as Python, Ruby, or Matlab
simply because they are easier and faster to learn1. These languages happen to be
mostly interpreted.

Unfortunately, the performance of interpreters is lower than what static and JIT
compilers achieve. The causes are inherent to the nature of interpreters. First, a
program is translated into an IR used internally by the interpreter. At this point,
only fast optimizations can be applied. Then, the IR is “executed”: each instruction
is dispatched, and the code chunk matching its semantics is executed. Instruction
dispatch is an important source of inefficiency due to the overhead introduced. Our
experiments with our own interpreter for CLI on x86 show that, on average, the
execution of a single bytecode takes from 20 to 30 machine instructions. They account
for loading a bytecode from memory, decoding it, and transferring the flow of control to
the code that performs the appropriate function. Parameters, if any, are then read from
the evaluation stack, the computation is performed, and the result is written back.

A common way for improving performance of interpreters is to reduce the number of
instructions to dispatch. To this end, common sequences of instructions are gathered
into single superinstructions [Ertl and Gregg 2003, 2004]. The interpreter identifies
these repeated patterns and replaces them with the corresponding superinstruction.
However, the space of search for superinstructions is limited due to time constraints.
Aggressive analysis of the code and powerful transformations are out of their
reach.

The spirit of our approach is similar to superinstructions, in the sense that we im-
prove the performance of the interpreter by reducing the number of dispatches. The
major differences are as follows. First, the patterns are much coarser grain than tra-
ditional superinstructions: they can encompass up to hundreds of dynamic bytecodes.
Second, they are not computed by the interpreter, but generated by an offline compiler,
and exposed to the interpreter as candidate superinstructions, thanks to predefined
builtins. We preserve backward compatibility with legacy interpreters, while enabling
very significant speedups on systems based on our proposal.

1See for example http://www.ohloh.net/languages/compare for trends on programming languages usage for
over half a million open source projects.
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To this end, we use a split compilation strategy to generate new IR instructions
based on SIMD technology. The amount of instructions to dispatch is strongly reduced
thanks to automatic vectorization of the code. The transformation is performed during
the offline compilation (source code to bytecode), without penalty in the interpreter
side. The program is speculatively vectorized thanks to the techniques developed in
previous work [Nuzman et al. 2011] and SIMD builtins are embedded in the bytecode
binary. We modified our interpreter to make it aware of the new vector semantics.
Operations over vectors identified by the offline compiler become SIMD IR instructions
at almost no penalty.

In Section 2, we first summarize previous research on vectorized bytecode for JIT
compilers, on which we base this work. Section 3 then motivates the current work, and
presents, at high level, how an interpreter takes advantage of the vectorization oppor-
tunities exposed in the bytecode. We develop the implementation details in Section 4,
in particular we introduce our target virtual machine, and we describe the changes per-
formed in order to benefit from the proposed extensions. Our experimental framework
as well as the results are detailed in Section 5. We review related work in Section 6.

2. BACKGROUND

This section describes in detail prior art [Rohou et al. 2011; Nuzman et al. 2011]
related to split vectorization. With our co-authors, we have been previously studying
how vectorization can benefit JIT compilers, despite the cost of the transformation: we
proposed a split compilation approach in which the bytecode is speculatively vectorized
by an offline compiler. At runtime, a JIT compiler only has to materialize a few param-
eters and instantiate code templates to produce highly optimized native code, at little
cost.

The current work focuses only on interpreters (as opposed to JIT compilers). We
consider the same speculatively vectorized bytecode as produced by the mentioned
approach, and we investigate how it can be efficiently interpreted. We show that vec-
torization is a powerful tool to improve the performance of interpreters as well.

By reusing the framework unmodified, we guarantee compatibility with the previous
approach, in particular the deployed bytecode would benefit for the same acceleration,
should a JIT compiler be present on the target system. We aim here at making the
expected acceleration possible on an interpreter-based virtual machine.

While based on the same offline compilation technology, the approach is very different
because interpreters do not have any dynamic code generation capability, which was
key to materializing the vectors and delivering performance in the JIT compilers.

For the sake of clarity, we dedicate this section to a brief description of vectorization
and a summary of the main results of our previous research: split vectorization and
the production of speculatively vectorized bytecode by an offline compiler.

2.1. Vectorization

Vectorization is compiler optimization that transforms loops. It detects patterns where
an instruction is repeatedly applied to different data. Autovectorization consists in
automatically rewriting the loop so that a Single Instruction applies to Multiple Data
(SIMD).

In the search for instructions comprising many operations in a single dispatch,
SIMD instruction sets are good candidates. Their semantics are well understood and
widespread. Vectorization techniques have been studied for decades, resulting in a ma-
ture and well known field. Since processors started to extend their instruction sets with
SIMD capabilities, automatic vectorization has become a common feature of compilers.

In a static compiler targeting native executables, automatic vectorization starts
by analyzing loop dependences and selecting vectorizable loops, always taking in
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consideration a cost model based on the target. Then, candidate loops are strip-mined
by a factor of the vector length. Finally, scalar instructions within the loop body are
replaced with the corresponding SIMD instructions available in the target architecture.

