
Incorporating Fault Tolerance Tactics in Software
Architecture Patterns

Neil B. Harrison
University of Groningen, Utah Valley

University
800 West University Parkway

Orem, Utah 84058 USA
+1 801 863-7312

neil.harrison@uvu.edu

 Paris Avgeriou
University of Groningen

PO Box 407
9700 AK Groningen, The Netherlands

+31 50 3237057

paris@cs.rug.nl

ABSTRACT
One important way that an architecture impacts fault tolerance is
by making it easy or hard to implement measures that improve
fault tolerance. Many such measures are described as fault
tolerance tactics. We studied how various fault tolerance tactics
can be implemented in the best-known architecture patterns. This
shows that certain patterns are better suited to implementing fault
tolerance tactics than others, and that certain alternate tactics are
better matches than others for a given pattern. System architects
can use this data to help select architecture patterns and tactics for
reliable systems.

Categories and Subject Descriptors
D.2 [Software Engineering]:; D.2.11 [Software Architectures]:
Patterns; D.4.5 [Reliability]: Fault-tolerance

General Terms
Reliability

Keywords
Patterns, Software Architectures, Fault-tolerance, Reliability
tactics

1. INTRODUCTION
One of the chief challenges in designing reliable systems is that
the overall structure and behavior of the system – its architecture
– is tightly linked to its fault tolerance. Decisions made about the
architecture of the system impact the ease with which the system
can be made reliable. Conversely, decisions about how to
implement fault tolerance features in the system can impact, and
even shape the architecture.

It is clear that fault tolerance must be a key consideration during
the early phases of software development – early attention to fault
tolerance contributes to a system that supports fault tolerance. In
order to understand this better, let us distinguish between two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SERENE 2008, November 17-19, 2008, Newcastle, UK.
Copyright 2008 ACM 978-60558-275-7/08/11…$5.00.

different development scenarios, green field development and
legacy system enhancement.

In green field projects, the architecture of the system is not yet
fixed. One can create a software architecture that supports fault
tolerance, as well as the functional requirements of the system and
the other important quality attributes. In fact, we found in a study
that when architects design a new system, they consider both
functional requirements and quality attribute requirements (such
as fault tolerance) together, and make architectural design
decision based on both kinds of requirements [15]. In green field
projects, the fault tolerance requirements can and should help
shape the structure of the system’s architecture.

On the other hand, most software projects are enhancements to
legacy systems. In these projects, the architecture of the system
already exists, and is usually very difficult to substantially
change. However, measures to improve fault tolerance are still
needed; measures must be enhanced, or new measures added. For
example, one of the authors added measures to improve fault
tolerance in a large, mature telecommunications system [16].

While it is necessary to improve the fault tolerance of legacy
systems, it may not be easy. The existing structure of the system
cannot easily be changed; instead fault tolerance measures must
be implemented within the framework of the existing architecture.
Depending on the architecture, this can be easy or difficult. This
study focuses mainly on architecture patterns already in a system,
so it applies mainly, but not exclusively, to existing systems.

An important way that an architecture affects the fault tolerance
of a system is by making easy or hard to implement measures that
improve fault tolerance. However, for any given measure to
improve fault tolerance, we do not know which architectural
structures make it easy or difficult to implement that measure.
Furthermore, we do not understand why a fault tolerance measure
is easy or difficult to implement in a given architectural structure.
This makes it difficult to make informed choices about alternative
measures, and to assess the costs and benefits of fault tolerance
measures. In green field projects, it makes it difficult to select the
best architectural structures that support the desired fault
tolerance measures. In short, our ability to effectively incorporate
fault tolerance measures is compromised.

In order to gain this understanding, we studied fault tolerance
measures and well-known architectural structures. For each
architectural structure (architecture pattern), we examined several
fault tolerance measures (called tactics.) We investigated how one

9

would implement the each fault tolerance tactic in each pattern.
This study included what parts of the structure of the pattern
would change in order to implement the tactic, and how they
would change.

From this study we learned several things that are potentially
useful for architects and developers. We found that certain
architecture patterns were naturally a better fit for fault tolerance
than others. We found that some of the tactics themselves are
generally easier to implement in the well-known patterns than
others; this can be especially useful when considering alternatives
and cost-benefit studies.

In this study, we focus on fault tolerance as described by
Avizienis et al.[2], where fault tolerance consists of error
detection (identifying the presence of an error), and recovery
(transforming a system state that contains one or more errors and
faults into a state without detected errors and without faults that
can be activated again.)

Part 2 describes software architecture and fault tolerance, and
discusses in general terms the nature of their interaction. Part 3
describes background work. Parts 4 and 5 describe our study and
its results. Part 6 discusses the use of the data, and Part 7 presents
the data itself. Parts 8 and 9 discuss related and future work.

2. ARCHITECTURE AND FAULT
TOLERANCE
It is well known that the architecture of a system impacts its fault
tolerance. One important way that an architecture impacts fault
tolerance is by making it easy or hard to implement measures that
improve fault tolerance.

