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ABSTRACT 
One important way that an architecture impacts fault tolerance is 
by making it easy or hard to implement measures that improve 
fault tolerance. Many such measures are described as fault 
tolerance tactics. We studied how various fault tolerance tactics 
can be implemented in the best-known architecture patterns. This 
shows that certain patterns are better suited to implementing fault 
tolerance tactics than others, and that certain alternate tactics are 
better matches than others for a given pattern. System architects 
can use this data to help select architecture patterns and tactics for 
reliable systems. 

Categories and Subject Descriptors 
D.2 [Software Engineering]:; D.2.11 [Software Architectures]: 
Patterns; D.4.5 [Reliability]: Fault-tolerance  

General Terms 
Reliability 

Keywords 
Patterns, Software Architectures, Fault-tolerance, Reliability 
tactics 

1. INTRODUCTION 
One of the chief challenges in designing reliable systems is that 
the overall structure and behavior of the system – its architecture 
– is tightly linked to its fault tolerance. Decisions made about the 
architecture of the system impact the ease with which the system 
can be made reliable. Conversely, decisions about how to 
implement fault tolerance features in the system can impact, and 
even shape the architecture. 

It is clear that fault tolerance must be a key consideration during 
the early phases of software development – early attention to fault 
tolerance contributes to a system that supports fault tolerance.  In 
order to understand this better, let us distinguish between two 
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different development scenarios, green field development and 
legacy system enhancement. 

In green field projects, the architecture of the system is not yet 
fixed. One can create a software architecture that supports fault 
tolerance, as well as the functional requirements of the system and 
the other important quality attributes. In fact, we found in a study 
that when architects design a new system, they consider both 
functional requirements and quality attribute requirements (such 
as fault tolerance) together, and make architectural design 
decision based on both kinds of requirements [15]. In green field 
projects, the fault tolerance requirements can and should help 
shape the structure of the system’s architecture. 

On the other hand, most software projects are enhancements to 
legacy systems. In these projects, the architecture of the system 
already exists, and is usually very difficult to substantially 
change. However, measures to improve fault tolerance are still 
needed; measures must be enhanced, or new measures added. For 
example, one of the authors added measures to improve fault 
tolerance in a large, mature telecommunications system [16].  

While it is necessary to improve the fault tolerance of legacy 
systems, it may not be easy. The existing structure of the system 
cannot easily be changed; instead fault tolerance measures must 
be implemented within the framework of the existing architecture. 
Depending on the architecture, this can be easy or difficult. This 
study focuses mainly on architecture patterns already in a system, 
so it applies mainly, but not exclusively, to existing systems. 

An important way that an architecture affects the fault tolerance 
of a system is by making easy or hard to implement measures that 
improve fault tolerance. However, for any given measure to 
improve fault tolerance, we do not know which architectural 
structures make it easy or difficult to implement that measure. 
Furthermore, we do not understand why a fault tolerance measure 
is easy or difficult to implement in a given architectural structure. 
This makes it difficult to make informed choices about alternative 
measures, and to assess the costs and benefits of fault tolerance 
measures. In green field projects, it makes it difficult to select the 
best architectural structures that support the desired fault 
tolerance measures. In short, our ability to effectively incorporate 
fault tolerance measures is compromised. 

In order to gain this understanding, we studied fault tolerance 
measures and well-known architectural structures. For each 
architectural structure (architecture pattern), we examined several 
fault tolerance measures (called tactics.) We investigated how one 
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would implement the each fault tolerance tactic in each pattern. 
This study included what parts of the structure of the pattern 
would change in order to implement the tactic, and how they 
would change. 

From this study we learned several things that are potentially 
useful for architects and developers. We found that certain 
architecture patterns were naturally a better fit for fault tolerance 
than others. We found that some of the tactics themselves are 
generally easier to implement in the well-known patterns than 
others; this can be especially useful when considering alternatives 
and cost-benefit studies. 

In this study, we focus on fault tolerance as described by 
Avizienis et al.[2], where fault tolerance consists of error 
detection (identifying the presence of an error), and recovery 
(transforming a system state that contains one or more errors and 
faults into a state without detected errors and without faults that 
can be activated again.) 

Part 2 describes software architecture and fault tolerance, and 
discusses in general terms the nature of their interaction. Part 3 
describes background work. Parts 4 and 5 describe our study and 
its results. Part 6 discusses the use of the data, and Part 7 presents 
the data itself. Parts 8 and 9 discuss related and future work. 

2. ARCHITECTURE AND FAULT 
TOLERANCE 
It is well known that the architecture of a system impacts its fault 
tolerance. One important way that an architecture impacts fault 
tolerance is by making it easy or hard to implement measures that 
improve fault tolerance.  

