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Abstract – Root cause analysis is an important method for fault diagnosis when used with multivariate 

statistical process monitoring (MSPM). Conventional contribution analysis in MSPM can only isolate the 

effects of the fault by pinpointing inconsistent variables, but not the underlying cause. By integrating 

reconstruction-based multivariate contribution analysis (RBMCA) with fuzzy-signed directed graph 

(SDG), this paper developed a hybrid fault diagnosis method to identify the root cause of the detected 

fault. First, a RBMCA-based fuzzy logic was proposed to represent the signs of the process variables. 

Then, the fuzzy logic was extended to examine the potential relationship from causes to effects in the 

form of the degree of truth (DoT). An efficient branch and bound algorithm was developed to search for 

the maximal DoT that explains the effect, and the corresponding causes can be identified. Except for the 

need to construct an SDG for the process, this method does not require historical data of known faults. 

The usefulness of the proposed method was demonstrated through a case study on the Tennessee 

Eastman benchmark problem.  

 

Keywords- Fault diagnosis; Fuzzy logic; Multivariate statistical process monitoring; Reconstruction-

based multivariate contributions; Signed directed graph. 

 

1. Introduction 

As competition becomes more and more intense in the process industry, coupled with the 

manufacturing plants getting more complex, the fault detection and diagnosis (FDD) technology has 

been recognised as an important tool to enable safe, efficient and environmentally benign operation of 

industrial processes (Frank, 1990; Venkatasubramanian et al., 2003a). Meanwhile, with the rapid 

progress in sensor technology, distributed process control and data acquisition systems, more and more 

process variables can be measured on a routine basis. As a result, data-driven FDD methods have 

attracted substantial attention in both academia and industry (Venkatasubramanian et al., 2003b; 

MacGregor & Cinar, 2012). Multivariate statistical process monitoring (MSPM) is a well-known data-

driven FDD method (Qin, 2012; Yao & Gao, 2009). Traditional MSPM uses latent variable models, such 

as principal component analysis (PCA) and partial least squares (PLS), to detect faults and disturbances 

(Martin, Morris & Zhang, 1996; Qin, 2003). The extensions of PCA/PLS have enabled the monitoring of 

processes with more complex behaviours (e.g. non-Gaussian, non-linear and non-stationary); a sample of 

these methods may include kernel PCA (Choi et al., 2005), independent component analysis (Kano et al., 

2003), PCA with one-class support vector machine (Ge & Song, 2011), dynamic PCA (Ku, Storer & 

Georgakis, 1995; Yao & Gao, 2007), among others. In practice, MSPM has been successfully 

implemented in many industrial applications (AlGhazzawi & Lennox, 2008; Kano & Nakagawa, 2008). 

Following fault detection in MSPM are fault isolation and root cause analysis, which are important 

steps to help find the sources of the detected anomalies. To this end, if historical data are available for 

known types of fault, a wide range of data-drive methods can be used; for example the fault signatures 

(Yoon & MacGragor, 2001), fuzzy IF-THEN rules (Musulin, Yelamos & Puigjaner, 2006), statistical 

distances and angles (Raich & Cinar, 1997), fault subspaces (Dunia & Qin, 1998), fisher discriminant 
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analysis and support vector machine (Chiang, Kotanchek & Kordon, 2004). He et al. (2005) introduced a 

new method, in which discriminant analysis was used to obtain fault directions, and the directions are 

combined with contribution analysis for fault diagnosis. However, the faulty data are usually difficult to 

acquire during process operations; after all, abnormal process operation is a rare event by definition. 

Furthermore, these data-driven fault diagnosis methods may face difficulty in handling unknown faults, 

which have not occurred in the limited historical data. 

An alternative approach is contribution analysis, which aims to isolate the variables that are the 

most responsible to the detected fault. Contribution analysis does not need prior knowledge of the faults, 

and thus is suitable for analysing unknown fault types (Miller, Swanson & Heckler, 1998). In addition, 

confidence limits can be established for contribution plots to further help discriminate the faulty 

variables from non-faulty ones (Westerhuis, Gurden & Smilde, 2000). However, the conventional 

contribution analysis is known to suffer from the fault “smearing” effect (Acala & Qin, 2009). To address 

this issue, the reconstruction-based (Acala & Qin, 2009) and missing variable (Chen & Sun, 2009) 

contribution methods have been proposed. In addition, the traditional contribution analysis focuses on the 

effect of individual variables, ignoring the interaction between variables. This limitation has recently 

been recognised, and the joint analysis of multiple variables under PCA models has been reported by 

using variable reconstruction (Liu, 2012), and missing variable analysis with a branch and bound (BnB) 

optimisation algorithm (Kariwala et al., 2010). We have followed this line of research to develop a 

generic, reconstruction-based multivariate contribution analysis (RBMCA) framework, which can be 

used with any process monitoring model (He et al., 2012). Later, this generic RBMCA approach has 

been further improved by introducing an L1-penalty term for variable reconstruction (PRBMCA), prior to 

using BnB for optimisation (He et al., 2013).  

Despite being effective in identifying the most responsible variables to the detected fault, 

contribution analysis still cannot directly reveal what fault has occurred and/or the root cause, which 

would be important information to help decide appropriate course of actions. Therefore, an approach to 

automatically interpret the variable contribution and to identify the root cause is needed to fill this gap. It 

appears that such methods would require the knowledge about the process being monitored, and the 

knowledge can be effectively represented in qualitative models.  

