
Modeling for Dynamic Aspect-Oriented Development
Farhana Eva Alam

Dept. of Computer Science
Memorial University of Newfoundland

St. Johnʼs, NL, Canada
fevaalam@cs.mun.ca

Joerg Evermann
Faculty of Business

Memorial University of Newfoundland
St. Johnʼs, NL, Canada
jevermann@mun.ca

Adrian Fiech
Dept. of Computer Science

Memorial University of Newfoundland
St. Johnʼs, NL, Canada

afiech@mun.ca

ABSTRACT
Aspect Oriented Software Development (AOSD) has its roots in
the need to deal with requirements that cut across the primary
modularization of a software system. On the programming level,
mature, industrial-strength tools like the de-facto standard AspectJ
exist. However, on the modeling level, there is as yet little support
for AOSD. Building on previous work, this paper develops UML
modeling support for dynamic AOSD, using standard UML
extension mechanisms. We present a generic profile that allows
existing UML tools to express AOSD models. We also provide
automatic code generation into AspectS, an aspect extension to
Smalltalk, and AspectML, an aspect oriented flavor of the ML
language. Examples throughout the paper illustrate our approach.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features.

General Terms
Design, Languages, Theory.

Keywords
Aspect-oriented programming, aspect-oriented modeling, dynamic
AOP.

1. INTRODUCTION
Aspect Oriented Software Development (AOSD) deals with
requirements that cut across the primary modularization of a
software system, e.g. logging, tracing, security, persistence.
Initially developed as aspect-oriented programming (AOP) [1], it
has led to a number of mature tools for different languages, such
as AspectJ, the de-facto standard for AOP using Java [2]. Aspect-
oriented extensions also exist for many other languages, including
Smalltalk [3] and ML [4].

The core concepts of AOP are joinpoints, pointcuts, advice and
aspects. Joinpoints are points in the execution of a software
system. Pointcuts are sets of joinpoints selected by the AOP
developer. Code can be attached to pointcuts. This code is
specified in the form of advice. Related pointcuts and advice are
modularized in an aspect. An aspect weaver automatically adds

the advice code to the specified pointcuts. Different languages
provide concepts beyond this core, such as static introductions in
AspectJ, which allows the AOP developer to add class members
and interface realizations [6]. In this paper, we focus on the core
concepts only, as these are common across most AOP
implementations. AOP approaches can be characterized as either
static or dynamic. Static AOP, as implemented e.g. in AspectJ,
requires the developer to specify all pointcuts, advice and aspects
at compile time. Typically, a weaving compiler is used to add
advice code to joinpoints. Dynamic AOP on the other hand,
allows changes to aspects at run-time and a run-time weaver is
used to add advice code to the selected joinpoints.

Aspect-oriented modeling (AOM) is the extension of AOSD into
the upstream software design activities. It is increasingly
important in the context of the OMG's model-driven development
(MDD). Different AOM approaches are characterized by their
genericity. Many of the existing AOM approaches are
programming language specific and allow modeling on the PSM
(platform specific model) level. While there are few AOM
extensions to allow generic modeling on the PIM (platform
independent model) level, they offer advantages as it increases the
re-usability of the models, cooperation of developers with
different language backgrounds and future-proofing of the
software design.

This work-in-progress paper describes an AOM approach for
platform-independent modeling for dynamic AOP. It builds on
earlier work [5] that provided a platform-specific AOM approach
for static AOP, specifically AspectJ. Our AOM approach is based
on standard extensions to UML and is therefore usable in all
CASE tools that support profiles and stereotypes. We provide
code generation to AspectS [3] and AspectML [4] using XSLT
(Extensible Stylesheet Language Transformations) translation on
the UML XMI standard serialization format.

The paper proceeds as follows. Section 2 compares the features of
different AOP extensions to Java, Smalltalk, and ML to ensure
that our AOM approach covers important AOP features in a wide
variety of languages. Section 3 introduces dynamic aspects using
two examples to illustrate their advantages over static AOP.
Section 4 illustrates our modeling approach. The paper concludes
in Section 5.