2.1 Fault Tolerance Tactics 
Let us examine the measures taken to improve fault tolerance in 
more detail. Bass et al [3] define measures to improve quality 
attributes as tactics. There are two different types of tactics, 
designated as design time and runtime tactics. We describe design 
time and runtime tactics for fault tolerance below. 
Design time tactics are measures that are applied across all parts 
of the system at design and coding time to enhance fault 
tolerance. They often take the form of design or coding rules, 
such as “check all return codes,” or “prevent buffer overruns.” 
Each developer must apply these tactics when designing and 
writing code. 
On the other hand, runtime tactics are specific actions the system 
will take to achieve fault tolerance while the system is running. In 
particular, the system takes certain actions to detect faults and 
errors in the running system, prevent faults from impacting the 
integrity of the system, and recovering gracefully from faults if 
they do occur. Typical examples of fault tolerance runtime tactics 
include voting and transaction rollback. 
In this study, we are interested exclusively in the runtime tactics 
for fault tolerance, because we studied the architectural impact of 
the fault tolerance tactics. The design time tactics have no large-
scale architectural impact. Throughout the rest of the paper, 
references to “tactics” or “fault tolerance tactics” mean runtime 
tactics for fault tolerance. 
Because these tactics are specific actions, they are implemented 
much like features: each tactic has a design, and is generally 

decomposed into components, connectors between the 
components, and required behavior. Thus it follows that the 
structure and behavior of a tactic impacts the structure and the 
behavior of the system. This is an important point at which fault 
tolerance (implemented via tactics) and the architecture meet. 

2.2 Architecture Patterns 
Architecture patterns are common architectural structures, which 
are well understood and documented [1][5][23]. These patterns 
describe the high level structure and behavior of general systems. 
Architecture patterns contain the major components and 
connections of the system to be built. 

During architectural design, an architect may select one or more 
architecture patterns to follow to produce a system structure. The 
architect selects patterns based on their ability to support the 
requirements of the system, including fault tolerance 
requirements. 

Patterns, then, embody the high level structure of the system. The 
structure of tactics is more local and low level. Therefore, the 
structure of the tactic must fit into the larger structure of the 
pattern. 

2.3 Implementing Fault Tolerance Tactics in 
Patterns 
Because of the constraints of architecture, we must consider 
implementing fault tolerance tactics in the context of the patterns 
used. Therefore, we must understand the nature of the 
implementing tactics in the architecture patterns. We need to 
understand the following: 

• Given a certain pattern, what are the best fault tolerance 
tactics to use, based on ease of implementation? 

• Why is one tactic easier to implement in a pattern than 
another tactic? 

• How does one implement a tactic in a given pattern; what 
parts of the pattern must be modified? 

In order to help us answer these questions, we studied numerous 
patterns and fault tolerance tactics. 

3. BACKGROUND WORK 
Because it has long been understood that the architecture of a 
system has an impact on its fault tolerance, the interaction of 
architecture and fault tolerance has been an important topic of 
study.  Numerous architectural and process approaches for 
different aspects of fault tolerance, such as handling exceptions, 
have been proposed [9][7][10][18][8], or for fault handling [20]. 
General approaches to architecture and development of fault 
tolerant systems have also been proposed [4].  A comprehensive 
list of works that address architecting fault tolerant systems can 
be found in [21]. 

Numerous architecture patterns have been identified [1][5]. Some 
of the pattern documentation includes descriptions of the pattern’s 
impact on fault tolerance, although it is rather sparse and 
superficial. A very high-level summary of patterns’ impact on 
quality attributes including fault tolerance is contained in [13]. 

Patterns are modified by the implementation of fault tolerance 
features. Laibinis and Troubitsyna [19] discuss fault tolerance in a 
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layered architecture. De Lemos, Guerra and Rubira [6] show an 
architecture pattern, namely C2, that is changed to handle 
exceptions. This is a detailed example of the types of changes 
described in this work. 

Avizienis et al [2] note that dependability is achieved through 
fault prevention, fault tolerance, fault removal, and fault 
forecasting. Muccini et al [21] note that fault tolerance involves 
error handling, and fault handling. Our study covers common 
techniques of both. 

There has been considerable interest in techniques of error 
handling and fault handling. Techniques in addition to exception 
handling have been identified, and have been occasionally labeled 
as patterns at a lower level than architecture patterns [11]. They 
are analogous to Bass et al’s tactics. Specific fault tolerance 
actions have been defined for telecommunications systems [24], 
as well as for limited-memory systems [22]. 

In a previous study, we examined 47 system architectures to 
identify the patterns found in them [12]. As part of it, we 
identified several different general types of systems in this set, 
and identified the patterns most commonly found in each type of 
system. Three of these types are systems that often have high fault 
tolerance needs: embedded systems, dataflow and production 
systems, and information and enterprise systems. This gives an 
idea of several of the common architecture patterns in reliable 
systems. These patterns are Shared Repository, Layers, Pipes and 
Filters, Presentation Abstraction Control, Model View Controller, 
Broker, Client-Server, and State Transition. These patterns are 
fully described in [1][5][23]. 

4. THE STUDY 
We began the study by identifying the patterns and tactics to 
examine.  

We selected the patterns from Buschmann et al. [5], because they 
are among the best known architecture patterns – the ones people 
are most likely to use. We then added other patterns from our 
study of architectures, as described above. This added the Client-
Server, Shared Repository, and State Transition patterns, giving 
eleven patterns in all. 