Combing data-driven methods with qualitative modelling is not a new concept. Typical qualitative 

models include signed directed graph (SDG) (Vedam & Venkatasubramanian, 1999; Lee, Han & Yoon, 

2004), expert system (Norvilas et al., 2000), cause-effect models (Leung & Romagnoli, 2002; Chiang & 

Braatz, 2003), plant connectivity modelling using extensible markup language (XML)  (Thambirajah et 

al., 2009), among others. To handle the multivariate nature of process variables, the PCA-SDG hybrid 

(Vedam & Venkatasubramanian, 1999) is a well-known and effective method for fault detection and 

diagnosis. PCA-SDG relies on PCA to detect the fault, and then performs contribution analysis to 

determine the signs of the nodes (process variables) to be used in SDG. Then, a backward-forward 

propagation algorithm is used to search for the root cause. However, as discussed previously, the 

conventional contribution plot suffers from “fault smearing” (Acala & Qin, 2009) and faces difficulty in 

handling multivariate faults (He et al., 2012). In addition, the contribution threshold, which is used for 

determining the signs of nodes in SDG, is a tuning parameter and has strong impact on results. 

Furthermore, the crisp logic (as opposed to fuzzy logic) used in PCA-SDG, i.e. labelling the nodes as 

“positive”, “normal” or “negative”, does not reflect the quantitative status of a variable. For example, one 

node labelled “positive” may be closer to the “normal” situation than another “positive” node; however 

this cannot be modelled in crisp logic, resulting in poor resolution of diagnosis (Han, Shih & Lee, 1994). 

In this paper, a root cause analysis method integrating PRBMCA with a fuzzy-SDG based reasoning 

scheme is proposed. PRBMCA determines the effect of the fault, in terms of the combinations of isolated 

faulty variables with corresponding signs; it inherits the advantage of MCA to avoid “fault smearing” 

and tuning the threshold for variable contribution. A reconstruction-based fuzzy logic is adopted to 

represent the signs of nodes in the form of degree of truth (DoT). The DoT function is further expanded 

to evaluate the “consistency” of “paths” between nodes, serving as the measure of likelihood of going 
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from the cause node to the effect in SDG. A depth-first search algorithm with BnB is developed to search 

for the paths from candidate cause nodes to effect nodes with respect to the DoT, and the candidate cause 

node with the maximal DoT of consistency is considered as the root cause. The use of fuzzy logic 

provides the quantitative information, in terms of DoT, of each cause. Moreover, in comparison with 

pure data-driven diagnosis methods, the proposed approach does not require historical data of known 

faults.  

The hybrid fault diagnosis method also inherits another important feature of PRBMCA, i.e. it is a 

generic framework that is applicable to any process monitoring model, provided that a variable 

reconstruction algorithm can be developed for that particular model. Since the primary focus of this 

study is not fault detection but diagnosis, a simple probabilistic PCA (PPCA) is used as the process 

monitoring model (Kim & Lee, 2003; Chen & Sun, 2009) to demonstrate how the proposed method can 

help identify the root cause. Clearly, diagnosis is only possible for the faults that can be detected by the 

monitoring model. We will briefly discuss how other MSPM models can be incorporated in the proposed 

framework.  

The rest of this paper is organised as follows. A brief review of RBMCA and PRBMCA is presented 

in Section 2. Section 3 presents the detailed the root cause analysis method, which combines PRBMCA 

and fuzzy-SDG. Section 4 discusses the results from the case study on the simulated Tennessee Eastman 

benchmark problem, and Section 5 concludes this paper. 

        

2. Fault isolation using reconstruction-based multivariate contribution analysis 

RBMCA is a general framework for isolating faulty variables and is applicable to any process 

monitoring model, provided that a variable reconstruction algorithm can be developed for that model (He 

et al., 2012). The basic idea of RBMCA is to search for the combination of process variables that 

contribute the most to the detected fault. A BnB algorithm was proposed to efficiently solve the 

combinatorial optimisation problem. Later, an L1 penalty was introduced to the variable reconstruction 

step of RBMCA (thus named PRBMCA), before using the BnB algorithm (He et al., 2013). PRBMCA 

tends to reduce the number of isolated faulty variables thus to give clearer interpretation of the results. 

The computation demand of PRBMCA is also significantly less than that of RBMCA, because the L1 

penalty removes the improbable combinations of variables that would have to be evaluated in RBMCA. 

In this section, both versions are briefly reviewed. 

 

2.1 Reconstruction-based multivariate contribution analysis 

Suppose that a statistical model (M) has been developed to represent the normal process operations, 

and a monitoring statistic (D) with appropriate control limit CL has been established to distinguish 

normal samples from faulty ones. We use          to denote the monitoring statistic of an n-dimensional 

sample x under model M. Thus, the process is considered out-of-control if           , and in-control 

if           . To enable variable reconstruction, a faulty sample  , i.e.           , is divided into 

two parts:         ,  
  the fault-free part and       

    
 the faulty part. Here,    

 is the magnitude 

of the fault and    
 is an indicator matrix representing the combination of faulty variables (Qin, 2003). 

For instance, if the set of faulty variables is          , then    
           ; whilst if           , 

the indicator matrix is 

   
 [

          
         

]
 

. 