2.2. Split Vectorization for JIT Compilers

However, vectorization algorithms require aggressive, time-consuming loop analysis
and transformations (data dependence analysis, which is quadratic in the number of
memory references, control flow analysis, loop normalization, construction of SSA form,
etc.) This complexity prevents them from being deployed as part of JIT compilers or in-
terpreters, or in very limited forms. Still, vectorization can be performed ahead of time.
In this scenario, expensive transformations are moved up to the offline compilation
step, and their results are encoded into the deployed executable in bytecode format.
The development flow of interpreted software fits in this scheme.

The difficulty of targeting a bytecode is that no information about the target machine
is known. And the performance of vectorizers has traditionally been very dependent
on the detailed description of the instruction set. We previously showed [Nuzman et al.
2011] how loops can still be speculatively vectorized. Vector length, actual target SIMD
instructions, and other target-specific parameters are abstracted away. Actual values
of these parameters are instantiated by the final JIT compiler at runtime.

Let us take as running example the small loop of Figure 1(a). An offline compiler
without autovectorization produces code similar to the pseudo-bytecode of Figure 1(b).
In order to reduce the amount of instructions, the loop is speculatively vectorized
following the transformation proposed before. Figure 2(a) illustrates the outcome in
pseudo-bytecode. The iterator variable i is increased with the value vec size (lines 31–
34). Thus, the total number of instructions to dispatch is reduced by a factor of vec size.
This value, as well as every vector operation, is abstracted away, and is materialized
only on the target.

The abstraction of target-specific parameters takes the form of builtins. Builtins are
a standard way used by compilers to carry semantic information down the compilation
flow. They consist of function calls whose names have a special semantics. Looking
at the example of Figure 2(a), the builtin get vec size (line 1) provides the vector size
in the target machine or interpreter. Similarly, load vector, store vector (lines 20, 25,
and 29) abstract the operation of loading a vector whose size and layout are unknown
at offline compilation time. The arithmetic of the example relies in the op Multiply
(line 27) that implements the product of two vectors.

2.3. Offline Compilation Framework

The chosen bytecode is CLI (Common Language Infrastructure). CLI is a standardized
[ECMA International 2006] framework that defines a bytecode format and a runtime
environment suitable for the deployment of portable applications. It forms the core of
the Microsoft .NET framework as well as open-source implementations [Mono 2012;
Campanoni et al. 2010]. It has also been adopted for the development of rich Inter-
net applications by the Silverlight [Papa and Kinney 2010] and Moonlight projects
[Moonlight 2009].

Gcc4cli [Costa et al. 2007] is used to compile C source-code into CLI bytecode. Gcc4cli
is a port of the GCC compiler that targets the CLI format. GCC features a multiplat-
form autovectorizer [Nuzman and Henderson 2006; Nuzman and Zaks 2006] that can
perform inner-loop, outer-loop, intra-loop, and straight-line code vectorization. Gcc4cli
has been recently adapted [Nuzman et al. 2011] to generate CLI bytecode with builtins
facilitating the adaptation to various instruction sets.

There are no standard defining vector extensions in the CLI format. The Mono
project proposed an extension in the form of the Mono.Simd library [de Icaza 2008]
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Fig. 1. Running example: simple vector product.

to let C# programmers exploit SIMD instruction set extensions. The library defines
vector types, and operators on these types. The semantics of the operators is entirely
defined in the library with scalar code, and code relying on this extension can run on
any CLI-compliant virtual machine.

The Mono.Simd library is currently biased towards the x86 architecture. The proposed
extensions [Nuzman et al. 2011] provide the abstraction of the actual vector size, a
wider set of vectorization idioms appropriate to various instruction sets, as well as the
realignment mechanisms.
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Fig. 2. Running example: vectorized bytecode.
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Fig. 3. Penalty incurred by the legacy interpreter on 78 kernels. Each point represents a kernel. Kernels
are ordered by slowdown for readability.

As result of the offline compilation, a CLI-compliant binary is obtained. Vector se-
mantics are embedded in the form of builtins. The contribution of this work is to make
an interpreter aware of these builtins in order to increase performance.

3. VECTORIZATION AND INTERPRETERS

A requirement of this work is to guarantee functional compatibility with legacy inter-
preters, unaware of the semantics of the SIMD builtins, in order to provide a smooth
path to developers in charge of supporting the new SIMD features. As in our previ-
ous work [Nuzman et al. 2011], a companion library with the implementation of each
builtin is deployed in conjunction with the vectorized program. Figure 2(b) shows the
library code corresponding to the builtins of our example specialized on 4-float vectors.
This library is ignored by interpreters aware of the special semantics of the builtins.

The main goal is to deliver performance, and to show that split vectorization ben-
efits interpreters as well. The efficiency of our proposal relies in the capability of the
interpreter to deal with the new builtins. In a JIT compiler, the key feature that deliv-
ers performance from vector builtins is the dynamic code generation. Optimized code
sequences are produced for each builtin. Vector sizes and alignment constraints are
materialized, and standard optimizations (such as constant propagation, dead code
elimination, function inlining) remove inefficiencies.

Interpreters lack this code generation capability. In order to quantify the performance
penalty, and to motivate our work, we ran some introductory experiments. We executed2

both a vectorized version and a scalar version of each kernel presented in Section 5.1,
using a legacy interpreter unaware of vector builtins. The calls to the companion library,
and the additional bytecodes to dispatch, offset the benefits of the vectorization. The
results are plotted on Figure 3 as follows: for each of the 78 kernels, we computed
the slowdown, and we ordered them in increasing order for readability (this graph
is sometimes referred to as an S-curve). The results show that a legacy interpreter
executing the builtins as library calls may experience slowdowns ranging from 30% up
to 225× compared with the interpretation of the scalar version of the program. This
is consistent with the dramatic increase of the number of dispatched instructions as
consequence of the library calls, whose bytecodes must be interpreted as any other in
the program.