For tactics, we used the tactics as given in Bass et al [3]. These 
tactics are a limited set, but are well known techniques for 
improving fault tolerance. In addition, they are well defined as 
tactics. A short description of each tactic appears in section 7. We 
studied all the tactics given in this book (13). These cover many 
general approaches to implementing fault tolerance. 

We studied each fault tolerance tactic to determine how it is 
typically implemented in each architecture pattern. We did this by 
examining the structure and behavior of both the pattern and the 
tactic, and determining where the tactic would fit. We examined 
the question, if your system is using this particular architecture 
pattern, how would you implement this particular tactic? What 
components of the pattern would change, and how would they 
change? In this way, we attempted to characterize the nature of 
the interaction between the tactic and the pattern. We do note that 
our characterizations are based on analysis, heuristics and 
experience, which is of necessity somewhat subjective. In 
particular, difficulty of implementing a given tactic in a given 

situation is partly determined by the individual designer’s 
experience and expertise.  

Ultimately, the individual data is the most useful to developers; 
the complete data is contained in an appendix.  However, we also 
examined the data as whole, looking for trends and 
generalizations.  

4.1 Impact on Pattern Participants 
Buschmann et al note that the structure of patterns consists of 
components and connectors, and call them collectively, 
participants. We note the following general types of impact on 
both components and connectors. 

For each tactic and pattern pair, we identified which components 
in the pattern must be modified in order to implement the tactic, 
and how they must be modified. This, then, becomes a guide for 
implementing fault tolerance tactics: if you are using a particular 
pattern, this information helps you understand where your 
architecture must change, and what you have to do to it. 

We found that a tactic impacts the individual components of a 
pattern, and impacts them in different ways. In short, to 
implement a tactic, one changes the components of the pattern. 
We found several types of changes, and noted that they have 
different impact on the components. 
The following table shows the ways in which a tactic may impact 
a component of a pattern. These are arranged in order of 
increasing impact, i.e., the first one (“Implemented in”) is the 
easiest to implement. 

Table 1. Types of changes to pattern components 

Type of 
Change 

Description Impact 

Implemented in Part of the tactic is 
implemented within a 
component, with no 
external change to the 
component. (A special 
case of Modify) 

Only the behavior 
of the component 
changes. Generally 
the easiest to 
implement. 

Replicates A component is 
duplicated, with little 
or no change to its 
behavior. Usually done 
for redundancy. (A 
specialization of Add.) 

Usually easy to 
implement. 

Add, in the 
Pattern 

A new component is 
added within the 
structure of the pattern 
(e.g., a layer is added 
in the Layers pattern.) 

Generally easy or 
moderately easy to 
implement. 

Add, out of  the 
Pattern 

A new component is 
added that is not part of 
the pattern structure, 
causing the system to 
deviate from the 
original pattern (e.g., 
adding a monitor to 
Pipes and Filters.) 

Usually difficult to 
implement. Makes 
the pattern difficult 
to find, making 
maintenance more 
difficult. 

Modify The behavior and the Impact varies: some 
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structure of the 
component changes. 

changes are trivial, 
but others are very 
difficult. 

Delete A component is 
deleted. 

Never observed it. 
Impact would be 
large. 

 
The changes to components and the changes to the connectors of 
a pattern are related. We note that the type of change to a 
connector is dictated by the type of change to the component, and 
is quite similar. We describe the changes to connectors in terms of 
the changes to the components, as summarized above. 

Table 2. Types of changes to pattern connectors, based on 
changes to components 

Type of Change to a 
Component 

Corresponding Change to 
Connectors 

Implemented in No change 

Replicates Connectors added between 
replicated components and 
other components. These 
connectors may be within the 
structure of the pattern 

Add, in the pattern New connectors added, within 
the pattern structure 

Add, out of the pattern New connectors added, outside 
the pattern structure 

Modify New or modified connectors 
needed. Probably outside the 
pattern structure 

Delete Would have to remove 
connectors 

 
We focused our attention on the components, for two reasons. 
First, as visible above, the connector changes are similar to the 
component changes. Second, the sources of the patterns focus 
mainly on connectors. We recognize that connectors may need 
consideration outside of components, though, and note it in future 
work. 

4.2 Impact on Patterns 
The impact of implementing a tactic on a pattern as a whole is the 
aggregate of the impact of the tactic on the pattern’s components. 
Of course, a tactic itself consists of components, so one must 
consider what components a tactic contains, and how they might 
be implemented in the pattern. The difficulty of implementing the 
tactic’s components becomes the impact on the pattern. 

We defined a five-point scale to describe how difficult it is to 
implement a particular tactic in a given pattern. It is based on the 
impact on the components of the pattern. The descriptions follow: 

1. Good Fit (+ +): The structure of the pattern is highly 
compatible with the structural needs of the tactic. Most or all 
of the changes required are the “Implemented in” type, and 
the behavior of the pattern and tactic are compatible. Any 
structure changes (“Modify”) required are very minor. For 
example, the Broker architecture strongly supports the Ping-

Echo tactic because the broker component already 
communicates with other components, and is a natural 
controller for the ping messages. 