2.1 Fault Tolerance Tactics
Let us examine the measures taken to improve fault tolerance in
more detail. Bass et al [3] define measures to improve quality
attributes as tactics. There are two different types of tactics,
designated as design time and runtime tactics. We describe design
time and runtime tactics for fault tolerance below.
Design time tactics are measures that are applied across all parts
of the system at design and coding time to enhance fault
tolerance. They often take the form of design or coding rules,
such as “check all return codes,” or “prevent buffer overruns.”
Each developer must apply these tactics when designing and
writing code.
On the other hand, runtime tactics are specific actions the system
will take to achieve fault tolerance while the system is running. In
particular, the system takes certain actions to detect faults and
errors in the running system, prevent faults from impacting the
integrity of the system, and recovering gracefully from faults if
they do occur. Typical examples of fault tolerance runtime tactics
include voting and transaction rollback.
In this study, we are interested exclusively in the runtime tactics
for fault tolerance, because we studied the architectural impact of
the fault tolerance tactics. The design time tactics have no large-
scale architectural impact. Throughout the rest of the paper,
references to “tactics” or “fault tolerance tactics” mean runtime
tactics for fault tolerance.
Because these tactics are specific actions, they are implemented
much like features: each tactic has a design, and is generally

decomposed into components, connectors between the
components, and required behavior. Thus it follows that the
structure and behavior of a tactic impacts the structure and the
behavior of the system. This is an important point at which fault
tolerance (implemented via tactics) and the architecture meet.

2.2 Architecture Patterns
Architecture patterns are common architectural structures, which
are well understood and documented [1][5][23]. These patterns
describe the high level structure and behavior of general systems.
Architecture patterns contain the major components and
connections of the system to be built.

During architectural design, an architect may select one or more
architecture patterns to follow to produce a system structure. The
architect selects patterns based on their ability to support the
requirements of the system, including fault tolerance
requirements.

Patterns, then, embody the high level structure of the system. The
structure of tactics is more local and low level. Therefore, the
structure of the tactic must fit into the larger structure of the
pattern.

2.3 Implementing Fault Tolerance Tactics in
Patterns
Because of the constraints of architecture, we must consider
implementing fault tolerance tactics in the context of the patterns
used. Therefore, we must understand the nature of the
implementing tactics in the architecture patterns. We need to
understand the following:

• Given a certain pattern, what are the best fault tolerance
tactics to use, based on ease of implementation?

• Why is one tactic easier to implement in a pattern than
another tactic?

• How does one implement a tactic in a given pattern; what
parts of the pattern must be modified?

In order to help us answer these questions, we studied numerous
patterns and fault tolerance tactics.

3. BACKGROUND WORK
Because it has long been understood that the architecture of a
system has an impact on its fault tolerance, the interaction of
architecture and fault tolerance has been an important topic of
study. Numerous architectural and process approaches for
different aspects of fault tolerance, such as handling exceptions,
have been proposed [9][7][10][18][8], or for fault handling [20].
General approaches to architecture and development of fault
tolerant systems have also been proposed [4]. A comprehensive
list of works that address architecting fault tolerant systems can
be found in [21].

Numerous architecture patterns have been identified [1][5]. Some
of the pattern documentation includes descriptions of the pattern’s
impact on fault tolerance, although it is rather sparse and
superficial. A very high-level summary of patterns’ impact on
quality attributes including fault tolerance is contained in [13].

Patterns are modified by the implementation of fault tolerance
features. Laibinis and Troubitsyna [19] discuss fault tolerance in a

10

layered architecture. De Lemos, Guerra and Rubira [6] show an
architecture pattern, namely C2, that is changed to handle
exceptions. This is a detailed example of the types of changes
described in this work.

Avizienis et al [2] note that dependability is achieved through
fault prevention, fault tolerance, fault removal, and fault
forecasting. Muccini et al [21] note that fault tolerance involves
error handling, and fault handling. Our study covers common
techniques of both.

There has been considerable interest in techniques of error
handling and fault handling. Techniques in addition to exception
handling have been identified, and have been occasionally labeled
as patterns at a lower level than architecture patterns [11]. They
are analogous to Bass et al’s tactics. Specific fault tolerance
actions have been defined for telecommunications systems [24],
as well as for limited-memory systems [22].

In a previous study, we examined 47 system architectures to
identify the patterns found in them [12]. As part of it, we
identified several different general types of systems in this set,
and identified the patterns most commonly found in each type of
system. Three of these types are systems that often have high fault
tolerance needs: embedded systems, dataflow and production
systems, and information and enterprise systems. This gives an
idea of several of the common architecture patterns in reliable
systems. These patterns are Shared Repository, Layers, Pipes and
Filters, Presentation Abstraction Control, Model View Controller,
Broker, Client-Server, and State Transition. These patterns are
fully described in [1][5][23].

4. THE STUDY
We began the study by identifying the patterns and tactics to
examine.

We selected the patterns from Buschmann et al. [5], because they
are among the best known architecture patterns – the ones people
are most likely to use. We then added other patterns from our
study of architectures, as described above. This added the Client-
Server, Shared Repository, and State Transition patterns, giving
eleven patterns in all.

For tactics, we used the tactics as given in Bass et al [3]. These
tactics are a limited set, but are well known techniques for
improving fault tolerance. In addition, they are well defined as
tactics. A short description of each tactic appears in section 7. We
studied all the tactics given in this book (13). These cover many
general approaches to implementing fault tolerance.

We studied each fault tolerance tactic to determine how it is
typically implemented in each architecture pattern. We did this by
examining the structure and behavior of both the pattern and the
tactic, and determining where the tactic would fit. We examined
the question, if your system is using this particular architecture
pattern, how would you implement this particular tactic? What
components of the pattern would change, and how would they
change? In this way, we attempted to characterize the nature of
the interaction between the tactic and the pattern. We do note that
our characterizations are based on analysis, heuristics and
experience, which is of necessity somewhat subjective. In
particular, difficulty of implementing a given tactic in a given

situation is partly determined by the individual designer’s
experience and expertise.