2. JOIN POINT MODELS
While the core AOSD concepts are similar across most AOP
implementations, there are subtle differences and unique features.
This section discusses the join point model (JPM) of different
AOP implementations. The JPM specifies which joinpoints in a
software system's execution can be selected by pointcuts. To
cover a wide variety of JPM features, we examine three
languages: AspectJ – a static AOP approach, AspectS – a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
C3S2E-09 2009, May 19-21, Montreal [QC, CANADA]
Editor: B C. DESAI, Copyright ©2009 ACM 978-1-60558-401-0/09/05
$5.00

dynamic, object-oriented approach, and AspectML – a dynamic,
functional approach to AOP. We illustrate the different features
using the example of a logging aspect, adapted from [6].

The following code fragment shows how a static language like
AspectJ implements a tracing aspect. The pointcut traceMethods
selects the execution of any method of any class with any
signature that is not itself executing within TraceAspect. The
following advice retrieves the joinpoint signature to print to the
log.

public aspect TraceAspect {

 pointcut traceMethods():
execution(* *.*(..)) && !within(TraceAspect);

before(): traceMethods()
{

Signature sig = thisJoinPointStaticPart.getSignature();

System.out.println("Entering " +
sig.getDeclaringTypeName()+" " + sig.getName());

} }

AspectS is a dynamic AOP implementation based on Smalltalk
[3]. The code fragment below shows a method adviceLogging of
an aspect object, which is called by the run-time weaver when
installing the aspect. The method returns an
AsBeforeAfterAdvice object that contains a set of
AsAdviceQualifier objects, a set of AsJoinPointdescriptor
objects to describe pointcuts and a beforeBlock that specifies the
code to be woven. The run-time weaver uses this information to
create wrapper methods for all specified joinpoint descriptors.
This approach to run-time weaving precludes advising methods of
system classes which are immutable at runtime, so that the
pointcuts in the following example describe all methods of all
subclasses of an InventorySystemRoot class.

adviceLogging
 | jpset classes |
 classes := InventorySystemRoot withAllSubclasses.
 jpset := OrderedCollection new.

Classes
do: [:each | each selectors

do: [:eachSelector | jpset add:
(AsJoinPointDescriptor targetClass: each

targetSelector: eachSelector).]].

 ^ AsBeforeAfterAdvice

qualifier:
(AsAdviceQualifier attributes: {#receiverClassSpecific})

 pointcut: jpset
 beforeBlock: [:receiver :arguments :aspect :client |

 Transcript show: (receiver class).]

In AspectML the example can be written in functional form.
AspectML pointcut designators are untyped. Using the keyword
"any" or specific function names, it is possible to advise the
execution of functions, which must be identically typed.

advice before (| any |) (arg, s, info) = (print "Entering
"^(getFunName info)); arg)

Table 1 shows the main differences between AspectJ, AspectS
and AspectML. The joinpoint model of AspectJ is much richer
than that of either AspectS or AspectML. However, the latter two

languages provide dynamic AOP capabilities, discussed in the
following section.

Table 1. Comparison of selected AOP approaches

 AspectJ AspectS AspectML
Aspects can be

instantiated × √

Aspect
inheritance × √

Nested aspects √ ×
Privileged

aspects √ ×

AspectML
does not have
an aspect
construct.

Polymorphic
pointcuts × × √

Polymorphic
advices × × √

Advice on field
access √ × NA

3. DYNAMIC AOP
Dynamic aspect-oriented programming provides support for
controlling aspects at runtime. This has some advantages:

• It removes AOP overhead when aspects are not required,
e.g. profiling or tracing aspects on a production system.

• It allows dynamic configuration of aspect behavior, e.g.
switching from tracing to profiling, without resetting the
state of the base systems.

• It allows aspect re-configuration depending on the state of
the base system.

• It allows extensible and reusable aspect libraries.
The latter is a consequence of the typical implementation of
dynamic AOP in which the core AOSD concepts are provided
using the primary modularization concepts. The AspectS example
above shows how advice and joinpoint descriptors are
implemented as objects. Hence, they can be used to build generic
libraries. Dynamic AOP is easier to implement in interpreted
languages such as Smalltalk or ML, although a dynamic AOP
versions of AspectJ exists [11]. A static language can approximate
dynamic adaptation through run-time checks, such as in the
following adaptation of the previous AspectJ example. Here, we
have added a switch to turn the logging on and off.

public aspect TraceAspect {

 private static boolean loggingOn = false;

 public static void enable() {loggingOn=true;}
 public static void disable() {loggingOn=false;}

pointcut traceMethods():
execution(* *.*(..)) && !within(TraceAspect) && if(logingOn);

before(): traceMethods()
{…}

}

However, this is not a truly dynamic AOP system: For more
complex control and configuration requirements, the complexity
of conditional expressions increases rapidly; the control methods
(enable and disable in the above example) must be called from
the base system, which requires the base system to be aware of the
aspects; and there remains an (however minimal) overhead of
checking the configuration conditions. The following example

shows how a dynamic AOP language such as AspectS allows
dynamic control of aspect behavior:

AsAspect subclass: #AspectTraceD
 instanceVariableNames: ''
 classVariableNames: ''
 poolDictionaries: ''
 category: 'AspectS-ShoppingCartDynamic'!