2The experiments were performed on an Intel Core 2 Duo E6850 at 3 GHz, with 4 MB of cache memory. The
interpreter used in these experiments is an unmodified version of PVM, described in Section 4.
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Fig. 4. Structure of PVM.

Incidentally, the offline compiler abstracts vector size but also target realignment
capabilities. This was key to delivering performance with a JIT compiler [Nuzman
et al. 2011]. The bytecode contains all the information needed by a JIT compiler to
produce efficient native code. The realignment mechanism is not necessary for the
interpreter and constitutes an overhead. However, for compatibility reasons as well as
fairness, we left the offline compiler unmodified (including realignment), and we added
appropriate IR instructions, and library support.

The goal of this work is to address how an interpreter can be made aware of the
SIMD builtins to overcome the overhead and deliver higher peformance. The idea is
to replace the builtins with the corresponding IR instructions. Under these conditions,
the number of dispatched bytecodes is effectively reduced by a factor of the vector
size, resulting in significant speedups. Moreover, extra benefits are obtained when the
interpretation of the new IR instructions takes advantage of the host native SIMD
features. The next section details the modifications needed in the interpreter in order
to reach the announced improvements.

4. IMPLEMENTATION DETAILS

The performance improvement of the interpreter requires two key components: (1)
the offline compilation of the source program, which generates vectorized bytecode;
and (2) the online interpretation that leverages the vector builtins to build superin-
structions. As discussed in Section 2, the former reuses unmodified previous work in
autovectorization [Nuzman et al. 2011; Rohou et al. 2011] in the context of portable
bytecodes. The latter is the contribution of this article: it consists in extensions of a vir-
tual machine and interpreter to significantly improve the efficiency of the interpreter.

We base our work on PVM (Portable Virtual Machine), a proprietary virtual machine
that executes applications written in the CLI format. Figure 4 illustrates its general
architecture. PVM is complete with loader, bytecode verifier, internal representation,
interpreter, garbage collector, and runtime support.

The operations of the virtual machine are under the control of the VES (Virtual
Execution System). When an application is to be executed, the VES first requests the
loader to locate the executable and to put it in memory. The verifier is then invoked
to check the legality of the bytecode, as mandated by the CLI standard [ECMA Inter-
national 2006]. In particular, it checks that local variables are only assigned values of
the proper type, and that no stack overflow or underflow can occur. While processing
the CLI input stream, it emits an internal representation (IR bytecode) that is used by
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Table I. SIMD IR Instructions Summary

Arithmetic

IR VEC ADD
IR VEC SUB
IR VEC MUL
IR VEC DIV
IR VEC DOT PRODUCT
IR VEC REDUCE PLUS
IR VEC WIDEN MULT HI
IR VEC WIDEN MULT LO

Data manipulation

IR VEC INTERLEAVE HIGH
IR VEC INTERLEAVE LOW
IR VEC PACK
IR VEC UNPACK HIGH
IR VEC UNPACK LOW
IR VEC SHR
IR VEC BIT FIELD REF
IR VEC GET X
IR VEC GET Y

Constructors

IR VEC INIT
IR VEC DUP
IR VEC UNIFORM
IR VEC AFFINE
IR VEC INT2FLOAT
IR VEC FLOAT2INT

Memory management

IR VEC LDARG
IR VEC LDLOC
IR VEC LDOBJ
IR VEC ALOAD
IR VEC LOADALIGNED
IR VEC REALIGNLOAD
IR VEC MASK4LOAD
IR VEC STLOC
IR VEC STOREALIGNED
IR VEC REALIGNOFFSET

the rest of virtual machine. IR resembles CLI, but it is more efficiently processed by the
interpreter. For example, polymorphic CLI operators like add are replaced by typed op-
erators like add.i4 (32-bit integer addition) or add.r8 (double precision floating point).

Frequent bytecode patterns are combined into superinstructions [Ertl and Gregg
2003], in order to reduce the number of dispatched bytecodes and improve performance.
Superinstructions are statically prebuilt in PVM. The unmodified reference version of
PVM contains 478 regular IR bytecodes and 68 superinstructions. Superinstructions
are made of two or three original instructions.

4.1. Fewer Dispatches thanks to SIMD IR Instructions

At this point, we introduce the first extension of the interpreter. The IR instruction
set is extended with 121 new SIMD IR instructions, matching vector operations over
different data types, and some primitives required for the target abstraction. They are
derived from the work of Nuzman et al. [2011] and summarized in Table I, without
distinction among data types. During the construction of the IR representation, the
verifier recognizes the calls to the companion library in the input bytecode stream and
constructs SIMD IR instructions instead. The result of this transformation is shown in
Figure 5, where the CIL bytecode has been translated into the IR representation.

Once the IR for a function is built, control is passed to the interpreter proper. It
essentially consists in a infinite loop that contains a large switch statement. At each
iteration, a bytecode is read, and dispatched to the appropriate case entry where
the semantics of the bytecode are implemented: input operands are read from the
evaluation stack, some computation is performed, and output operands are stored to
the stack. For most IR bytecodes, the implementation is entirely contained in the case
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Fig. 5. IR representation of running example.

entry, only the more complex ones require calls to functions outside the main loop (for
example, function calls or object construction).