Given such an indicator matrix, the magnitude of the fault can be determined by solving the following 

optimisation problem: 

 ̂  
          

       
    

                                             (1) 

This is equivalent to reconstructing the variables in the indicator matrix so that the reconstructed 

monitoring statistic reaches minimum (He et al., 2012). Then, the reconstruction-based multivariate 

contribution (RBMVC) of    is: 

       
                

  ̂  
                                        (2) 
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where due to the minimisation in eq. (1),                
  ̂  

     and thus the contribution is 

non-negative. 

The reconstruction in eq. (1) is a general formulation, and its solution depends on the choice of 

monitoring model. For the PPCA model used in this work,               , where   is the covariance 

matrix (Chen & Sun, 2009). Eq. (1) is thus an unconstrained quadratic optimisation problem which can 

be solved by using standard derivation-based algorithms. For the PPCA mixture model, an expectation-

maximisation algorithm was developed to efficiently solve this problem in our previous study (He et al., 

2012). 

 It should be noted that the indicator matrix    
 does not need to be known a prior. In fact, the main 

task of RBMCA is to search for the set of variables, among 2
n
 candidates, which should be reconstructed 

to give the best explanation of the fault. This is equivalent to finding    
, and it is a combinatorial 

optimisation problem. This problem has a trivial solution by reconstructing (isolating) all process 

variables, which motivated to include certain constraint on the number of variables that should be 

isolated (He et al., 2012). By isolating as fewer variables as possible (but still adequate to explain the 

fault), it also helps process engineers or root cause analysis algorithms to concentrate on the most 

influential variables. This concept was implemented by including a feasible solution set S as follows (He 

et al., 2012): 

                                                                      (3) 

where                 is the set of all variables, and              
  ̂  

     is the monitoring 

statistic. The condition          ensures that the reconstruction brings the process back to normal, 

whilst              indicates that by excluding any single variable, the reconstructed monitoring 

statistic is still out-of-control. 

Subsequently, fault isolation was formulated as the following optimisation problem to find    
     : 

 (  
      )                                                                      (4) 

which can be efficiently solved using a BnB algorithm (He et al., 2012). 

 

2.2 Penalised reconstruction-based multivariate contribution analysis 

In the above RBMCA method, a potential issue is that the magnitude of the fault,    
, is not 

explicitly constrained. It was observed that RBMCA could isolate a large number of process variables 

when the fault magnitude is small or moderate, even with the constraint on the number of variables in eq. 

(3) (He et al., 2013). This is undesirable in practice, since it creates difficulty for the process engineers to 

find the underlying cause from many responsible variables. An alternative approach is to introduce a 

penalty on the magnitude of the fault, so that a set of potentially responsible variables are first isolated. 

The    penalty, which is well known to help retain only a few variables in multivariate optimisation 

problems (Tibshirani, 1996; Yi et al., 2011), is adopted. Subsequently, the candidate variables identified 

by the penalised reconstruction are further “refined” by using a BnB algorithm, similar to RBMCA. An 

overview of this two-step PRBMCA approach is given below. 

Step 1. Use   -penalised reconstruction to obtain a candidate solution set   
  . Specifically, the 

following optimisation problem is solved: 

    ̂ 
     ̂    ,    s. t.    ̂    

 ∑   ̂       
                                      (5) 

The tuning parameter   is determined by 

                                                                          (6) 

where              ̂ 
     ̂    , s.t.    ̂    

 ∑   ̂       
   . Standard binary search algorithm 

can be adopted to find      efficiently. Then,   
   consists of all the nonzero variables of   (    ). 

Step 2.  Implement RBMCA, by using the BnB algorithm, to find the faulty variables from   
  . 

This step guarantees that the final result belongs to the feasible solution set S. More rigorously, the 

optimal solution   
       satisfies 

    
                    ,          s. t.   

         
                      (7) 
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Similar to eq. (1), the reconstruction problem in eq. (5) is also formulated as a general framework, 

and the actual solution depends on the choice of monitoring model. When a PPCA model is used, eq. (5) 

can be solved by using quadratic programming (He et al., 2013). It was demonstrated that both the 

computational efficiency and the accuracy of fault isolation have been significantly improved by 

introducing the    penalty in RBMCA (He et al., 2013). 

 

3. Fuzzy signed directed graphs for root cause analysis 

Root cause analysis of detected fault is an important part of fault diagnosis. Signed directed graph 

(SDG) has been used to represent the cause-effect relations of process variables and to serve as the basis 

for root cause reasoning and identification (Iri et al., 1979; Han, Shih & Lee, 1994; Vedam & 

Venkatasubramanian, 1999; Lee, Han & Yoon, 2004; L  et al., 2011). An SDG consists of nodes and 

arcs: nodes represent the variables while arcs represent cause-effect relations between nodes. The sign of 

a node represents the qualitative status of the variable, i.e. „+‟ (or „−‟) indicates the value of variable is 

higher (or lower) than normal, and „0‟ means the value is normal. The sign of arcs takes the value of „+‟ 

(or „−‟) to represent the cause and effect deviate in the same (or opposite) directions. The cause node of 

an arc is usually called initial node, while the effect one is called terminal node (Iri et al., 1979). As 

illustrated in the partial SDG of the Tennessee Eastman process in Fig. 1, the arc from    to     is „+‟, 

meaning that the former has a positive effect on the latter, i.e.     will be „+‟ if    is „+‟ (i.e.    has a 

positive deviation), and vice versa. Conversely,     will be „−‟ if     has a positive deviation since the 

arc from the latter to the former is „−‟.  

 
Fig 1. A partial SDG of the Tennessee Eastman process. 