!AspectTraceD methodsFor: '…' stamp: '…'!

adviceLogging

^ AsBeforeAfterAdvice
 qualifier: (AsAdviceQualifier attributes:{#receiverClassSpecific})
 pointcut: [{

AsJoinPointDescriptor targetClass: AsInventoryD
targetSelector: #addItem:.

AsJoinPointDescriptor targetClass: AsInventoryD
targetSelector: #removeItem:.

…. }]
beforeBlock: [:receiver :arguments :aspect :client |

 … logging code here …]! !

The base system and aspect extensions can be enabled and
disabled separately, e.g. from a separate control thread, as shown
in the following example:

|process1 test1|
process1 := [test1:=AsUserInterfaceD new test1 run.] newProcess.
process1 resume.

demoAspect:= AspectTraceD new.
demoAspect install.
demoAspect uninstall.

process1 terminate.

This also allows the reconfiguration of the aspect to adapt or
configure the advice to changing requirements without losing state
of the base system.

Dynamic AOP treats AOSD concepts as instances of the primary
modularization concepts. For example, advice and pointcuts are
objects in AspectS, and pointcuts are functions in AspectML, an
extension of the functional language ML. An example taken from
[4] is shown below. In this example, toLog of type pc(<a b>
a~>b), is a pointcut that is passed as an argument to startLogger,
an all purpose logging aspect.

fun startLogger (toLog: pc(<a b> a~>b)) =
 let

advice before (|toLog|) (arg, _, info) =
 ((print ("before : "^(getFunName info) ^ ":" ^

 (val_to_string arg)^"\n")); arg)
advice after (| toLog |) (res, _, info) =

 ((print ("after " ^ (getFunName info) ^ " : "^
(val_to_string res) ^ "\n"));res)

 in () end

Another example are pointcut objects in AspectS. In the following
code, AspeptLogger is a generic logging subclass of AsAspect.
It has a constructor method newJP that allows initialization with
a set of AsJoinpointDescriptor objects. These are stored by the
aspect and passed to the adviceLogging function that is called by
the run-time weaver when installing the aspect. This allows us to
build generic logging aspect that can be configured at runtime
with the set of joinpoints to be logged.

Class Definition:

AsAspect subclass: #AspectLogger

instanceVariableNames: 'jpset'
 classVariableNames: ''
 poolDictionaries: ''
 category: 'First Class Pointcut'

Class Method:

newJP: aJPDescriptor
 ^(self new) jpset: aJPDescriptor; yourself.

Instance Methods:

jpset: aJPDescriptor
 jpset := aJPDescriptor

adviceLogging
 ^ AsBeforeAfterAdvice

qualifier: (AsAdviceQualifier
attributes:{#receiverClassSpecific})

 pointcut:jpset
 beforeBlock: [:receiver :arguments :aspect :client |

… logging code here …]
 afterBlock: [:receiver :arguments :aspect :client :result |

… logging code here …]

AspectJ does not provide instantiable and configurable aspect,
advice, or pointcut classes. It is instead based on language
extensions handled by a weaving compiler. Hence, the above
examples of generic and configurable aspects and advice cannot
be implemented in AspectJ.
Recent work on dynamic AOP has focused on solving a number
of issues and problems that are not well suited for static AOP
implementations. Handi-Wrap is a dynamic AOP extension for
Java, which allows advice to be defined compositionally and
supports run-time weaving [9]. PROSE (PROgrammable
extensionSions of sErvices) is a dynamic AOP approach based on
Java that allows aspects to be woven, unwoven, or replaced at
run-time. PROSE supports rapid AOP prototyping and debugging
and helps developers to understand the behavior of aspects in
changed environment [10]. To address the call for recent demand
for dynamic AOP, a new dynamic aspect weaver called Wool is
presented in [8], which makes it possible to implement efficient
dynamic AOP systems. Wool addresses the solution to the
performance penalties caused in some prior implementations. An
approach for language and platform independent dynamic AOP
based upon reflection is presented in [11]. It focuses on dynamic
adaptation of distributed systems at run-time. Dynamic AspectJ
[12] considers the difficulties arising from the static scheduling
strategy of AspectJ and shows how turning to a more dynamic
strategy makes it possible to order, cancel, and deploy aspects at
runtime.