Also, we provide the implementation of our SIMD IR instructions. Most of the arith-
metic and data manipulation instructions are implemented as loops performing the
requested operations over all elements of the input vectors. The improvement relies in
the fact that these loops are statically compiled within the interpreter. Interpretation
of entire vector idioms is skipped, and the number of dispatched bytecodes is reduced
by a factor proportional to the vectorization factor.

Figure 6 shows a simplified version of the interpreter loop. The first case en-
try describes the implementation of a superinstruction in the original interpreter:
mul.loc.const combines in a single IR instruction the common sequence of instruc-
tions ld.loc (push a local variable on the stack), ldc (push a constant on the stack), and
mul (multiply the two values at the top of the stack). The second case entry (mul.vsf)
is introduced to support vector semantics. The size of the vectors is determined by the
predefined vector size (16 in this example), and the type of each element (vsf: single
precision floating point). Figure 6(a) corresponds to a scalar implementation of vector
instructions. The vector is multiplied within a loop iterating over all elements.

One parameter is left for the interpreter to choose: the size of the vector slices
on which it operates. The offline compiler only vectorizes a loop when the iteration
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Fig. 6. Implementation of interpreter (excerpt).
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distance is infinite, making it legal to increase the vector size at will. The online phase
is free to choose any value3. The trade-off is the following: a larger value means a
coarser superinstruction and hence a better speedup; the risk is to entirely fall back to
scalar code when the actual array is smaller, or to increase the number of remaining
iterations to be processed in the epilogue after the vector loop. A smaller value reduces
this probability, but also decreases the performance advantage of the superinstruction.
In any case, the vector size is a parameter of the interpreter, which can be adjusted by
the final user. In this work, we experimented with 16 bytes since it turns out that this
is the size of most current hardware vector registers.

Two other approaches were possible.

(1) The offline compiler could pass the actual size of the array when it can be stati-
cally determined, for example, by adding a parameter to the get vec size builtin. The
online compiler could process the entire vector at once, effectively maximizing the effect
of the superinstruction.

(2) The offline compiler could generate several identical loops that successively it-
erate on the array with vectors of decreasing sizes. This multilevel approach would
process vectors with the largest (and most effective) size, and remaining iterations
with vectors of smaller size.

However, these two variants require changes to the offline compiler. This would break
the compatibility with previous work, which we did not want to address in this work.

4.2. Accelerated SIMD IR Instructions

On top of reducing the number of dispatches, we also analyzed the impact of provid-
ing an implementation of SIMD IR instructions accelerated with the native SIMD
instruction set. Many of the SIMD IR instructions have a straightforward translation
on typical vector instructions, and many more can be written by combining few of
them. We targeted two instruction sets: the various versions of x86’s SSE and the ARM
NEON.

We implemented this optimization of the interpreter code thanks to a GCC GNU
extension that provides both vector types and operators. Simple arithmetic is auto-
matically detected by GCC: a simple a+b where a and b are of type v4sf (i.e., a vector
of four floats) generates a single addps SSE machine instruction. More advanced com-
putations, such as dot product, interleaving, shuffling, and so on, require extensions,
also provided by GCC. Figure 6(b) illustrates the code of the interpreter when SIMD
IR instructions are accelerated (line 19).

When a processor family supports several levels of SIMD extensions, such as x86 with
SSE, SSE2, SSE3, SSSE3, and SSE4.x, we used conditional compilation directives to
take advantage of the highest available level. For example, the unpack_high builtin
returns a vector of four 32-bit integers made of the four least significant elements
of a vector of eight 16-bit values. It can be efficiently implemented with the SSE4.1
instruction pmovsxwd alone. However, the combination of the two SSE2 instructions
punpcklwd and psradi achieves the same result. When no SIMD instructions of a given
target help, we fall back to scalar implementation.

The performance gain of this optimization is second order compared to the effect of
dispatch reduction as consequence of the SIMD IR instructions. The reason is the fol-
lowing: the percentage of optimized code in the whole interpreter is relatively small in
comparison with the overhead of the dispatch mechanism. Only the implementation of
IR instructions in the switch entries are accelerated, and only when hardware support
is available. Still, for loop-intensive applications, the speedup can be significant.

3As long as it is a power of 2—an assumption made offline because it greatly simplifies address generation.
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Table II. Description of Kernels

Name Description & vectorization features
2mm linear algebra kernel (arithmetic, shift, reduction)
alvinn weight-update for neural-nets training (outer-loop)
atax linear algebra kernel (arithmetic, reduction)
bicg linear algebra kernel (arithmetic, reduction)
convolve 2D convolution (reduction)
correlation datamining (arithmetic, reduction)
covariance datamining (arithmetic, reduction)
dct 8x8 discrete cosine transform (outer-loop)
dissolve video image dissolve (widening multiplication)
doitgen linear algebra kernel (arithmetic,reduction,casts)
dscal scale elements by constant (arithmetic)
gemm linear algebra kernel (arithmetic, reduction)
gemver linear algebra kernel (arithmetic, reduction)
gemsummv linear algebra kernel (arithmetic, reduction)
gramschmidt linear algebra solver (arithmetic, reduction)
interpolator rate 2 interpolation (strided access, dot-product)
jacobi stencil computation (arithmetic, reduction)
mixstreams mix four audio channels (SLP vectorization)
saxpy constant times a vector plus a vector (arithmetic)
sfir single sample finite impulse response (reduction)

5. EXPERIMENTAL EVALUATION

In this section, we present our experimental setup and evaluate our proposal. We show
that reducing the overhead of the bytecode dispatch yields excellent speedups, and that
exploiting native SIMD instructions gives an additional benefit. We then analyze the
behavior of our modified interpreter with respect to architectural features such as the
branch predictor and the cache hierarchy. Finally, we briefly discuss code size issues.