Ultimately, the individual data is the most useful to developers;
the complete data is contained in an appendix. However, we also
examined the data as whole, looking for trends and
generalizations.

4.1 Impact on Pattern Participants
Buschmann et al note that the structure of patterns consists of
components and connectors, and call them collectively,
participants. We note the following general types of impact on
both components and connectors.

For each tactic and pattern pair, we identified which components
in the pattern must be modified in order to implement the tactic,
and how they must be modified. This, then, becomes a guide for
implementing fault tolerance tactics: if you are using a particular
pattern, this information helps you understand where your
architecture must change, and what you have to do to it.

We found that a tactic impacts the individual components of a
pattern, and impacts them in different ways. In short, to
implement a tactic, one changes the components of the pattern.
We found several types of changes, and noted that they have
different impact on the components.
The following table shows the ways in which a tactic may impact
a component of a pattern. These are arranged in order of
increasing impact, i.e., the first one (“Implemented in”) is the
easiest to implement.

Table 1. Types of changes to pattern components

Type of
Change

Description Impact

Implemented in Part of the tactic is
implemented within a
component, with no
external change to the
component. (A special
case of Modify)

Only the behavior
of the component
changes. Generally
the easiest to
implement.

Replicates A component is
duplicated, with little
or no change to its
behavior. Usually done
for redundancy. (A
specialization of Add.)

Usually easy to
implement.

Add, in the
Pattern

A new component is
added within the
structure of the pattern
(e.g., a layer is added
in the Layers pattern.)

Generally easy or
moderately easy to
implement.

Add, out of the
Pattern

A new component is
added that is not part of
the pattern structure,
causing the system to
deviate from the
original pattern (e.g.,
adding a monitor to
Pipes and Filters.)

Usually difficult to
implement. Makes
the pattern difficult
to find, making
maintenance more
difficult.

Modify The behavior and the Impact varies: some

11

structure of the
component changes.

changes are trivial,
but others are very
difficult.

Delete A component is
deleted.

Never observed it.
Impact would be
large.

The changes to components and the changes to the connectors of
a pattern are related. We note that the type of change to a
connector is dictated by the type of change to the component, and
is quite similar. We describe the changes to connectors in terms of
the changes to the components, as summarized above.

Table 2. Types of changes to pattern connectors, based on
changes to components

Type of Change to a
Component

Corresponding Change to
Connectors

Implemented in No change

Replicates Connectors added between
replicated components and
other components. These
connectors may be within the
structure of the pattern

Add, in the pattern New connectors added, within
the pattern structure

Add, out of the pattern New connectors added, outside
the pattern structure

Modify New or modified connectors
needed. Probably outside the
pattern structure

Delete Would have to remove
connectors

We focused our attention on the components, for two reasons.
First, as visible above, the connector changes are similar to the
component changes. Second, the sources of the patterns focus
mainly on connectors. We recognize that connectors may need
consideration outside of components, though, and note it in future
work.

4.2 Impact on Patterns
The impact of implementing a tactic on a pattern as a whole is the
aggregate of the impact of the tactic on the pattern’s components.
Of course, a tactic itself consists of components, so one must
consider what components a tactic contains, and how they might
be implemented in the pattern. The difficulty of implementing the
tactic’s components becomes the impact on the pattern.

We defined a five-point scale to describe how difficult it is to
implement a particular tactic in a given pattern. It is based on the
impact on the components of the pattern. The descriptions follow:

1. Good Fit (+ +): The structure of the pattern is highly
compatible with the structural needs of the tactic. Most or all
of the changes required are the “Implemented in” type, and
the behavior of the pattern and tactic are compatible. Any
structure changes (“Modify”) required are very minor. For
example, the Broker architecture strongly supports the Ping-

Echo tactic because the broker component already
communicates with other components, and is a natural
controller for the ping messages.

2. Minor Changes (+): The tactic can be implemented with few
changes to the structure of the pattern, but the changes are
minor and more importantly, are consistent with the pattern.
These types of changes are “Replicates” or “Add, in
Pattern.” Structure changes (“Modify”) are minor. For
example, the Layers pattern supports the active redundancy
tactic by replicating the layers, and adding a small
distribution layer on top. Although another layer is added, it
is entirely consistent with the pattern.

3. Neutral (~): The pattern and the tactic are basically
orthogonal. The tactic is implemented independently of the
pattern, and receives neither help nor hindrance from it.

4. Significant Changes (-): The changes needed are more
significant. They may consist of “Implemented in,”
“Replicates,” and “Add in Pattern” where behavior changes
are substantial. More often, they include significant
“Modify” or minor “Add out of Pattern” changes. For
example, the Presentation Abstraction Control manages
simultaneous user sessions. Implementing a Rollback tactic
would likely require significant extra code to ensure that
different interfaces are synchronized.

5. Poor Fit (- -): Significant changes are required to the pattern
in order to implement the tactic. These consist of significant
“Modify” and/or “Add out of Pattern” changes. The structure
of the pattern begins to be obscured. For example,
introducing Ping-Echo into a Pipes and Filters pattern
requires a new central controlling component, along with the
capability in each filter component to respond to the ping in
a timely manner.

It is important to note that the architecture of every system is
different, and has different requirements and constraints, resulting
in a unique structure. Therefore, the impact of a tactic on an
architecture could be different from our findings. As such, these
findings should be taken as general guidelines. They are most
useful as guides for comparisons of tactics and of patterns, and as
helps for implementation.