4. ASPECT-ORIENTED MODELING
Aspect-oriented modeling (AOM) is an expansion of AOP to the
upstream activity of software design. Most AOM techniques focus
on providing modeling capabilities for the core AOSD concepts,
usually as extensions to the Unified Modeling Language (UML).
While there has been prior work on extending UML to AOM,
most of the extensions expand UML either by introducing new

meta-model classes or new notation elements without providing
meta-level support.

Our approach as outlined here offers the following advantages:

• AOM is used within existing, mature software tools.

• Our model extension and any models produced by it can
be exchanged between different MOF (Meta-Object-
Facility) compliant UML modeling tools.

• All AOSD concepts are specified on the meta-level.

• Strict separation of base-model and cross-cutting concerns
– the primary motivation behind AOP

AOM approaches can be distinguished along two orthogonal
dimensions: the level of weaving and the symmetry of the
approach. Our work is positioned at the asymmetric code-weaving
level. The aspect-oriented model is converted to aspect-oriented
code, which can be woven by an aspect-oriented compiler. We
also make a clear distinction between the base-system and the
cross-cutting concerns (Figure 1).

Figure 1 – Our AOP Approach in Context

In the following we present our UML meta-model for a selection
of core aspect-oriented constructs. Rather than specializing UML
meta-classes, we extend them using UML stereotypes.

The previously developed UML extension for static AOP treats
aspects as extensions of the Class meta-class, i.e. a stereotyped
class. Within that framework, pointcuts are stereotyped properties
and advices are stereotyped behavioral features, typically
operations.

However, this approach is not feasible for dynamic AOM,
because dynamic approaches represent AOSD concepts as first-
class modules. For example, joinpoint descriptors (pointcuts),
advice and aspects are all objects in AspectS, while pointcuts are
functions in AspectML. Thus, our approach will differ from the
existing work in [5] by providing appropriate extensions to the

Class meta-class for advice and pointcuts, as well as aspects
(Figure 2 and Figure 3).

Figure 2 – Modeling Advice and Aspect

Figure 3 – Modeling Pointcut

Aspect instantiation, installation, de-installation, and
configuration can then be modeled in the normal way using
appropriately stereotyped objects.

We introduce the meta-class CrossCuttingConcern as a way of
grouping related aspects. It extends the UML meta-class package,
because cross-cutting concerns contain aspects in the same way as
packages contain classes (Figure 4).

Figure 4 – Modeling Crosscutting Concern

Code generation can be done using standard MOF API, e.g. for
Java based UML tools, or, alternatively, by working from the
UML XMI (XML Model Interchange) format, the standard UML
serialization. Both approaches use standardized mechanisms and
are therefore compatible with existing modeling tools. Existing
work in [5] has demonstrated the use of XSLT (XML Stylesheet
Language Transforms) for generating XMI to AspectJ code. Our
work-in-progress will leverage that mechanism. As a proof-of-
concept, we implement an XSLT that generates valid code for our
three target languages (AspectJ, AspectS and AspectML).

An overview of some of the prior work for modeling aspects in
UML is presented in [13]. The early work is based on the
extension mechanisms in UML 1.x versions. Because these
mechanisms are not fully integrated with the meta-model, the

specification of advices and pointcuts often remains in textual
form [16],[17],[18], thus requiring special model parsers for code
generation.

Initial work presented in [14] proposed the specification of
aspects as stereotypes on classes and was later extended to include
advice and pointcut specification [15]. It models cross-cutting
associations to show which aspect features relate to which base-
model elements, thus giving up a clear separation of aspects and
base system, which is the primary objective of AOSD.

Other existing work is based on defining new UML meta-classes
instead of defining stereotypes for existing meta-classes. This
approach requires specialized tools to support the introduced
meta-classes [19],[20].