2. Minor Changes (+): The tactic can be implemented with few 
changes to the structure of the pattern, but the changes are 
minor and more importantly, are consistent with the pattern.  
These types of changes are “Replicates” or “Add, in 
Pattern.” Structure changes (“Modify”) are minor. For 
example, the Layers pattern supports the active redundancy 
tactic by replicating the layers, and adding a small 
distribution layer on top. Although another layer is added, it 
is entirely consistent with the pattern. 

3. Neutral (~): The pattern and the tactic are basically 
orthogonal. The tactic is implemented independently of the 
pattern, and receives neither help nor hindrance from it. 

4. Significant Changes (-): The changes needed are more 
significant. They may consist of “Implemented in,” 
“Replicates,” and “Add in Pattern” where behavior changes 
are substantial. More often, they include significant 
“Modify” or minor “Add out of Pattern” changes. For 
example, the Presentation Abstraction Control manages 
simultaneous user sessions. Implementing a Rollback tactic 
would likely require significant extra code to ensure that 
different interfaces are synchronized. 

5. Poor Fit (- -): Significant changes are required to the pattern 
in order to implement the tactic. These consist of significant 
“Modify” and/or “Add out of Pattern” changes. The structure 
of the pattern begins to be obscured. For example, 
introducing Ping-Echo into a Pipes and Filters pattern 
requires a new central controlling component, along with the 
capability in each filter component to respond to the ping in 
a timely manner. 

It is important to note that the architecture of every system is 
different, and has different requirements and constraints, resulting 
in a unique structure. Therefore, the impact of a tactic on an 
architecture could be different from our findings. As such, these 
findings should be taken as general guidelines. They are most 
useful as guides for comparisons of tactics and of patterns, and as 
helps for implementation. 

5. FINDINGS 
We looked for general trends of both patterns and tactics. 

5.1 Implementing Tactics 
We noted general noted general cases of the changes to patterns 
caused by implanting tactics, as well as some special cases worthy 
of note. 
We noted two special cases of changes. In the first, adding a 
component changed the pattern to a different pattern. In 
particular, most of the structural changes to the Client-Server 
pattern involve adding a controlling component, thus changing the 
structure into the Broker pattern. This is a straightforward change, 
because the two patterns are very closely related, and we marked 
it as a positive impact. 

Second, the implementation of a tactic within a pattern resulted in 
the addition of a pattern to the architecture. The most striking case 
of this was the Layers pattern. The addition of any of the 
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recovery-preparation and repair tactics (voting, active 
redundancy, passive redundancy, or spare) were applied, an 
additional controlling component was placed in front of duplicate 
copies of the layered system. This could create a combination of 
the Layers pattern and the Broker pattern, with the layered system 
behind the Broker component. (We note that in our studies of 
architectures [12], the Layers and Broker patterns were frequently 
found together.) In nearly all the cases where an additional pattern 
was added in conjunction with the implementation of a tactic, it 
was the Broker pattern that was added. We also called this a 
positive impact. 

The fault tolerance tactics we studied were in four groups, as 
described in [3]: 

1. Fault Detection: Measures to detect faults, including 
incorrect actions and failure of components. 

2. Recovery – Preparation and Repair: preparing for recovery 
actions; in particular redundancy strategies so that processing 
can continue in the face of a component failure. 

3. Recovery – Reintroduction: Tactics for repair of a 
component that has failed and is to be reintroduced. 

4. Prevention: Preventing faults from having wide impact by 
removing components from service or bundling actions 
together so they can be easily undone. 

 Within each group, the tactics can be considered alternatives to 
each other (although some tactics, notably Exceptions and 
Transactions, may be applied in addition to others in the same 
group.) Each of the alternatives within a group has a similar 
objective, with a different design for achieving it. Because the 
designs are different, they may have differing impacts on the 
patterns. One tactic might have a larger or smaller impact on the 
structure of a pattern. This information can be used to help decide 
which tactic to use. The following table summarizes the difficulty 
of implementing tactics; namely the count of the implementation 
difficulty levels of the tactic in each pattern: 

Table 3. Tactic Implementation Difficulty Summary 

Group, Tactic + + + ~ - - - 

Fault Detection      

    Ping/Echo 3 2 5 0 1 

    Heartbeat 2 3 5 0 1 

    Exceptions 3 0 7 0 1 

Recovery: Preparation      

    Voting 2 5 4 0 0 

    Active Redundancy 4 5 1 1 0 

    Passive Redundancy 2 5 2 2 0 

    Spare 1 2 5 2 1 

Recovery: Reintroduction      

    Shadow 1 5 2 3 0 

    Resynchronization 3 3 2 2 1 

    Rollback 5 1 2 1 2 

Prevention      

    Removal from Service 1 1 7 2 0 

    Transactions 5 2 3 0 1 

    Process Monitor 1 2 6 2 0 

 

We observed the following from the data: The fault detection 
methods of ping/echo and heartbeat are very similar. In most 
cases exceptions are basically orthogonal to the architecture. 
Within Recovery: Preparation, we see that active redundancy is 
the easiest to implement. Sparing is the most difficult. Within 
Recovery: Reintroduction, resynchronization and rollback are 
both strong, although there are a few patterns where rollback is 
difficult to implement. The easiest Prevention tactic is 
transactions. This gives an idea of which tactics are easiest to 
implement in general. However, it should be stressed that tactics 
within a tactic group are not completely interchangeable: other 
factors (such as other patterns or requirements) will influence the 
selection of tactics as well. 