Our goal is not to evaluate the merit of vectorization itself. Vectorization has been
studied for decades, and it is widely discussed in the literature. We focus on conveying
the benefits of vectorization to interpreters, and we study the correlation between the
vectorization factor and the speedup of interpreters. For this reason, we purposely select
vectorization-friendly kernels. They are not meant to be representative applications,
rather to illustrate specific behaviors on simple and well-understood cases.

For completeness, we also present the performance on a number of full applications
selected to illustrate the various possible behaviors (Section 5.2).

5.1. Experimental Setup

We experimented with the Polybench 1.0 suite [Pouchet et al. 2010]. We also added
some kernels from our previous work on vectorization for JIT compilers [Nuzman
et al. 2011]. These benchmarks are loop kernels performing computations on arrays.
The data type of the array elements is parametric. For each benchmark, we varied
the type of the main arrays among char, short, int, float, and double. Note that
not all benchmarks can have their data type changed in a straightforward manner.
Reasons include a shift-right operator which cannot be applied to a floating point type,
or chained divisions which produce an intermediate zero when integer types are used
due to rounding, and later yield to a divide-by-zero error. In some other cases, the cost
model of the vectorizer decides that vectorization is not profitable for some data types.
The missing combinations are simply not reported in the results. They result in neither
speedups nor slowdowns since vectorization did not occur. Kernels are listed and briefly
described in Table II. Across all data types, we have a total of 78 combinations.
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Fig. 7. Experimental execution flows.

Our target platforms aim at representing both high-end and embedded mobile sys-
tems. We experimented with:

—an Intel Xeon W3550 workstation, 3.07 GHz, running Linux and supporting up to
SSE4.1; SSE has eight 128-bit vectors (in 32-bit mode);

—an ARMv7 board, 720 MHz, running Linux, supporting the NEON SIMD extension.
NEON has 32 64-bit SIMD registers. These registers can also be addressed as 16
128-bit registers, but in this work we intentionally restrict ourselves to the 64-bit
view to illustrate vector lengths different from SSE.

Each benchmark is run in four different configurations, as illustrated in Figure 7.

—reference (A). In this configuration, the bytecode is not vectorized, it is compiled by the
gcc4cli compiler at the -O2 optimization level and run with the unmodified reference
PVM. This configuration serves as a baseline.

—legacy (B). The vectorized bytecode is run by an unmodified interpreter, unaware of
the special semantics of vector builtins. The builtins are executed as regular function
calls to the companion library. The purpose of this configuration is twofold: (1) to
validate that the vectorized bytecode is legal and can be run by an unmodified VM;
(2) to estimate the penalty incurred by these legacy interpreters. The experimental
results serve as a motivation of this work. They are shown on Figure 3 and discussed
in Section 3.

—extended (C). The vectorized bytecode is run by the interpreter extended with SIMD
IR instructions: all vector builtins are recognized by the bytecode verifier and ex-
panded into an intermediate representation. No function call to the library occurs.

—extended+ (D). This is similar to the previous configuration, but in addition SIMD IR
instructions are executed by the interpreter using target SIMD instructions to the
extent possible.

5.2. Detailed Performance Analysis

Our main objective is performance, i.e. the total runtime of applications. We compare
the execution time of our proposal (configurations extended (C) and extended+ (D)) to
the reference interpreter (configuration A).

5.2.1. Extended. Figure 8 illustrates the speedup of the extended configuration with
respect to reference, computed as the ratio tA/tC of their execution times, for both ARM
(left bar, white) and x86 (central bar, gray). In addition, the reduction in the number of
IR bytecode dispatches is shown in the rightmost bar (black). Note that this reduction
is independent of the underlying architecture as long as the same interpreter runs the
bytecode. The kernels are organized by data type: double, float, int, short, and char.

Average speedups range from 9% to 8× across all the data type configurations, in
both evaluated architectures. Our experiments show that the performance increase
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Fig. 8. Speedup and reduction in number of executed bytecodes (extended wrt. reference).
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Fig. 9. Speedup using native SIMD instruction set (extended+ wrt. extended).

is directly correlated with the reduction in the number of dispatched IR bytecodes.
Also, the results show that data types are influential in the observed speedups. On
x86, kernels operating on char, short and integer/float benefit from an average 8×,
4× and 2× speedup respectively. The double data type results in 9% speedup. Similar
numbers are observed for ARM. The reason is as follows: the amount of overhead
removed with the introduction of SIMD IR instructions is mostly proportional to the
vectorization factor. Some unavoidable overhead remains, inherent to the vectorization
technique, explaining why the speedup is not strictly equal to the vectorization factor.
This overhead arises from additional code to handle alignment on iteration spaces that
are not multiple of the vectorization factor.