 

An SDG reflects the steady state gain around a certain operating point, and the signs may change 

when the process is non-linear and switched to a different operating point. As a result, multiple SDGs 

may need to be developed for each of the operating points. Fortunately, for a typical, well-operated plant, 

the number of operating points is usually small (e.g. a few). In addition, process engineers would have to 

understand the steady-state gains under each operating point anyway, in order to properly manage and 

operate the process. Translating this process knowledge into an SDG is extra work, but would be 

reasonable and justifiable given the added benefit of fault diagnosis. In turn, SDG would be a good way 

to document the steady-state process behaviour. 

 

3.1 Reconstruction-based fuzzy logic of the signs of nodes 

Fuzzy logic is a form of many-valued logic. It has been successfully used in a variety of fields such 

as control theory (Lee, 1990), artificial intelligence (Dubois & Prade, 1991) and expert system (Zadeh, 

1983). Compared with standard crisp logic in which the values are either „true‟ or „false‟, fuzzy logic 

evaluates the logic values in the form of the degree of truth (DoT) ranging from 0 to 1. For instance, a 

variable A can represent the reactor level with logic values of „high‟ („+‟) or „low‟ („−‟), and       

      ,                        . It indicates that the level of reactor is „fairly high‟ 
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and „slightly low‟. As such, a central question in fuzzy logic is the design of membership functions that 

map a variable‟s quantitative value (e.g. reactor level) to the DoT of logic values.  

In the present work, each process variable (a node in the SDG) may take two logic values (signs): „+‟ 

(positive deviation from its normal quantity) or „−‟ (negative deviation from its normal quantity). The 

membership functions are defined as follows according to the fault isolation results from  PRBMCA. 

Case 1:    is isolated by PRBMCA as a faulty variable, and thus it is known to deviate from the 

normal value. If the original value,       , is greater than the reconstructed one by PRBMCA,       , then 

it is reasonable to say that the original value has a positive deviation with DoT of 1. Mathematically this 

is: 

          {
                   

                   
                           (8) 

and                      .  

Case 2:    is not isolated by PRBMCA, and thus it should not be considered as definitely positive or 

negative. Instead, the DoT is designed according to how likely    deviates from its “normal value”, 

which, similar to Case 1, will be established through reconstruction. Recall that during the fault isolation 

stage, the reconstructed fault free sample (denoted by        ) does not change   , since    is not 

isolated by PRBMCA. Therefore, the following optimisation problem is solved to reconstruct the normal 

value of    (denoted by       ): 

              
 ̂     

                  ̂                                               (9) 

Subsequently, the DoT is defined as 

          {
   (  

              

         
)                      

   (  
              

         
)                     

                                    (10) 

and                      . Here         is the reconstructed monitoring statistic obtained 

by PRBMCA, and        is the value of the objective function after solving the optimisation problem in 

eq. (9). 

According to the PRBMCA framework and eq. (9),                  . Suppose         

         (i.e. there is no difference in monitoring statistic by reconstructing   ), then            

                  (i.e. the value of    is neither too high nor too low). Conversely, the 

reconstruction of    results in significant reduction of monitoring statistic, if                 . It 

implies that the value of    is near totally high (if                ) or totally low (if                ).Thus, 

                        or                        . The denominator 

          normalizes the value from 0 to 1.  

In summary, each of the process variables, no matter whether it has been isolated by PRBMCA, has 

the DoT of two logic values („+‟ and „−‟) according to eqs. (8)-(10).  

 

3.2 DoT of path consistency 

In SDG, reasoning is based on the connection from a cause node to an effect node. For a given 

signed effect node, a signed cause node is connected to it if                                    
 ∏           

 
   , where                    is the sequence of arcs, or the path, from cause to effect. 

The path provides a potential explanation of the root cause of the process fault‟s effect.  In this work, the 

fuzzy logic is applied to evaluate the “consistency” of an arc that connects a cause node to an effect node:  

                                                                        (11) 

Moreover, the DoT of the consistency of a path is introduced to evaluate how trustworthy this 

explanation is:  

                        (                )  ∏                       
    (12) 

For instance, suppose that in Fig. 1, the effect is       , and a candidate path from the cause         is 

     

 
→    

 
→   , then  
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                                   . 

where         

 
→    ,         

 
→   . 

 

3.3 DoT of cause to effect 

In the context of SDG based fault diagnosis, root cause analysis aims to find the root node(s) that 

can explain the most effects, i.e. the root nodes have the most consistent paths to effects. Here, the effects 

are defined as the combinations of each faulty variable and sign isolated by PRBMCA, i.e.          

            . For a given effect e and an assumed root cause c (              ), there may exist 

multiple paths from c to e. By using the fuzzy logic method, the trustworthiness of each such path is 

evaluated in terms of the DoT of the consistency of the path. The path that gives the maximal DoT is 

taken to explain the effect, and more rigorously the maximal DoT is given by  

                         {
                    

                                     
                       (13) 

where   is the set of all paths from cause c to effect e.  

       Further, an identified faulty sample,   , may have more than one process variable (thus effect) 

isolated by PRBMCA, and thus the overall DoT of the cause c is averaged over all effects as 

                   
∑                          

  
                                     (14) 

where     is the number of effects determined by PRBMCA. Finally, for a sequence of faulty samples 

identified over a time period K, Δ                

   (           Δ)  
∑                    

   

 
                                       (15) 

The major challenges in this scheme are (i) to identify the candidate cause nodes, and (ii) to solve 

the combinatorial optimisation problem in eq. (13) for each candidate node. In the present work, the 

candidate root causes are simply obtained by enumerating all possible deviations of each variable. To 

address the second challenge, a depth-first search algorithm is proposed to find the optimal path from 

                   . To further improve computational efficiency, the branch and bound (BnB) method is 

used. The key concept of BnB is to examine the lower bound of the objective function in eq. (13). If the 

upper bound of a set of candidate solutions is lower than the lower bound, then this entire set cannot be 

an optimal solution and thus can be pruned.  