5.2 Suitability of Patterns for Fault Tolerance 
The previous section describes how individual tactics impact the 
patterns. We saw that for some patterns, the impacts of the fault 
tolerance tactics were mostly positive, while for some other 
patterns, the impacts were mostly negative. This would indicate 
that some architecture patterns are better choices for reliable 
systems than others, all other factors being equal. The following 
table shows for each pattern, how many tactics have the different 
levels of implementation difficulty. They are arranged in 
approximate order of ease of implementation, starting with the 
pattern that is generally the easiest to add fault tolerance tactics 
to. 

Table 4. Tactic Implementation Difficulty in Patterns, 
Summary 

Pattern + + + ~ - - - 

Broker 10 2 1 0 0 

State Transition 8 2 3 0 0 

Layers 3 7 3 0 0 

Client-Server 2 8 3 0 0 

Shared Repository 6 0 6 1 0 

Microkernel 4 2 7 0 0 

Model View Controller 0 2 9 2 0 

Presentation Abstraction 
Control 

0 2 9 2 0 

Blackboard 0 3 6 2 2 

Reflection 0 1 8 3 1 

Pipes and Filters 2 2 1 3 5 
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We note the following from the data: In the Layers pattern, 
several tactics can be implemented by adding a new layer, which 
is consistent with the pattern. The Pipes and Filters pattern is 
somewhat bi-modal: tactics for fault detection are a poor fit, but 
tactics involving redundancy fit well. The Broker is very strong 
because many tactics involve a monitor component, which is a 
natural fit for the broker component. Client-Server is a good fit 
because it changes easily into the Broker pattern. Blackboard is 
hurt when it comes to fault tolerance because the AI nature of its 
processing makes it difficult to define states or points for 
synchronization or rollback. Reflection is generally not a 
particularly good fit for fault tolerance because of its emphasis on 
runtime configurability. Microkernel, Model View Controller, and 
Presentation Abstraction Control are all largely independent of 
fault tolerance actions. Shared Repository assumes the use of 
commercial databases, which implement many fault tolerance 
tactics already. So it is very strong. State Transition is a good 
match because several tactics rely on state behavior. 

It is useful to consider how a group of tactics impacts a pattern. 
This gives more detail about what parts of fault tolerance are 
compatible or incompatible with various patterns. In the following 
table, we show the average difficulty for each group of tactics. 

Table 5. Tactic Group Implementation Difficulty in Patterns, 
Average Score 

 

Pattern 

Fault 
Detect-
ion 

Recovery
: Prepa- 
ration 

Recovery
: Reintro- 
duction 

Preven- 
tion 

Broker + + + + + + + 

State Transition ++ + + + + 

Layers + + + + 

Client-Server + + + + 

Shared 
Repository 

+ +  + + + 

Microkernel + + +  ~ ~ 

Model View 
Controller 

~ + ~ ~ 

Presentation 
Abstraction 
Control 

~ + - ~ 

Blackboard ~ ~ - - 

Reflection ~ - - ~ 

Pipes and 
Filters 

- - + - - 

 

Because most tactics in a tactic group can be used alternatively, it 
is useful to look at the best fitting tactic for a pattern in each tactic 
group. In this table there is a more positive story: for most 
patterns there is some tactic in each tactic group that can be 
readily implemented.  

This information can be used to help when deciding which 
patterns to use. However, if the architecture is already established, 

it can simply give a rough idea of the comparative amount of 
work needed to add fault tolerance actions and to maintain the 
system in the future. 

Table 6. Tactic Group Implementation Difficulty in Patterns, 
Best Case 

 

Pattern 

Fault 
Detect-
ion 

Recovery
: Prepa- 
ration 

Recovery
: Reintro- 
duction 

Preven- 
tion 

Broker + + + + + + + + 

State Transition ++ + + + + + + 

Layers + + + + + + + 

Client-Server + + + + + + 

Shared 
Repository 

+ + + + + + + + 

Microkernel + + + + ~ + 

Model View 
Controller 

~ + + ~ 

Presentation 
Abstraction 
Control 

~ + + + 

Blackboard + + + - 

Reflection ~ - ~ + 

Pipes and 
Filters 

- - + + + ~ 

5.3 Summary of Findings 
Architectures generally follow well established architecture 
patterns. We found that some of the patterns are well suited for 
implementation of these fault tolerance tactics; in other words, 
some patterns are good fits for reliable systems. However, nearly 
all the popular patterns accommodate all these fault tolerance 
tactics, with a greater or lesser degree of modification to the 
pattern needed. 