5. FINDINGS
We looked for general trends of both patterns and tactics.

5.1 Implementing Tactics
We noted general noted general cases of the changes to patterns
caused by implanting tactics, as well as some special cases worthy
of note.
We noted two special cases of changes. In the first, adding a
component changed the pattern to a different pattern. In
particular, most of the structural changes to the Client-Server
pattern involve adding a controlling component, thus changing the
structure into the Broker pattern. This is a straightforward change,
because the two patterns are very closely related, and we marked
it as a positive impact.

Second, the implementation of a tactic within a pattern resulted in
the addition of a pattern to the architecture. The most striking case
of this was the Layers pattern. The addition of any of the

12

recovery-preparation and repair tactics (voting, active
redundancy, passive redundancy, or spare) were applied, an
additional controlling component was placed in front of duplicate
copies of the layered system. This could create a combination of
the Layers pattern and the Broker pattern, with the layered system
behind the Broker component. (We note that in our studies of
architectures [12], the Layers and Broker patterns were frequently
found together.) In nearly all the cases where an additional pattern
was added in conjunction with the implementation of a tactic, it
was the Broker pattern that was added. We also called this a
positive impact.

The fault tolerance tactics we studied were in four groups, as
described in [3]:

1. Fault Detection: Measures to detect faults, including
incorrect actions and failure of components.

2. Recovery – Preparation and Repair: preparing for recovery
actions; in particular redundancy strategies so that processing
can continue in the face of a component failure.

3. Recovery – Reintroduction: Tactics for repair of a
component that has failed and is to be reintroduced.

4. Prevention: Preventing faults from having wide impact by
removing components from service or bundling actions
together so they can be easily undone.

 Within each group, the tactics can be considered alternatives to
each other (although some tactics, notably Exceptions and
Transactions, may be applied in addition to others in the same
group.) Each of the alternatives within a group has a similar
objective, with a different design for achieving it. Because the
designs are different, they may have differing impacts on the
patterns. One tactic might have a larger or smaller impact on the
structure of a pattern. This information can be used to help decide
which tactic to use. The following table summarizes the difficulty
of implementing tactics; namely the count of the implementation
difficulty levels of the tactic in each pattern:

Table 3. Tactic Implementation Difficulty Summary

Group, Tactic + + + ~ - - -

Fault Detection

 Ping/Echo 3 2 5 0 1

 Heartbeat 2 3 5 0 1

 Exceptions 3 0 7 0 1

Recovery: Preparation

 Voting 2 5 4 0 0

 Active Redundancy 4 5 1 1 0

 Passive Redundancy 2 5 2 2 0

 Spare 1 2 5 2 1

Recovery: Reintroduction

 Shadow 1 5 2 3 0

 Resynchronization 3 3 2 2 1

 Rollback 5 1 2 1 2

Prevention

 Removal from Service 1 1 7 2 0

 Transactions 5 2 3 0 1

 Process Monitor 1 2 6 2 0

We observed the following from the data: The fault detection
methods of ping/echo and heartbeat are very similar. In most
cases exceptions are basically orthogonal to the architecture.
Within Recovery: Preparation, we see that active redundancy is
the easiest to implement. Sparing is the most difficult. Within
Recovery: Reintroduction, resynchronization and rollback are
both strong, although there are a few patterns where rollback is
difficult to implement. The easiest Prevention tactic is
transactions. This gives an idea of which tactics are easiest to
implement in general. However, it should be stressed that tactics
within a tactic group are not completely interchangeable: other
factors (such as other patterns or requirements) will influence the
selection of tactics as well.

5.2 Suitability of Patterns for Fault Tolerance
The previous section describes how individual tactics impact the
patterns. We saw that for some patterns, the impacts of the fault
tolerance tactics were mostly positive, while for some other
patterns, the impacts were mostly negative. This would indicate
that some architecture patterns are better choices for reliable
systems than others, all other factors being equal. The following
table shows for each pattern, how many tactics have the different
levels of implementation difficulty. They are arranged in
approximate order of ease of implementation, starting with the
pattern that is generally the easiest to add fault tolerance tactics
to.

Table 4. Tactic Implementation Difficulty in Patterns,
Summary

Pattern + + + ~ - - -

Broker 10 2 1 0 0

State Transition 8 2 3 0 0

Layers 3 7 3 0 0

Client-Server 2 8 3 0 0

Shared Repository 6 0 6 1 0

Microkernel 4 2 7 0 0

Model View Controller 0 2 9 2 0

Presentation Abstraction
Control

0 2 9 2 0

Blackboard 0 3 6 2 2

Reflection 0 1 8 3 1

Pipes and Filters 2 2 1 3 5

13

We note the following from the data: In the Layers pattern,
several tactics can be implemented by adding a new layer, which
is consistent with the pattern. The Pipes and Filters pattern is
somewhat bi-modal: tactics for fault detection are a poor fit, but
tactics involving redundancy fit well. The Broker is very strong
because many tactics involve a monitor component, which is a
natural fit for the broker component. Client-Server is a good fit
because it changes easily into the Broker pattern. Blackboard is
hurt when it comes to fault tolerance because the AI nature of its
processing makes it difficult to define states or points for
synchronization or rollback. Reflection is generally not a
particularly good fit for fault tolerance because of its emphasis on
runtime configurability. Microkernel, Model View Controller, and
Presentation Abstraction Control are all largely independent of
fault tolerance actions. Shared Repository assumes the use of
commercial databases, which implement many fault tolerance
tactics already. So it is very strong. State Transition is a good
match because several tactics rely on state behavior.