The search starts from the cause c towards the effect e. Each successor node of the current node is a 

sub-branch to divide the solution space into subsets. We use the tuple, {    ,      ,     }, to represent 

the current node, where      is the DoT of the consistency of the path from c to the current node. The 

DoT of any successor of the current node may be expressed as                                     , 

which is no greater than      since by definition,          . Therefore,      is the upper bound of all 

the sub-branches from the current node {    ,      }.  In addition, we set the lower bound to be the 

maximal DoT of all paths that have been examined so far. The upper and lower bounds enabled the 

development of the BnB algorithm to solve the optimisation problem in eq. (13). The pseudo code of this 

BnB algorithm, by using a last-in-first-out stack as the data structure, is as follows. 



8 

 

 
 

4. Case study 

4.1 Process description  

The Tennessee Eastman process (Downs & Vogel, 1993) is a well-known benchmark problem for 

testing process control FDD methods. There are five units in this plant: reactor, condenser, separator, 

stripper and compressor.  This process produces two products (G and H) from four reactants (A, C, D, E). 

Meanwhile, an inert component B presents in stream 4 and a by-product F is produced as well. The 

reactions are: 

              →                  

              →                  

         →                  

     →                   

The original process is open-loop and unstable. The reactor pressure grows quickly and exceeds 

the safe upper-limit, so that the plant must be shut down. In this paper, the plant-wide control structure 

developed by Lyman & Georgakis (1995) is adopted to maintain the process operation. The flow sheet of 

the process and the control strategy is shown in Fig. 2. 

DoT Search (cause c, SDG, effect e) 

Set lower bound = 0; 

Set stack=empty; 

Stack_push({   𝑐      𝑐,        𝑐      𝑐  },stack); 

while (stack!=empty)  do 

Stack_pop({   𝑡𝑜𝑝,     𝑡𝑜𝑝,    𝑡𝑜𝑝}, stack); 

if (   𝑡𝑜𝑝   lower bound) then 

if (   𝑡𝑜𝑝      𝑒) and (    𝑡𝑜𝑝       𝑒) then 

Set lower bound=   𝑡𝑜𝑝; 

else if (   𝑡𝑜𝑝!     𝑒) 

foreach (suc is the successor of top) and (suc is not in the set of predecessors of top) 

Stack_push({   𝑠𝑢𝑐,     𝑡𝑜𝑝      𝑎𝑟𝑐,    𝑡𝑜𝑝          𝑠𝑢𝑐      𝑡𝑜𝑝      𝑎𝑟𝑐 }, stack); 

end 

end 

end 
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Fig. 2. Flow sheet of the Tennessee Eastman process. 

 

For simplicity, only 38 process variables listed in Table 1 are selected in this work. Besides 22 

continuous measured variables and 11 manipulated variables (MV), five composition measurements 

which presented in control loops are included. Out of the various process disturbances, Table 2 lists the 

seven typical faults that can be detected by PPCA (He et al., 2013), since PPCA has been chosen to 

illustrate the fault diagnosis results. As discussed previously, other statistical monitoring models can also 

be used within the PRBMCA-SDG framework, though a comprehensive exploration of alternative 

monitoring methods is outwith the scope of this study. 
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 Table 1. Measured and manipulated variables. 

ID Description ID Description 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

x9 

x10 

x11 

x12 

x13 

x14 

x15 

x16 

x17 

x18 

x19 

A Feed(Stream1) 

D Feed(Stream2) 

E Feed(Stream3) 

A and C Feed(Stream4) 

Recycle Flow(Stream 8) 

Reactor Feed Rate(Stream6) 

Reactor Pressure 

Reactor Level 

Reactor Temperature 

Purge Rate(Stream9) 

Product Separator Temperature 

Product Separator Level 

Product Separator Pressure 

Product Separator Underflow(Stream 10) 

Stripper Level 

Stripper Pressure 

Stripper Underflow(Stream 11) 

Stripper Temperature 

Stripper Stream Flow 

x20 

x21 

x22 

x23 

x24 

x25 

x26 

x27 

x28 

x29 

x30 

x31 

x32 

x33 

x34 

x35 

x36 

x37 

x38 

Compressor Work 

Reactor Cooling Water Outlet Temperature 

Condenser Cooling Water Outlet Temperature  

Component A (stream 6) 

Component D (stream 6) 

Component E (stream 6) 

Component B (stream 9) 

Component E (stream 11) 

MV to D feed flow (stream 2) 

MV to E feed flow (stream 3) 

MV to A feed flow (stream 1) 

MV to A and C feed flow (stream 4) 

Compressor recycle valve  

Purge valve (stream 9) 

Separator pot liquid flow (stream 10) 

Stripper liquid product flow (stream 11) 

Stripper steam valve 

MV to Reactor cooling water flow 

MV to Condenser cooling water flow 

 

Table 2. Operational faults. 