We found that one can identify the components in the architecture 
where the tactics can be implemented, and how much change is 
required. One can use this information to learn about the tactic’s 
implementation, to select among alternate tactics, and even 
sometimes select different or additional architecture patterns. It 
also appears that this information is potentially important in the 
understanding of the interaction of the implementations of 
multiple tactics. 

However, all potential uses depend on the availability of this 
information to the architects. While architects are generally 
experts (or at least should be), and should have much of this 
information in their heads, it is unlikely that have it all. We 
propose that it be collected and become part of a handbook for 
architects of reliable systems. 

6. USING THE DATA 
The data has several practical uses, particularly in the areas of 
architectural synthesis and evaluation, as described by Hofmeister 
et al [17]. We discuss each below. Of course, any architectural 
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activity must consider not only how fault tolerance tactics affect 
other quality attributes and how other tactics or architectural 
solutions affect fault tolerance, but all quality attributes important 
to the system as well. 

6.1 Architectural Synthesis 
Architectural synthesis is the process of designing the 
architecture. Although it is usually considered in the context of 
designing a new system, it can also be considered for enhancing 
an existing system. 

Let us begin with the case where a new system is truly a green 
field architecture. The architecture is still fluid, and the architect 
is weighing different options. In this case, the architect can 
examine different candidate architecture patterns to see which is 
the best fit for implementing the fault tolerance tactics that are 
required. This is an instance of Pattern-Driven Architectural 
Partitioning (PDAP), a process for leveraging architecture 
patterns and their interaction with the quality attribute 
requirements of the system [14]. 

The more common case is that the system is based on previous 
work, either a previous release of the same product, or similar 
projects. In this case, the architecture patterns are mostly fixed. In 
these systems, one can use the data in these ways: 

• The data gives guidance for implementing a tactic in a given 
pattern. It gives pointers to which components might be 
changed, and how. 

• It provides information about how readily different alternate 
tactics can be implemented in a pattern. This can help the 
developer make an informed decision about which tactic is a 
better fit for the patterns in the system. 

• It can help the developer gauge how much work will be 
required to implement a particular tactic. 

• It can help the developer understand the potential interactions of 
multiple tactics. Tactics which impact the same component of a 
pattern are likely to interact with each other, and deserve special 
attention. 

6.2 Architectural Evaluation 
This data can be used in architectural reviews to highlight areas of 
potential difficulty: areas where the patterns and the tactics do not 
match well. 
A less obvious aspect of architectural evaluation is understanding 
the system. It has been estimated that up to 80% of a cost of a 
system over its lifetime is in maintenance, and up to 50% of the 
maintenance effort goes to understanding the system. We 
established in earlier work that one can identify architecture 
patterns in legacy system documentation [12]. However, patterns 
are changed by the application of tactics, thus making it more 
difficult to identify the pattern and understand why it was 
changed. As reviewers and maintainers understand the tactics 
used, they can more readily identify the modified patterns in the 
system, and gain insight into their implementations. 

7. PATTERN AND TACTIC DATA 
For the architect and developer, the key information is the data 
itself. In this section we describe the fault tolerance tactics we 

studied. We follow it with the data for the Layers pattern. The 
data for the rest of the patterns is available in an appendix. 

7.1 Descriptions of the Tactics 
There is not a universally accepted terminology for the various 
tactics of fault tolerance. Therefore, we give brief descriptions of 
the tactics and how they are implemented, as described in [3]. 

1. Tactics for Fault Detection: 

a. Ping/Echo: A monitoring component issues a ping message 
to one or more components under scrutiny, and expects to 
receive an echo message back within a predetermined time. 
If a component does not respond within the time limit, the 
monitoring component considers that component to be in 
failure mode, and takes corrective actions. Implementation 
requires that a monitoring process be created or used, and 
that all components being watched must be modified to 
handle the echo messages. 

b. Heartbeat: A component emits a heartbeat message at 
regular intervals and a monitoring component listens for it. 
If no heartbeat message is received within a predetermined 
time, the originating component is assumed to have failed, 
and corrective actions are taken. This tactic requires a 
monitoring component, and all components must be 
modified to send heartbeats at the proper intervals. 

c. Exceptions: Raise and handle exceptions. Exceptions are 
usually handled in the components in which they occur.  
Most modern programming languages include built-in 
support for exception handling. Implementation usually 
only requires minor, sub-architectural structural changes, 
such as the add of an exception handling block. 