Across all data types, the performance of jacobi is almost unchanged. The reason
is that the only vectorized loop is an inner loop that only copies an array into another
one. The benefits of this optimization, while theoretically nonnull, is hidden by the
weight of the rest of the computation. Similarly, the kernels correlation.double and
covariance.double experience slowdowns. In these two cases, the small benefit of the
new IR instructions is insufficient to recoup the overhead of vectorization.

5.2.2. Extended+. This configuration provides an additional contribution. It shows that
combining the dispatch benefits of SIMD IR instructions with the exploitation of the
native SIMD instruction set yields extra performance gains. In this scenario, SIMD IR
instructions are executed by means of one or few native instructions (see the example
on Figure 6(b)). Figure 9 illustrates, for each kernel, the speedups obtained by SSE4.1
and NEON (extended+ configuration) over extended, computed as the ratio of execution
times tC/tD. The kernels are distributed along the horizontal axis. We first observe that
the trends are similar for the two instruction sets: SSE and NEON can accelerate the
same parts of the interpreter. SSE achieves a better speedup: 58% on average (42%
when ignoring the four outstanding values), compared to NEON’s 22%. Two reasons
explain the lower performance of NEON.

(1) Some SIMD primitives could not easily be expressed with the NEON instruction
set, hence are scalarized.

(2) NEON operates on smaller vectors (64 bits), hence compared to SSE we need twice
as many instructions to implement the 128-bit vector semantics.

Four benchmarks have an outstanding performance with SSE, with a speedup above
3×: gramschmidt for data type double and float, doitgen float, and gemm float.
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Table III. Summary of the Benchmarks

Name Origin Overall speedup Comment
tiffdither MiBench none no loop vectorized
IS NAS Parallel Benchmarks 3.3.1 0.25% some loops vectorized, no speedup
DC NAS Parallel Benchmarks 3.3.1 none
scimark scimark 2.1c 1% some speedup
tiff2bw MiBench 2.2×
dither-thr adapted from MiBench 27% significant overall speedup
alpha inspired from MiBench 1.7×

These numbers are due to a particularly underperforming extended configuration. This
phenomenon is also visible in Figure 8 where the x86 target performs poorly respective
to ARM and to the reduction in executed instructions. We confirmed this by measuring
the IPC of the interpreter when executing these kernels (defined as the average number
of native instructions executed per clock cycle). We observed that the IPC is particularly
low, between 0.23 and 0.43, and the number of stalls due to the branch prediction unit
is high4.

5.3. Performance of Applications

As mentioned, the purpose of this article is by no means to evaluate the merit of
vectorization as a compiler optimization, but to study how a feasible acceleration can
be conveyed to interpreters.

Amdahl’s law [Amdahl 1967] states that programs cannot run faster than their
sequential part. Assuming that a single loop can be vectorized in an application, and
that this loop accounts for a proportion p of the total runtime, and s is the acceleration
of the vectorized loop, then the maximum speedup is S = 1

(1−p)+p/s . The smaller the
value of p, the smaller the speedup, regardless of the efficiency of the vectorizer (i.e.,
the value of s).

We selected a set of benchmarks that illustrate the various situations. See Table III
for a summary. We considered the two benchmarks of the NAS Parallel Benchmark
written in C: IS [Bailey et al. 1994] and DC [Frumkin and Shabanov 2003], the im-
plementation of scimark [Pozo and Miller 2000] in C, and some image processing
benchmarks from the MiBench suite [Guthaus et al. 2001]: Floyd-Steinberg dithering
(tiffdither), conversion to black and white (tiff2bw). We also added two benchmarks
in the spirit of the MiBench: dither-thr (a different algorithm of dithering, see the
following), and alpha (alpha blending of two images).
Scimark, IS, and DC are unmodified. We modified parts of the MiBench for two reasons:

(1) the gcc4cli compiler is not able to handle all aspects of C and POSIX; (2) we outlined
compute-intensive loops to make measurements easier at function level.

We compiled all benchmarks with and without vectorization. We ran each bench-
mark to completion on the x86 workstation, and we collected the total number of
executed bytecodes, and the execution time. Vectorized versions are run with the ex-
tended/extended+ PVM, scalar versions are run by the reference PVM. We also collect
this data for the vectorized loops when appropriate.

5.3.1. tiffdither. tiffdither, from MiBench, implements the Floyd-Steinberg dithering
algorithm. The critical loop contains a cross-iteration dependence that prevents vector-
ization. No loop is vectorized, hence no speedup is achieved. The additional complexity

4We confirmed with hardware performance counters that the increased branch misprediction ratio is not
due to indirect branches, but we could not identify the source of the degradation of these pathological cases.
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of the interpreter could have led to a slowdown; however, we measured that the impact
is minimal. This aspect is further discussed in Section 5.4.

5.3.2. NAS Parallel Benchmarks. We used the latest version of the NAS Parallel Bench-
marks at the time of writing, namely NPB-3.3.1. Only IS and DC are written in C. To
keep running times reasonable, we used a class A for IS and class S for DC. Two loops
are vectorized in IS, and four loops in DC. Neither shows a significant speedup.

In IS, the two vectorized loops are in the initialization section of the benchmark, and
iterate respectively only 2048 and 512 times. The vectorized benchmark executes 0.4%
fewer bytecodes in 0.25% less time (79.29 s instead of 79.47 s).