It is useful to consider how a group of tactics impacts a pattern.
This gives more detail about what parts of fault tolerance are
compatible or incompatible with various patterns. In the following
table, we show the average difficulty for each group of tactics.

Table 5. Tactic Group Implementation Difficulty in Patterns,
Average Score

Pattern

Fault
Detect-
ion

Recovery
: Prepa-
ration

Recovery
: Reintro-
duction

Preven-
tion

Broker + + + + + + +

State Transition ++ + + + +

Layers + + + +

Client-Server + + + +

Shared
Repository

+ + + + +

Microkernel + + + ~ ~

Model View
Controller

~ + ~ ~

Presentation
Abstraction
Control

~ + - ~

Blackboard ~ ~ - -

Reflection ~ - - ~

Pipes and
Filters

- - + - -

Because most tactics in a tactic group can be used alternatively, it
is useful to look at the best fitting tactic for a pattern in each tactic
group. In this table there is a more positive story: for most
patterns there is some tactic in each tactic group that can be
readily implemented.

This information can be used to help when deciding which
patterns to use. However, if the architecture is already established,

it can simply give a rough idea of the comparative amount of
work needed to add fault tolerance actions and to maintain the
system in the future.

Table 6. Tactic Group Implementation Difficulty in Patterns,
Best Case

Pattern

Fault
Detect-
ion

Recovery
: Prepa-
ration

Recovery
: Reintro-
duction

Preven-
tion

Broker + + + + + + + +

State Transition ++ + + + + + +

Layers + + + + + + +

Client-Server + + + + + +

Shared
Repository

+ + + + + + + +

Microkernel + + + + ~ +

Model View
Controller

~ + + ~

Presentation
Abstraction
Control

~ + + +

Blackboard + + + -

Reflection ~ - ~ +

Pipes and
Filters

- - + + + ~

5.3 Summary of Findings
Architectures generally follow well established architecture
patterns. We found that some of the patterns are well suited for
implementation of these fault tolerance tactics; in other words,
some patterns are good fits for reliable systems. However, nearly
all the popular patterns accommodate all these fault tolerance
tactics, with a greater or lesser degree of modification to the
pattern needed.

We found that one can identify the components in the architecture
where the tactics can be implemented, and how much change is
required. One can use this information to learn about the tactic’s
implementation, to select among alternate tactics, and even
sometimes select different or additional architecture patterns. It
also appears that this information is potentially important in the
understanding of the interaction of the implementations of
multiple tactics.

However, all potential uses depend on the availability of this
information to the architects. While architects are generally
experts (or at least should be), and should have much of this
information in their heads, it is unlikely that have it all. We
propose that it be collected and become part of a handbook for
architects of reliable systems.

6. USING THE DATA
The data has several practical uses, particularly in the areas of
architectural synthesis and evaluation, as described by Hofmeister
et al [17]. We discuss each below. Of course, any architectural

14

activity must consider not only how fault tolerance tactics affect
other quality attributes and how other tactics or architectural
solutions affect fault tolerance, but all quality attributes important
to the system as well.

6.1 Architectural Synthesis
Architectural synthesis is the process of designing the
architecture. Although it is usually considered in the context of
designing a new system, it can also be considered for enhancing
an existing system.

Let us begin with the case where a new system is truly a green
field architecture. The architecture is still fluid, and the architect
is weighing different options. In this case, the architect can
examine different candidate architecture patterns to see which is
the best fit for implementing the fault tolerance tactics that are
required. This is an instance of Pattern-Driven Architectural
Partitioning (PDAP), a process for leveraging architecture
patterns and their interaction with the quality attribute
requirements of the system [14].

The more common case is that the system is based on previous
work, either a previous release of the same product, or similar
projects. In this case, the architecture patterns are mostly fixed. In
these systems, one can use the data in these ways:

• The data gives guidance for implementing a tactic in a given
pattern. It gives pointers to which components might be
changed, and how.

• It provides information about how readily different alternate
tactics can be implemented in a pattern. This can help the
developer make an informed decision about which tactic is a
better fit for the patterns in the system.

• It can help the developer gauge how much work will be
required to implement a particular tactic.

• It can help the developer understand the potential interactions of
multiple tactics. Tactics which impact the same component of a
pattern are likely to interact with each other, and deserve special
attention.

6.2 Architectural Evaluation
This data can be used in architectural reviews to highlight areas of
potential difficulty: areas where the patterns and the tactics do not
match well.
A less obvious aspect of architectural evaluation is understanding
the system. It has been estimated that up to 80% of a cost of a
system over its lifetime is in maintenance, and up to 50% of the
maintenance effort goes to understanding the system. We
established in earlier work that one can identify architecture
patterns in legacy system documentation [12]. However, patterns
are changed by the application of tactics, thus making it more
difficult to identify the pattern and understand why it was
changed. As reviewers and maintainers understand the tactics
used, they can more readily identify the modified patterns in the
system, and gain insight into their implementations.

7. PATTERN AND TACTIC DATA
For the architect and developer, the key information is the data
itself. In this section we describe the fault tolerance tactics we

studied. We follow it with the data for the Layers pattern. The
data for the rest of the patterns is available in an appendix.

7.1 Descriptions of the Tactics
There is not a universally accepted terminology for the various
tactics of fault tolerance. Therefore, we give brief descriptions of
the tactics and how they are implemented, as described in [3].