2. Fault Recovery – Preparation and Repair 

a. Voting: Processes running on redundant processors each 
take equivalent input and compute a single out value that is 
sent to a voter. The voter component decides which of the 
results is correct using an algorithm such as majority rules.  
The strongest approach is to implement each voting 
component independently; otherwise you can only detect 
hardware faults, and not algorithm faults. (If the voting 
components are running the same software, this tactic 
becomes very similar to Active Redundancy; see below.) To 
implement voting, create a voter component, and either 
replicate or write a new voting component. 

b. Active Redundancy: redundant components receive events 
in parallel, thus they are always in the same state. If one 
component fails, the other can immediately take over. This 
tactic that the processing component(s) to be replicated. It 
usually requires a central arbitrating component, although it 
is possible to make the redundant components perform the 
arbitrating without a central component. 

c. Passive Redundancy: One component is the active or 
primary component. It updates the state of one or more 
backup components. If the primary component fails, a 
backup component will be in approximately the same state, 
and will take over. This tactic requires that the primary 
component to be replicated to form the backup, and both are 
modified to implement the state update protocol between 
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the primary and backup(s). A central arbitrating component 
may be needed. 

d. Spare: A standby spare can replace different components, 
and is booted for the particular component that failed. This 
is most common where multiple components sharing load; 
imagine a system with multiple identical servers to service 
requests. Such a configuration is often called “N + 1 
sparing.” This requires the component of interest to be 
replicated, and changed to support the sparing. An 
important consideration is that all components must save 
state so the spare can replace any of them. A central 
arbitrating component may be needed. 

3. Recovery – Reintroduction of a Failed Component 

a. Shadow: When a component is restored, it runs in shadow 
mode behind an active component until its integrity is fully 
established. Implementation of this tactic requires a 
component to monitor the health of the “shadow” 
component. The shadow itself is probably replicated from 
another component. 

b. State Resynchronization: Before a component is returned to 
service, synchronize its state with the current operation. The 
state synchronizing messages must come from somewhere; 
it is probably easiest to have them come from an active 
component; then a controlling component isn’t needed. 

c. Checkpoint/Rollback: Record consistent states and have a 
path to roll back to them if necessary. Each component in 
question must define its consistent states and implement a 
way to record the checkpoints and roll back to them. A 
component can usually do this without the need for a central 
component. However, note that the ease of implementation 
is based on how easy it is to define sane checkpoints – some 
systems have little notion of state. 

4. Fault Prevention 

a. Removal From Service: Remove a component from service 
to repair potential problems. For example, a component 
might be periodically restarted to prevent memory leaks 
from causing a failure. This can be implemented by 
modifying a component to restart itself, or by using a 
central monitoring component. If a central component is 
used, this tactic looks like a proactive process monitor; see 
below. 

b. Transactions: Bundle actions into sets that can be undone all 
at once. Transactions are highly compatible with 
checkpoints as described above. Components are modified 
for transactions. 

c. Process Monitor: When a fault is detected, a monitoring 
process manages the deletion of the process and its 
replacement. This is typically used together with the fault 
detection tactics of Ping/Echo or Heartbeat. Implementation 
requires a central monitoring component. The components 
being monitored may or may not need any changes. 

7.2 Pattern and Tactic Interaction Data 
We have organized the data by pattern. Within each, we give a 
short summary of the data for that pattern, followed by the 
descriptions of the tactics’ impact. 

The impact of each tactic is described as very positive, positive, 
neutral, negative, or very negative, as described earlier. They are 
abbreviated with the symbols + +, +, ~, -, - -, respectively. We 
show the Layers pattern as a sample. 
Layers 

Summary: The Layers pattern is very common in all systems. It 
provides good support for many fault tolerance tactics, and should 
be considered for highly reliable systems. 

1. Fault Detection 

a. Ping/Echo: +: The monitor component is added. If all the 
layers are implemented in a single process, then only the 
top layer must respond to the ping. If each layer is a 
separate process, then one approach is to create a hierarchy: 
the monitor pings the top layer, and each layer pings the 
layer below it before responding with an echo. (Add in the 
Pattern, Minor modifications) 

b. Heartbeat: +:  Similar to ping/echo, except the top layer 
sends the heartbeat based on time, rather than an echo in 
response to a ping. (Add in the pattern, minor 
modifications) 

c. Exceptions: + +: Exceptions can be handled or propagated 
through layers with few if any changes to structure. 
(Implemented in the components) 

2. Recovery – Preparation and Repair 

a. Voting: +: Voting requires that the main processing 
components be rewritten to implement additional voting 
components. A new component, the voter, is added, and can 
be added as the top layer above all the voting components. 
Thus the pattern gives moderate support to this tactic. (Add 
in the Pattern, minor modifications) 

b. Active Redundancy: +: To implement this tactic, replicate 
the layers without change. Add an additional layer above 
both layered systems to arbitrate and distribute messages to 
the redundant components. If it is a distributed system, this 
begins to look like a Broker. (Replicate, minor 
modifications, possibly add within the pattern) 

c. Passive Redundancy: +: Replicate the layers, and then 
modify one layer to send and receive state updates (keep it 
to a single layer). It is likely the top layer, but may be a 
different layer. If needed, a monitor component can be 
added as a layer above both. This tactic does not fit quite as 
well as Active Redundancy, but is still a positive fit with 
Layers. (Replicate, minor modifications, possibly add 
within the pattern) 

d. Spare: ~: One must replicate the layers, and modify some 
part of the replicated components to save their state. The 
spare must have a way to synchronize itself with the 
component that fails. A monitoring layer is probably 
needed.) In all this, the Layers pattern doesn’t help, but it 
doesn’t hurt, either. (Replicate, moderate modifications,  
add in the pattern) 