Out of the four vectorized loops in DC, one is never executed, the other three iterate
respectively 1, 5, and 59 times. Both versions report the same runtime (1.16 s). The
vectorized version executes an additional 80 bytecodes (out of 159 million) to account
for the vectorization overhead.

5.3.3. scimark. We used scimark version 2.1c, in C [Pozo and Miller 2000], and we ran
the “large” dataset. Four loops are vectorized, only one is relevant for performance.
Scimark reports performance in Mflops for each of its subparts (FFT, SOR, Monte-

Carlo, Sparse matmult, LU). We observe a 12% speedup in FFT (from 3.31 Mflops to
3.72 Mflops). FFT operates on double precision, the vectorization factor is 2 for 16-byte
containers. The speedup, partially offset by the vectorization overhead, is consistent
with what we observe with the kernels. Because the composite score of scimark is the
arithmetic average of all subparts, scimark achieves only a 1% speedup overall.

5.3.4. Image Processing. Finally, we considered three image processing benchmarks
taken or inpired from the MiBench suite [Guthaus et al. 2001]. All of them use as input
3648x2736 images.

—tiff2bw converts a color image to black and white. The picture is internally repre-
sented as three arrays of 16-bit short int (red, green, and blue components). Process-
ing consists in multiplying corresponding elements by a compile-time constant, and
then adding them. The scalar version requires 329 million bytecodes to execute the
loop in 5.14 s. The vectorized version takes 44.9 million bytecodes in 0.75 s. The vec-
torization factor is 8, the reduction in the number of executed bytecodes is 7.3×, and
the speedup of the loop is 6.9×. In this particular case, the compiler was able to prove
that the arrays were already properly aligned and kept the overhead to a minimum,
hence the speedups. The speedup of the whole benchmark is 2.2×, from 8.15 s down to
3.74 s. SSE instructions contribute to 7.7% of the speedup (configuration extended+).

—The data dependency that prevents vectorization in tiffdither derives from the
algorithm that diffuses quantization error to the neighboring pixels. The dither-thr
benchmark is inspired by tiffdither, but we implemented threshold dithering in-
stead of Floyd-Steinberg. The benchmark internally represents the grey-level image
as an array of 32-bit integers. Arithmetic operators consist in max and subtraction.
The reduction in executed bytecodes in the loop is 2.9× (from 180 million down to
62.5 million), and the vectorized loop executes 2.4× faster (1.54 s versus 0.64 s). This
is in line with the results of the kernels for a vectorization factor of 4. The whole
application is 27% faster: from 3.9 s down to 3.07 s. SSE instructions contribute 6.3%
of the speedup.

—In order to vary the arithmetic operator, we implemented a third image process-
ing benchmark in the spirit of the first two. Alpha blending is a way produce
translucency: two images, typically a foreground and a background, are combined,
the alpha channel characterizing the level of translucency of the foreground. This
benchmark represents each grey-level image as an array of 32-bit integers. The
arithmetic operators include multiplication by a parameter, addition, and division
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by a runtime computed value. The vectorization factor is 4, the reduction is the
number of bytecodes is 2.6× (from 240 million down to 92.5 million), and the loop
speedup is 2.7× (from 4.55 s down to 1.69 s). Again, these speedups match the
results of the kernels. The speedup of the benchmark is 1.7×: from 6.77 s down to
3.94 s. SSE instructions contribute to 20% of the speedup.

5.4. Architectural Behavior

We analyzed the architectural behavior thanks to hardware performance counters.
We focused our analysis on the x86 platform because it provides a large spectrum
of countable events and many performance counters. These counters can be easily
accessed through the PAPI library [Browne et al. 2000].

5.4.1. Branch Prediction. The accuracy of the indirect branch predictor can be key for
an interpreter implemented with a switch statement: the main control consists in a
tight loop that contains an indirect jump at each iteration, the number of possible
targets being rather large. We observed that the number of executed indirect jumps is
on average equal to the number of executed IR bytecodes. In practice, only the bytecode
dispatch accounts for indirect jumps.

We measured that the branch penalty on our x86 target is about 20 cycles, and the
average interpreter loop takes on average 22 cycles for the reference configuration and
35 cycles for the extended configuration (which implements the more complex SIMD IR
instructions).

In the reference configuration, on x86, 18% of cycles are wasted in mispredicted in-
direct jumps. The extended configuration has 21% of the cycles lost. This increase,
however, is more than compensated by the reduction in the number of executed byte-
codes (hence indirect jumps). In the extended+ configuration, misprediction of indirect
jumps accounts for 25% of the total cycles. Part of this latter increase is simply due to
a faster implementation of the vector bytecodes, hence a reduction of the total number
of cycles, which implies a higher ratio.

We also observed that the absolute number of mispredictions varies significantly
between configurations, but also across kernels. The only difference between config-
urations extended (C) and extended+ (D) in the interpreter source code is the imple-
mentation of switch entries for the new IR instructions. The addresses of the corre-
sponding labels vary accordingly. We verified on hand-written microbenchmarks—both
with hardware counters and a simulator—that this can be enough to generate large
variations in the behavior of the indirect-jump branch predictor.