1. Tactics for Fault Detection:

a. Ping/Echo: A monitoring component issues a ping message
to one or more components under scrutiny, and expects to
receive an echo message back within a predetermined time.
If a component does not respond within the time limit, the
monitoring component considers that component to be in
failure mode, and takes corrective actions. Implementation
requires that a monitoring process be created or used, and
that all components being watched must be modified to
handle the echo messages.

b. Heartbeat: A component emits a heartbeat message at
regular intervals and a monitoring component listens for it.
If no heartbeat message is received within a predetermined
time, the originating component is assumed to have failed,
and corrective actions are taken. This tactic requires a
monitoring component, and all components must be
modified to send heartbeats at the proper intervals.

c. Exceptions: Raise and handle exceptions. Exceptions are
usually handled in the components in which they occur.
Most modern programming languages include built-in
support for exception handling. Implementation usually
only requires minor, sub-architectural structural changes,
such as the add of an exception handling block.

2. Fault Recovery – Preparation and Repair

a. Voting: Processes running on redundant processors each
take equivalent input and compute a single out value that is
sent to a voter. The voter component decides which of the
results is correct using an algorithm such as majority rules.
The strongest approach is to implement each voting
component independently; otherwise you can only detect
hardware faults, and not algorithm faults. (If the voting
components are running the same software, this tactic
becomes very similar to Active Redundancy; see below.) To
implement voting, create a voter component, and either
replicate or write a new voting component.

b. Active Redundancy: redundant components receive events
in parallel, thus they are always in the same state. If one
component fails, the other can immediately take over. This
tactic that the processing component(s) to be replicated. It
usually requires a central arbitrating component, although it
is possible to make the redundant components perform the
arbitrating without a central component.

c. Passive Redundancy: One component is the active or
primary component. It updates the state of one or more
backup components. If the primary component fails, a
backup component will be in approximately the same state,
and will take over. This tactic requires that the primary
component to be replicated to form the backup, and both are
modified to implement the state update protocol between

15

the primary and backup(s). A central arbitrating component
may be needed.

d. Spare: A standby spare can replace different components,
and is booted for the particular component that failed. This
is most common where multiple components sharing load;
imagine a system with multiple identical servers to service
requests. Such a configuration is often called “N + 1
sparing.” This requires the component of interest to be
replicated, and changed to support the sparing. An
important consideration is that all components must save
state so the spare can replace any of them. A central
arbitrating component may be needed.

3. Recovery – Reintroduction of a Failed Component

a. Shadow: When a component is restored, it runs in shadow
mode behind an active component until its integrity is fully
established. Implementation of this tactic requires a
component to monitor the health of the “shadow”
component. The shadow itself is probably replicated from
another component.

b. State Resynchronization: Before a component is returned to
service, synchronize its state with the current operation. The
state synchronizing messages must come from somewhere;
it is probably easiest to have them come from an active
component; then a controlling component isn’t needed.

c. Checkpoint/Rollback: Record consistent states and have a
path to roll back to them if necessary. Each component in
question must define its consistent states and implement a
way to record the checkpoints and roll back to them. A
component can usually do this without the need for a central
component. However, note that the ease of implementation
is based on how easy it is to define sane checkpoints – some
systems have little notion of state.

4. Fault Prevention

a. Removal From Service: Remove a component from service
to repair potential problems. For example, a component
might be periodically restarted to prevent memory leaks
from causing a failure. This can be implemented by
modifying a component to restart itself, or by using a
central monitoring component. If a central component is
used, this tactic looks like a proactive process monitor; see
below.

b. Transactions: Bundle actions into sets that can be undone all
at once. Transactions are highly compatible with
checkpoints as described above. Components are modified
for transactions.

c. Process Monitor: When a fault is detected, a monitoring
process manages the deletion of the process and its
replacement. This is typically used together with the fault
detection tactics of Ping/Echo or Heartbeat. Implementation
requires a central monitoring component. The components
being monitored may or may not need any changes.

7.2 Pattern and Tactic Interaction Data
We have organized the data by pattern. Within each, we give a
short summary of the data for that pattern, followed by the
descriptions of the tactics’ impact.

The impact of each tactic is described as very positive, positive,
neutral, negative, or very negative, as described earlier. They are
abbreviated with the symbols + +, +, ~, -, - -, respectively. We
show the Layers pattern as a sample.
Layers

Summary: The Layers pattern is very common in all systems. It
provides good support for many fault tolerance tactics, and should
be considered for highly reliable systems.

1. Fault Detection

a. Ping/Echo: +: The monitor component is added. If all the
layers are implemented in a single process, then only the
top layer must respond to the ping. If each layer is a
separate process, then one approach is to create a hierarchy:
the monitor pings the top layer, and each layer pings the
layer below it before responding with an echo. (Add in the
Pattern, Minor modifications)

b. Heartbeat: +: Similar to ping/echo, except the top layer
sends the heartbeat based on time, rather than an echo in
response to a ping. (Add in the pattern, minor
modifications)

c. Exceptions: + +: Exceptions can be handled or propagated
through layers with few if any changes to structure.
(Implemented in the components)

2. Recovery – Preparation and Repair

a. Voting: +: Voting requires that the main processing
components be rewritten to implement additional voting
components. A new component, the voter, is added, and can
be added as the top layer above all the voting components.
Thus the pattern gives moderate support to this tactic. (Add
in the Pattern, minor modifications)

b. Active Redundancy: +: To implement this tactic, replicate
the layers without change. Add an additional layer above
both layered systems to arbitrate and distribute messages to
the redundant components. If it is a distributed system, this
begins to look like a Broker. (Replicate, minor
modifications, possibly add within the pattern)

c. Passive Redundancy: +: Replicate the layers, and then
modify one layer to send and receive state updates (keep it
to a single layer). It is likely the top layer, but may be a
different layer. If needed, a monitor component can be
added as a layer above both. This tactic does not fit quite as
well as Active Redundancy, but is still a positive fit with
Layers. (Replicate, minor modifications, possibly add
within the pattern)

d. Spare: ~: One must replicate the layers, and modify some
part of the replicated components to save their state. The
spare must have a way to synchronize itself with the
component that fails. A monitoring layer is probably
needed.) In all this, the Layers pattern doesn’t help, but it
doesn’t hurt, either. (Replicate, moderate modifications,
add in the pattern)