3. Recovery – Reintroduction 

a. Shadow: +: The system will have been duplicated, 
following one of the redundancy tactics. An additional layer 
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is added to assess the health of the system coming back into 
service. If there is a monitoring layer for fault detection or 
redundancy, it will be the same layer. (Minor modifications, 
Add in the Pattern is in conjunction with another tactic.) 

b. State Resynchronization: +: Layers provides some support 
for states – state information can be encapsulated in a single 
layer, which can help with resynchronization of a 
component returning to service. A monitoring layer may be 
needed, and a layer is modified to send state information to 
the other component. The layers will have been replicated 
in another tactic. (Minor modifications, Add in the Pattern 
is in conjunction with another tactic.) 

c. Rollback: + +: Layers can provide checkpointing of data 
which can make it easier to recover the data or the state. A 
layer can hold a request to a lower layer that is pending. If 
the lower layer in unable to complete the transaction, the 
higher layer can readily undo the transaction. (Implemented 
in the components) 

4. Prevention 

a. Removal from Service: ~: A monitoring component is 
needed. If all the layers are implemented in a single process, 
then the monitor is added as the top layer (Add in the 
pattern, little or no modification needed.) However, if each 
layer is a separate process, either the monitor must control 
each layer, or each layer must control the layer under it 
(both are significant modifications.) So depending on the 
implementation of Layers, it is either positive or negative. 

b. Transaction: + +: Layering encourages the packaging of 
actions into transactions; usually done at the highest layers. 
One can create commands to the  

c. Process Monitor: ~: Implementation depends on how the 
layers are implemented. If they are all in a single process, 
then simply add the process monitor as a top layer (Add in 
the pattern, little or no modification needed.) However, if 
each layer is a separate process, then either the process 
monitor must monitor each layer individually, or each layer 
becomes the process monitor of the layer under it. Both 
these cases require significant modifications to components. 
So it is either positive or negative, depending on the 
implementation of the Layers. 

8. FUTURE WORK 
This work has great potential to help software architects and 
designers be more effective in the design of reliable systems. But 
there is much to be done to make it truly useful. 

8.1 Multiple Tactics, Patterns, and Quality 
Attributes 
Most reliable systems use more than one fault tolerance tactic. 
This raises the question of how the implementations of multiple 
tactics influence each other. Because the patterns and tactics data 
are concerned with where in the system a tactic will be 
implemented, this data can also be used to help gain insight about 
the interactions of multiple tactics. 

Our study of interactions of tactics is still rather preliminary. In 
particular, it appears that the really interesting interactions of 

tactics come between tactics from different quality attributes; for 
example tactics of fault tolerance and tactics of performance. 

There are also interactions among patterns. We found that most 
systems incorporate at least two architecture patterns in their 
design. Where two or more architecture patterns are present, how 
does a tactic interact with them? While this is also preliminary 
work, we believe it works as follows: A tactic is implemented in 
one pattern and not the others. It makes sense, therefore, that the 
tactic is implemented in the pattern where it fits best. Of course, 
this is subject to the design of the application itself. For example, 
you might have a Shared Repository that has a Broker in front of 
it. If you implement Ping/Echo, the obvious choice for the Ping 
controller is the Broker, not the Shared Repository component. 
The interaction of multiple quality attributes with respect to 
patterns and tactics requires study. While it is understood that 
quality attributes such as fault tolerance and performance interact, 
it is useful to examine the individual tactics and patterns involved 
for their interactions. This area is potentially highly complex and 
challenging. 

8.2 Behavioral Considerations 
The most visible part of architecture patterns and interactions with 
tactics is the structure of the two. While the preceding analysis 
includes behavior, the most obvious part is the structure. 
However, behavior also requires attention. 

Each of the tactics introduces some additional behavior into the 
system. In this respect, one can consider a tactic to be a fault 
tolerance feature: behavior of the system with the goal of 
improving fault tolerance. 

We noted that timing of actions is particularly important for 
certain fault tolerance tactics; for example: 

• In Ping/Echo and Heartbeat, messages must be sent 
within a certain time period, or else the component is 
considered to be in failure. 

• With Active and Passive Redundancy, messages must 
be sent to the redundant components within a certain 
timeframe; otherwise synchronization can be lost. 

We did not study timing in detail, but it appears that timing may 
be an important issue with Pipes and Filters, where processing of 
data can be in large units. 

We also noted that sequencing of actions is part of behavior. Both 
these aspects of behavior need to be studied in more detail to 
understand how they affect the patterns. 

8.3 General Considerations 
A general approach to using this data is warranted. We have 
explored using patterns to help create software architectures that 
satisfy quality attributes, and note that it can be used in published 
software architecture methods. 
As this information grows, it should be organized and published 
for software designers. This will approach the concept of a 
handbook for software architecture. 
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