Finally, we note that modern branch predictors are increasingly good at predicting
indirect jumps. We ran our extended interpreter with all kernels on a x86 simulator
and measured the performance of a recently proposed predictor, the ITTAGE [Seznec
and Michaud 2006] (Indirect Target TAgged GEometric history length), configured
with 18kbits of storage. The average misprediction rate of indirect branches is 0.5%
for configuration C (extended) and 0.6% for configuration D (extended+), showing that
the impact of indirect branch mispredictions diminishes with the introduction of more
recent and accurate predictors.

5.4.2. Caches. The main loop of the interpreter is a large switch statement, consisting
of 546 entries (478 regular bytecodes, 68 superinstructions). We added 121 new IR
instructions. Many original entries, and all new ones are fully implemented inside the
switch statement. Table IV reports the code size (in bytes) of this loop. The difference
between reference and extended directly represents the additional IR instructions.
The L1 cache of both the ARM and Intel machines are 32 KB, meaning that most
of the interpreter still fits in the first-level cache. Performance counters also show
that the L1 instruction cache miss rate is below 0.1% in all cases.

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 26, Publication date: January 2013.



TACO0904-26 ACM-TRANSACTION December 17, 2012 16:16

26:20 E. Rohou et al.

Table IV. Code Size (bytes) of Main Interpreter Loop

reference extended extended+
x86/SSE 20251 24900 23806
ARM/NEON 25692 30900 31236

New SIMD IR instructions do not modify how data is accessed beyond what loop vec-
torization does. In our kernels, we measured that data cache miss rate is not impacted
by our proposal and remains insignificant.

5.5. Code Size

Vectorization is known for increasing code size. This can be an issue for JIT compilers
because compilation time tends to increase linearly with code size. Interpreters are
much less impacted, because only the verification phase and the generation of the IR
are slightly slower. Thanks to the SIMD IR recognition, the average increase in the
static number of IR bytecodes due to vectorization is only 6%.

6. RELATED WORK

Ertl and Gregg [2003] improve the performance of interpreters thanks to replicated
instructions and superinstructions. Our approach is similar to their static superin-
structions, but it differs in several aspects: we handle much coarser-grain patterns,
including whole loops; we rely on builtins to recognize the patterns; these patterns are
produced by aggressive optimizations (vectorization) in the offline compiler as opposed
to profiling.

In a more recent article, Ertl and Gregg study the combination of stack caching
with dynamic superinstructions [Ertl and Gregg 2004]. Our work also extends the IR
instruction set. Stack caching is not implemented. However, these two techniques are
shown independent and mutually beneficial. Stack caching could benefit our approach
as well, and improve all our configurations.

Jump threading [Bell 1973] has been initially proposed as an alternative to native
code. Some interpreters exploit the idea to improve the branch prediction of the byte-
code dispatch. Virtual machines without threaded code have been shown [Ertl and
Gregg 2001] to have bad indirect branch prediction rates. We observe that with more
modern predictors, the dispatch with nonthreaded code is no longer a performance
bottleneck. In addition to making the code simpler, it has the following advantage:
threaded code can typically not be written in standard C and requires either assembly
code or GNU extensions (labels as values).

Very recent work integrates initial automatic vectorization capabilities in virtual
machines for Java [Nie et al. 2010]. The technique targets desktop and server machines,
while we also consider constrained mobile devices. Their Java Vectorization Interface
is similar in spirit to the builtin mechanism we use, but ours is more generic in the
sense that our bytecode does not assume any specific ISA or even vector length.

Several languages provide extensions or libraries that let programmers take ad-
vantage of SIMD instruction set extensions. We discuss Mono.Simd [de Icaza 2008]
in Section 2. The GNU Compiler Collection (GCC) proposes attributes and compiler
builtins (see Section 6.49 of the manual [Stallman and the GCC Developer Community
2011]). With Java3D, Oracle provides the vecmath package [Clingman et al. 2004] that
defines types (tuples, vectors, and matrices) appropriate for direct mapping on SIMD
instruction sets. In contrast to our approach, these types are meant to be directly used
by the programmer. Our solution leverages the wealth of research in autovectorization.

With other colleagues, we previously [Rohou et al. 2011; Nuzman et al. 2011]
proposed the split vectorization technique that serves as a base for our SIMD IR
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instructions. It is presented in detail in Section 2. While both approaches build on the
same offline compilation steps, the notable difference is in the type of execution environ-
ment: previous work improves the native code generated by a JIT compiler, while our
current focus is to improve an interpreter by building SIMD IR instructions. By taking
the same bytecode as input, we ensure compatibility with the previous technique.

7. CONCLUSION

Interpreters are in use in many systems. They are significantly slower than JIT compil-
ers, but also much less complex to develop and maintain. Vendors of embedded systems
may content themselves with interpretation for their lower-end products, or even pro-
hibit dynamic code generation (hence JIT compilers) on their platforms. Some users of
high-performance computing also favor interpreters because of the faster development
cycles of their applications.

Instruction dispatch is the main overhead of interpreters. This work proposes to build
coarse-grain IR instructions by leveraging the well-established and powerful autovec-
torization techniques available in an offline compiler. Our experiments on loop kernels
obtain significant speedups that are proportional to the vectorization factor, up to 8×
on average when arrays of bytes are involved. We also map SIMD IR instructions to
actual vector instructions to obtain further speedup, on average 22% and up to 65% on
ARM NEON, and 42% on average and up to 133% on x86 SSE. We also analyze the
behavior of the architecture when running our interpreter and we show that cache and
branch predictors behave well in the presence of SIMD IR instructions.
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