Fault ID Description Type 

1 

2 

4 

5 

6 

7 

11 

A/C feed ratio, B composition constant (stream 4) 

B composition, A/C- ratio constant (stream 4) 

Reactor cooling water inlet temperature 

Condenser cooling water inlet temperature  

A feed loss (stream 1) 

C header pressure loss-reduced availability (stream 4) 

Reactor cooling water inlet temperature 

Step 

Step 

Step 

Step 

Step 

Step 

Random variation 

 

4.2 SDG modelling  

SDG modelling is the basis for reasoning and fault diagnosis in this study. An SDG model could 

be constructed by using quantitative knowledge, e.g. mathematical models (Maurya, Rengaswamy & 

Venkatasubramanian, 2003), or qualitative process knowledge or experiences (Vedam & 

Venkatasubramanian, 1999; Lee, Han & Yoon, 2004). In the present work, the SDG is constructed 

through qualitative analysis of the process flow sheet, since the accurate quantitative equations are not 

available. The key issue of building the SDG model of an industrial process (the TEP in this section) is to 

determine the signs of cause-effect relations of each pair of the variables. It should be noted that all the 

relations between variables shown in the SDG of this paper are founded upon the assumption of process 

running under the normal operation conditions. As such, these relations are valid only in the initial stage 

of the faulty operation, suggesting that only the early faulty samples should be used for diagnosis 

purpose. Arguably, the initial stage is the most critical time when the root-cause of the fault should be 

found, enabling timely mitigating measures to be taken. 

The SDG model of TEP is presented in Table 3, indexed by the terminal variables. In this table, 

signed arcs between nodes in SDG are represented in the form of {initial variable, sign of arc} in the 

cells correspond to terminal variables. For example, for terminal variable   ,         means a positive 

arc from      to     (also illustrated in Fig. 1). 
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Table 3. SDG model of TEP 

Terminal 

variables 

Initial variables and sign of arcs Terminal 

variables 

initial variables and sign of arcs 

                                         
                                
                                        
                     ,      ,        ,

          
                                      

        
          ,        ,          

                           
                

          ,        ,          

                    
                               

           

                                
                             

                 
                     

                                 
                                         
                                        
                                
                                            
                                  
                                 
                                                     
                                                   
                         

 

 Confined by the length of this article, five typical cases are selected in this section to illustrate 

how to build this SDG. Other the relations are obtained in a similarly way. 

Case 1: control loop around inlet stream 1. As shown in Fig. 2, a cascade PID control loop is used 

to regulate the mole-percentage of component A (   ) (the main loop output) by manipulating the flow 

rate of stream 1 (  ), which is directly controlled in the inner loop by its MV (   ). For the main loop, if 

    increases, feeding too much reactant A to the reactor, the MV will decrease to reduce the flow rate of 

stream 1. Similarly in the inner loop, if the flow rate of stream 1 (  ) is higher than normal, the MV will 

also decrease. Consequently,    and     have negative effects on     (c.f. terminal variable     in Table 

3). Clearly, the MV of stream 1 (   ) has a positive effect on the flow rate of stream 1 (  ). Furthermore, 

increasing    will increase the mole fraction of component A in stream 6; hence    has a positive effect 

on    .  These cause-effect relations are also illustrated in Fig. 1.  

Case 2: heat exchange around the reactor. Because of the heat exchanger, the reactor temperature 

(  ) has a positive effect on the outlet temperature of the cooling water (   ). In addition,     

manipulates the flow of the reactor cooling water, and it has a negative effect on the cooling water outlet 

temperature (   ). 

Case 3: mass balance. Because the reactor feed rate (  ) is the sum of            , each flow has 

a positive effect on it. Similarly,    will increase if there is more gas out from the stripper, i.e. the 

pressure of stripper (   ) has a positive effect on   . In addition, more (less) reactor feed results in higher 

(lower) reactor pressure; hence    has a positive effect on    (the reactor pressure). Further, the pressure 

of separator (   ) is positively affected by    due to the gas propagation in the plant. 
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Case 4: reaction. The reactions produce more products and release more heat (the reactions are 

exothermic), if the feed rate is higher (provided that the stoichiometry is within a proper range). Thus, 

the feed rate    has a positive effect on the reactor level (  ) and temperature (  ). Moreover, if any of 

the mole fraction of reactants in stream 6 decreases, the reaction slows down with excessive unreacted 

gas, causing increase in the reactor pressure, and decrease in the reactor level and temperature. Therefore, 

   ,     and     have negative effect on   , and positive effect on    and   . 

Case 5: vaporisation in the separator and stripper. Clearly, the pressure in the separator (   ) is 

positively affected by the separator temperature (   ). Moreover, the liquid component E (   ) in the 

product flow is negatively affected by the temperature of the stripper (   ). 

 

4.3 Results and analysis 

The simulation data are generated by Russell, Chiang & Braatz (2000) and can be downloaded from 

http://web.mit.edu/braatzgroup/links.html. There are 500 samples under normal operation, which are 

used to build a PPCA model (Kim & Lee, 2004; Chen & Sun, 2009) with 14 principal components, 

which explained 75.98% variance. Following (Chen & Sun, 2009), the single likelihood-based control 

limit is set to be the 99%-fractile of the    distribution with degrees of degree of n=38 (the number of 

process variables), i.e.       
             . For each faulty dataset, 960 samples are available 

whereby the abnormal events are triggered after 160 samples. The sample interval of the continuous 

measured variables (   to    ) and MVs (    to    ) is 3 min, whilst that of     to     is 6 min and of 

    is 15 min. For the purpose of modelling, the sample interval is kept at 3 min; zero-order holding is 

adopted for the analyser measurements (    to    ) with longer intervals. 