3. Recovery – Reintroduction

a. Shadow: +: The system will have been duplicated,
following one of the redundancy tactics. An additional layer

16

is added to assess the health of the system coming back into
service. If there is a monitoring layer for fault detection or
redundancy, it will be the same layer. (Minor modifications,
Add in the Pattern is in conjunction with another tactic.)

b. State Resynchronization: +: Layers provides some support
for states – state information can be encapsulated in a single
layer, which can help with resynchronization of a
component returning to service. A monitoring layer may be
needed, and a layer is modified to send state information to
the other component. The layers will have been replicated
in another tactic. (Minor modifications, Add in the Pattern
is in conjunction with another tactic.)

c. Rollback: + +: Layers can provide checkpointing of data
which can make it easier to recover the data or the state. A
layer can hold a request to a lower layer that is pending. If
the lower layer in unable to complete the transaction, the
higher layer can readily undo the transaction. (Implemented
in the components)

4. Prevention

a. Removal from Service: ~: A monitoring component is
needed. If all the layers are implemented in a single process,
then the monitor is added as the top layer (Add in the
pattern, little or no modification needed.) However, if each
layer is a separate process, either the monitor must control
each layer, or each layer must control the layer under it
(both are significant modifications.) So depending on the
implementation of Layers, it is either positive or negative.

b. Transaction: + +: Layering encourages the packaging of
actions into transactions; usually done at the highest layers.
One can create commands to the

c. Process Monitor: ~: Implementation depends on how the
layers are implemented. If they are all in a single process,
then simply add the process monitor as a top layer (Add in
the pattern, little or no modification needed.) However, if
each layer is a separate process, then either the process
monitor must monitor each layer individually, or each layer
becomes the process monitor of the layer under it. Both
these cases require significant modifications to components.
So it is either positive or negative, depending on the
implementation of the Layers.

8. FUTURE WORK
This work has great potential to help software architects and
designers be more effective in the design of reliable systems. But
there is much to be done to make it truly useful.

8.1 Multiple Tactics, Patterns, and Quality
Attributes
Most reliable systems use more than one fault tolerance tactic.
This raises the question of how the implementations of multiple
tactics influence each other. Because the patterns and tactics data
are concerned with where in the system a tactic will be
implemented, this data can also be used to help gain insight about
the interactions of multiple tactics.

Our study of interactions of tactics is still rather preliminary. In
particular, it appears that the really interesting interactions of

tactics come between tactics from different quality attributes; for
example tactics of fault tolerance and tactics of performance.

There are also interactions among patterns. We found that most
systems incorporate at least two architecture patterns in their
design. Where two or more architecture patterns are present, how
does a tactic interact with them? While this is also preliminary
work, we believe it works as follows: A tactic is implemented in
one pattern and not the others. It makes sense, therefore, that the
tactic is implemented in the pattern where it fits best. Of course,
this is subject to the design of the application itself. For example,
you might have a Shared Repository that has a Broker in front of
it. If you implement Ping/Echo, the obvious choice for the Ping
controller is the Broker, not the Shared Repository component.
The interaction of multiple quality attributes with respect to
patterns and tactics requires study. While it is understood that
quality attributes such as fault tolerance and performance interact,
it is useful to examine the individual tactics and patterns involved
for their interactions. This area is potentially highly complex and
challenging.

8.2 Behavioral Considerations
The most visible part of architecture patterns and interactions with
tactics is the structure of the two. While the preceding analysis
includes behavior, the most obvious part is the structure.
However, behavior also requires attention.

Each of the tactics introduces some additional behavior into the
system. In this respect, one can consider a tactic to be a fault
tolerance feature: behavior of the system with the goal of
improving fault tolerance.

We noted that timing of actions is particularly important for
certain fault tolerance tactics; for example:

• In Ping/Echo and Heartbeat, messages must be sent
within a certain time period, or else the component is
considered to be in failure.

• With Active and Passive Redundancy, messages must
be sent to the redundant components within a certain
timeframe; otherwise synchronization can be lost.

We did not study timing in detail, but it appears that timing may
be an important issue with Pipes and Filters, where processing of
data can be in large units.

We also noted that sequencing of actions is part of behavior. Both
these aspects of behavior need to be studied in more detail to
understand how they affect the patterns.

8.3 General Considerations
A general approach to using this data is warranted. We have
explored using patterns to help create software architectures that
satisfy quality attributes, and note that it can be used in published
software architecture methods.
As this information grows, it should be organized and published
for software designers. This will approach the concept of a
handbook for software architecture.

9. REFERENCES
[1] Avgeriou, P. and Zdun, U. Architectural Patterns Revisited –

a Pattern Language. In Proc. Of 10th European Conference

17

on Pattern Languages of Programs (EuroPLoP 2005), (Irsee,
Germany, July 6-10, 2005).

[2] Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
E. Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Trans. Dependable and Secure
Computing, 1,1, Jan.-Mar. 2004, 11-33.