5. CONCLUSION
In this poster presentation paper we provide an overview of
diverse aspect-oriented concepts and their implementation in
several programming languages. We compare the Joint Point
Model present in these languages and discuss the benefits of
dynamic aspects. Our approach to aspect-oriented modeling is
platform independent. We provide code generation for AspectJ,
AspectS and AspectML. The last two languages support dynamic
aspects, whose modeling we support. The code generation
currently relies on the modeler to verify the model. Although we
present a number of OCL constraints as part of the model, others
must be developed to support validation.

6. REFERENCES
[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J. Loingtier, and J. Irwin (1997). Aspect-Oriented
Programming, Proceedings of the European Conference on
Object-Oriented Programming, vol.1241, pp.220–242.

[2] The AspectJ Team. AspectJ Programming Guide (v1.2). In
http://aspectj.org

[3] R. Hirschfeld, Aspect-Oriented Programming with AspectS,
in: Lecture Notes in Computer Science: Objects,
Components, Architectures, Services, and Applications for a
NetworkedWorld: International Conference NetObjectDays,
NODe 2002, Erfurt, Germany, October 7–10, 2002. Revised
Papers, 2003.

[4] D. Dantas, D. Walker, G. Washburn, and S. Weirich.
AspectML: A Polymorphic Aspect-oriented Functional
Programming Language. ACM Transactions on
Programming Languages and Systems. June 2008.

[5] J. Evermann. A Meta-Level Specification and Profile for
AspectJ in UML. In Journal of Object Technology, vol. 6,
no. 7, Special Issue: Aspect-Oriented Modeling, pages 27-49,
August 2007.

[6] R. Laddad, AspectJ in Action: Practical Aspect-Oriented
Programming, Manning Publications Company, 2003.

[7] Y. Sato, S. Chiba, and M. Tatsubori. A Selective, Just-In-
Time Aspect Weaver, Proceedings of the 2nd international
conference on Generative programming and component
engineering, vol. 48, 2003

[8] J. Baker and W. Hsieh. Runtime Aspect Weaving Through
Metaprogramming, Proceedings of the 1st international
conference on Aspect-oriented software development, 2002

[9] A. Popovici, T. Gross, and G. Alonso. Dynamic Weaving for
Aspect-Oriented Programming, Proceedings of the 1st
international conference on Aspect-oriented software
development, 2002.

[10] N. Bencomo, G. Blair, G. Coulson, P. Grace, and A. Rashid.
Reflection and Aspects meet again: Runtime Reflective
Mechanisms for Dynamic Aspects, Proceedings of the 1st
workshop on Aspect oriented middleware development,2005.

[11] A. Assaf, J. Noyé. Dynamic AspectJ, Proceedings of the
2008 symposium on Dynamic languages, Paphos, Cyprus,
article no. 8, 2008.

[12] J. Davies , N. Huismans, R. Slaney, S. Whiting, M. Webster,
and R. Berry. Aspect oriented profiler. In: 2nd International
Conference on Aspect-Oriented Software Development.
(2003)

[13] A. Reina, J. Torres, and M. Toro. Towards developing
generic solutions with aspects. In: Proceedings of the AOM
workshop at AOSD, 2004

[14] O. Aldawud, T. Elrad, and A. Bader. A UML profile for
aspect oriented modeling. In: Proceedings of OOPSLA 2001,
2001

[15] O. Aldawud, T. Elrad, and A. Bader. UML profile for aspect-
oriented software development. In: Proceedings of the AOM
workshop at AOSD, 2003

[16] R. Pawlak, L. Duchien, G. Florin, F. Legond-Aubry, L.
Seinturier, and L. Martelli. A UML notation for aspect-
oriented software design. In: Proceedings of the AOM with
UML workshop at AOSD, 2002

[17] M. Kande, J. Kienzle, and A. Strohmeier. From AOP to
UML - a bottom-up approach. In: Proceedings of the AOM
with UML workshop at AOSD, 2002

[18] M. Basch and A. Sanchez. Incorporating aspects into the
UML. In: Proceedings of the AOM workshop at AOSD,
2003

[19] J. Grundy and R. Patel. Developing software components
with the UML, Enterprise Java Beans and aspects. In:
Proceedings of ASWEC 2001, Canberra, Australia, 2001

[20] H. Yan, G. Kniesel, and A. Cremers. A meta model and
modeling notation for AspectJ. In :Proceedings of the AOM
workshop at AOSD, 2004.