Once a fault is detected by PPCA, PRBMCA is used to isolate the faulty variables. As illustration, 

the set of isolated variables from the 6th sample of fault 7 is: 

                                                    , and the reconstructed monitoring statistic is 

49.50. The set,   , happens to be the only solution of the PRBMCA algorithm. If any variable in    is 

excluded, the reconstructed monitoring statistic is greater than the control limit (61.16). On the other side, 

including any additional variable is unnecessary according to the definition of the feasible region in eq. 

(3), because the reconstructed statistic is already below the control limit. However, the optimisation 

problem could have multiple solutions with similar objective values, and thus it does not guarantee to 

find the actual root cause or faulty variables. Since the present study is focused on the integration of fault 

isolation with SDG for fault diagnosis, the reader is referred to more detailed investigation of the fault 

isolation accuracy in (He et al., 2013).  

It appears that fault 7 has complex impact on a range of process variables, and it is very difficult to 

pinpoint the underlying cause of the fault by simply examining these isolated variables. Next, the DoT of 

the signs of these isolated variables (effect nodes) is calculated according to eqs. (8)-(10), and illustrated 

in Fig. 3. For comparison, the DoT of the remaining “normal” variables is also displayed. It can be 

observed that for identified effect nodes, the DoT strongly favours either a positive (“+”) or a negative 

(“-”) deviation from normal situation. In contrast, the DoT of the normal variables tends to be closer to 

0.5, since they are not isolated by PRBMCA.  

  

http://web.mit.edu/braatzgroup/links.html
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Fig. 3:  DoT of the signs of the process variables, corresponding to the 6th sample of fault 7. 

 

After obtaining the DoT of the effect nodes, the next step is to find the most probable cause node(s). 

The DoT values of all possible cause nodes (76 in total: 38 variables with “+” or “-” deviation) is 

calculated. Table 4 shows the five most probable causes and the corresponding DoT values for fault 7. 

The DoT of        (reduction of inlet feed of stream 4) is 0.71, which is significantly greater than any 

other cause. It suggests that        is the root cause of fault 7.  

 

 

Table 4. The five most probable causes for fault 7. 

Causes                                     

DoT 0.71 0.41 0.33 0.29 0.25 

 

Further, Table 5 shows the path and DoT from the root cause        to the effects for fault 7. All 

the effects can be explained by the root cause         with a sequence of deviations of variables, 

represented as paths in this table. It should be noted that along a path, not all the deviations are isolated 

by PRBMCA, which is why fuzzy logic, not crisp logic, is desired. For instance, by using crisp logic, the 

effect         could not be explained by the cause       , because    is not isolated and crisp logic 

would give               , meaning that the path  
       →        →          is not possible. However, Table 5 shows that        could be 

considered as the cause of the effect        , if    is lower than normal; the DoT of the path (0.49) gives 

the trustworthiness of this explanation. The DoT is also used to compare competing explanations. For 

example, the effect         can also be explained by the cause        through the path:       →
      →       →        →       →        , whose DoT, however, is 0.23 and less than that of 

      . It suggests that for the effect        ,        is a more probable cause than       . In summary, 

fuzzy logic provides quantity information of every candidate cause in the form of DoT, thus better 

analysis of the potential root cause than binary crisp logic does. 
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Table 5. Paths and DoTs from root cause         to effects of the 6th sample of fault 7. 

Effects Path DoT 

               →         →         →         →         
→           

0.07 

                1 

               →         →         1 

               →         →        →         1 

                →        →         →        →          0.24 

                →         →        →        →          1 

                →          1 

                →          1 

                →        →          0.49 

                →         →        →        →         →          0.49 

                →          1 

                →        →          0.49 

                →         →        →        →          0.49 

 

As comparison, the univariate reconstruction-based contribution plot for the 6th sample of fault 7 is 

given in Fig. 4. Notice that the contributions and control limits are all shown in logarithmic scale for ease 

of illustration, i.e. the univariate contributions are             
 ,        , and the control limit is 

              . Fig. 4 shows that no variable‟s contribution exceeds the control limit, suggesting that 

the univariate analysis does not unambiguously isolate the faulty variables, and thus is less helpful (if at 

all in this case) for root cause analysis. Besides, variable     (stripper pressure) with the largest 

univariate contribution may be incorrectly identified as the root cause of this fault. 

 
Fig. 4. Univariate reconstruction-based contribution for fault 7.  

 

Table 6 summarises the results for all fault types. For each fault, the root cause analysis is carried 

out every 15 min (the longest sampling interval of process variables) until 1 hr, after the fault is detected. 

At a particular time point, all faulty samples up to that time are used for roost cause analysis according to 

eq. (15). The cause node with the highest DoT is determined as the root cause. 
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Table 6. Summary of the RCA results.  

Fault ID 0 min DoT 15 min DoT 30 min DoT 45 min DoT 60 min DoT 

1         1.00         0.58         0.65          0.64          0.67 

2          1.00          0.85          0.85          0.84          0.83 

4         1.00          0.90          0.95          0.84          0.86 

5          1.00          0.70          0.71          0.66          0.65 

6         1.00         0.76         0.61         0.53         0.52 

7         1.00         0.78         0.76         0.75         0.64 

11          1.00          0.70         0.48         0.35         0.37 

 

The root cause of fault 1, due to a step change in A/C feed ratio in stream 4, cannot be directly 

attained from SDG, because the compositions of component A and C in stream 4 are not measured. 