[3] Bass, L., Clements, P., and Kazman, R. Software
Architecture in Practice, 2nd edition. SEI Series in Software
Eng. Addison-Wesley Professional, Reading, MA, 2003.

[4] Bucchiarone, A., Muccini, H., and Pelliccione, P. 2007.
Architecting Fault-tolerant Component-based Systems: from
requirements to testing. Electron. Notes Theor. Comput. Sci.
168 (Feb. 2007), 77-90.

[5] Buschmann F. et al., Pattern-Oriented Software
Architecture: A System of Patterns. Wiley, Chichester,
England, 1996.

[6] de Lemos,R., Asterio de Castro Guerra, R., and Rubira, C.
M. A Fault-Tolerant Architectural Approach for Dependable
Systems, in IEEE Software, 23,2, March/April 2006, 80-87.

[7] Feng, Y., Huang, G., Zhu, Y., and Mei, H. 2005. Exception
handling in component composition with the support of
middleware. In Proceedings of the 5th international
Workshop on Software Engineering and Middleware
(Lisbon, Portugal, September 05 - 06, 2005). SEM '05.
ACM, New York, NY, 90-97.

[8] Ferreira, G. R., Rubira, C. M., and Lemos, R. d. 2001.
Explicit Representation of Exception Handling in the
Development of Dependable Component-Based Systems. In
the 6th IEEE international Symposium on High-Assurance
Systems Engineering: Special Topic: Impact of Networking
(October 24 - 26, 2001). HASE. IEEE Computer Society,
Washington, DC, 182-193.

[9] Garcia, A. F., and Rubira, C. M. An Archietctural-based
Reflective Approach to Incorporating Exception Handling
into Dependable Software. In Advances in Exception
Handling Techniques, Springer-Verlag, LNCS-2022, 2001,
189-206.

[10] Garcia, A. F., Rubira, C. M. F., Romanovsky, A. B., and Xu,
J. A., A Comparative Study of Exception Handling
Mechanisms for Building Dependable Object-Oriented
Software. In Journal of Systems and Softawre 59, 2, 2001,
197-222.

[11] Hanmer, R. Patterns for Fault Tolerant Software, Wiley,
Chichester, England, 2007.

[12] Harrison, N. and Avgeriou, P. 2008. Analysis of
Architecture Pattern Usage in Legacy System Architecture
Documentation. In Proceedings of the Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA
2008) - Volume 00 (February 18 - 21, 2008). WICSA. IEEE
Computer Society, Washington, DC, 147-156.

[13] Harrison, N. and Avgeriou, P. Leveraging Architecture
Patterns to Satisfy Quality Attributes, In proc. First
European Conference on Software Architecture, Madrid,
Sept 24-26, 2007, Springer LNCS.

[14] Harrison, N. and Avgeriou, P. 2007. Pattern-Driven
Architectural Partitioning: Balancing Functional and Non-
functional Requirements. In Proceedings of the Second
international Conference on Digital Telecommunications
(July 01 - 05, 2007). ICDT. IEEE Computer Society,
Washington, DC, 21.

[15] Harrison, N., Avgeriou, P. and Zdun, U. Focus Group
Report: Capturing Architectural Knowledge with
Architectural Patterns, In proc. 11th European Conference
on Pattern Languages of Programs (EuroPLoP 2006), Irsee,
Germany.

[16] Harrison, N. and Meiners, J. H. 2006. The dynamics of
changing dynamic memory allocation in a large-scale C++
application. In Companion To the 21st ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (Portland, Oregon, USA,
October 22 - 26, 2006). OOPSLA '06. ACM, New York, NY,
866-873.

[17] Hofmeister, C.; Kruchten, P.; Nord, R.L.; Obbink, H.; Ran,
A. & America, P. Generalizing a Model of Software
Architecture Design from Five Industrial Approaches, In
Journal of Systems and Software, 30,1, Elsevier, 2007, 106-
126.

[18] Issarny, V. and Banatre, J. 2001. Architecture-based
Exception Handling. In Proceedings of the 34th Annual
Hawaii international Conference on System Sciences (
Hicss-34)-Volume 9 - Volume 9 (January 03 - 06, 2001).

[19] Laibinis, L. and Troubitsyna, E. 2004. Fault Tolerance in a
Layered Architecture: A General Specification Pattern in B.
In Proceedings of the Software Engineering and Formal
Methods, Second international Conference (September 28 -
30, 2004). SEFM. IEEE Computer Society, Washington, DC,
346-355.

[20] Magee, J. and Maibaum, T. 2006. Towards specification,
modelling and analysis of fault tolerance in self managed
systems. In Proceedings of the 2006 international Workshop
on Self-Adaptation and Self-Managing Systems (Shanghai,
China, May 21 - 22, 2006). SEAMS '06. ACM, New York,
NY, 30-36.

[21] Muccini, H., Pelliccione, P., and Romanovsky, A. 2007.
Architecting Fault Tolerant Systems. In Proceedings of the
Sixth Working IEEE/IFIP Conference on Software
Architecture (January 06 - 09, 2007). WICSA. IEEE
Computer Society, Washington, DC, 43.

[22] Noble, J., and Wier, C. Small Memory Software: Patterns for
Systems with Limited Memory, Addison-Wesley, Reading,
MA, 2001.

[23] Shaw, M. and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline. Addison-Wesley,
Reading, MA, 1996.

[24] Utas, G. Robust communications Software: Extreme
Availability, Reliability and Scalability for Carrier-Grade
Systems, Wiley, Chichester, England , 2005.

18