However, the most probable causes are identified as the reduction of mole-percentage of component A in 

stream 6 (        ) and the increasing pressure of reactor (       ). Note that stream 4 goes through the 

stripper, and the gases are recycled to join streams 1, 2 and 3 to form stream 6, causing reduced A and 

increased reactor pressure (c.f. discussion of  Case 4 in Section 4.2). Although          is identified as 

the root cause for the 0 min after fault detected, it is excluded since its DoT is very small (not shown in 

the table) in the rest of 60 minutes. Although         and        are still only the phenomena of the 

fault, they can help the engineer narrow down the possibilities. Furthermore, the only other source of 

component A in stream 6 is stream 1, which can be ruled out as the cause since the DoT of         is 

very low (not shown in the table). Therefore, the engineer can determine the root cause as the reduction 

of component A in stream 4, with the help of the proposed method and careful analysis. 

As for fault 2, the root cause is too much component B in stream 4. Accordingly,         is 

identified with high DoT, indicating too much component B in the purge. Since stream 4 is the only 

source of this component, it should be examined. 

Faults 4 and 5 are due to step change in cooling water temperature, which are not directly measured. 

For fault 4, the results show that the root cause could be the rise in the MV of the reactor cooling water 

(       ) or temperature rise in the reactor (      ). Further investigation could be carried out to 

ascertain whether         and/or        is the underlying cause, or if they are ruled out it is the inlet 

cooling water that is causing the problem. Similarly for fault 5, the root cause obtained by the proposed 

method is the high separator temperature (        ) or the outlet cooling water of the condenser 

(        ), which is useful information for further analysis, including the decision to check the cooling 

water inlet temperature. 

 In the case of fault 6, all results indicate that the root cause is the reduction of flow of stream 1 

(      ). Similarly, all results for fault 7 point to the reduction of flow of stream 4 (      ). In both 

cases, the identified causes are helpful for supporting further investigation. 

Unlike the previous step disturbances, fault 11 is due to random variation of reactor cooling water 

inlet temperature. The most probable causes are the variation of reactor temperature (             ) and 

MV (       ). Although the DoT of        is only 0.35 and 0.37 after 30 min, that of        is also 

significant (0.31 for 45 min and 0.32 for 60 min), which pointing to the variation of    to both directions.  

The results show that DoT in general decreases over time. This is because that after fault occurs, the 

process deviates from the steady state, from which the SDG was built. As a result, the proposed method 

should be used with extra care when including a long period of data after the fault is detected. 

Nevertheless, the results suggest that the method still provides practically useful information to the 

operator/engineer. For example for fault 7, the DoT of x4 drops from 1 to 0.64; but the decrease in x4 

should still be considered as the root cause, since        always has the highest DoT from 0 to 60 min. 

Table 7 reports the computation time of the proposed method, obtained under MATLAB
®
 2011a on 

a desktop computer with  Intel
®
 Core

TM
 Duo CPU  E8300  (2.83  GHz). The computation appears fairly 

reasonable in most cases, except that it takes over 15 min (meaning it is longer than the longest sampling 
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interval) at 60 min after fault 7 has been detected. It should be noted that 38 variables are used in the case 

study; for systems with even more process variables, the computation will further increase, and even the 

PRBMCA and BnB methods may not be able to solve the combinatorial optimisation problem in good 

time. In addition, for very large scale, complex systems, the development of an SDG can also pose an 

issue. Therefore, the proposed method in its current form may be limited to medium scale processes 

(though there are many such systems), and future research is needed to further improve the 

computational efficiency. Related discussions of computation in the fault isolation step can be found in 

(He et al., 2012, 2013; Kariwala et al., 2010). 

 

Table 7. Summary of the computation time in seconds.  

Fault ID 0 min 15 min 30 min 45 min 60 min 

1 0.3 4.9 40.9 132.1 242.4 

2 1.3 17.3 43.1 81.9 104.9 

4 0.3 1.4 2.8 16.9 18.9 

5 0.3 10.6 23.2 74.9 151.9 

6 8.5 64.5 157.8 300.9 414.2 

7 10.4 114.6 322.4 665.3 1030.5 

11 0.6 1.5 6.4 8.1 11.6 

 

5. Concluding remarks 

This paper reports a root cause analysis method for MSPM, integrating reconstruction-based 

multivariate contribution analysis with fuzzy-signed directed graphs. It fills the gap between fault 

isolation through multivariate contribution analysis, and the need to drill down to the underlying cause of 

the fault. Except for the need to develop an SDG that represents the cause-effect relationship between 

process variables, this method does not need other prior knowledge or historical dataset of known 

process faults in the entire procedure of detection, isolation and root cause analysis. We acknowledge 

that the SDG does not always reveal the exact root cause, in particular when the cause related variables 

are not directly measured. Nevertheless, the method is effective in pointing to the possible explanations, 

which may need to undergo further investigation. On the other hand, we argue that in practice, fully 

automatic fault detection, isolation and diagnosis without human intervention may not be possible or 

desired. Instead, the provision of a decision support tool that incorporates process knowledge may be 

more welcome. The case study through the Tennessee Eastman benchmark problem shows that the 

method can provide useful information to support the diagnosis of detected abnormal process operations.  

In terms of computation, the proposed method may be limited to processes with tens of variables (38 

in the case study), and future research is needed to further improve the computational efficiency when 

solving the combinatorial optimisation problem. 
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