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Data Hiding on 3-D Triangle Meshes
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Abstract—In this paper, we present a new scheme for digital
steganography of three–dimensional (3–D) triangle meshes. This
scheme is robust against translation, rotation, and scaling opera-
tions. It is based on a substitutive procedure in the spatial domain.
The key idea is to consider a triangle as a two-state geometrical ob-
ject. We discuss its performance in terms of capacity, complexity,
visibility, and security. We validate the use of a principal compo-
nent analysis (PCA) to make our scheme signal-dependent in the
line of second generation watermarking scheme. We also define a
simple specific metric for distortion evaluation that has been vali-
dated by many tests. We conclude by giving some other solutions,
including open steganographic schemes that could be derived from
the basic ideas presented here.

Index Terms—Binary MEP, fragile watermarking, geometrical
state, mesh, steganography, triangle, TSPS.

I. INTRODUCTION

STEGANOGRAPHY, the art of reliably hiding a message in
another, has been widely used over the centuries for analog

media but today is being for digital multimedia content. There
are many applications for which steganography is a suitable so-
lution, ranging from in-band captioning and side-information
channeling to authentication and tamper proofing. Our main
goal here is to present a new simple steganographic system de-
signed for three-dimensional (3-D) triangle meshes.

Over the past few years, 3-D hardware has become much
more affordable than ever, allowing the widespread use of 3-D
meshes from CAM/CAD industry into video games and other
end-user applications. Three-dimensional meshes have become
of great interest since they are widely used. They are also a type
of multimedia content, which in some cases has to be enhanced
using steganographic techniques. Our main goal here is to
present a new simple steganographic system designed for 3-D
triangle meshes, extending and enriching one of the simplest
technique called the triangle strip peeling sequence (TSPS).
From a geometrical point of view, one could see this scheme as
a quantization index modulation (QIM) scheme extended on a
discrete partition of a physical measurement.

The basic idea behind the TSPS algorithm is the insertion
of bits while moving on the mesh. Nevertheless, the original
TSPS implementation [3] suffers from two majors drawbacks.
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It is not fully automatic as some kind of human intervention is
needed. It is unsecure as TSPS is based on the modification of
the topology so that an opponent easily locates the payload. We
propose a new way of modifying the triangle characteristics in
order to obtain a more secure algorithm and a fully automatic
implementation. We also show how to achieve the reversibility
of the method, which is often desirable since 3-D meshes are
sometimes results of measures (e.g., scientific data or medical
images) or specifications for industrial processes (CAD data).

Triangle meshes are a general representation of a 3-D visual
object that are very well suited to communications. Even if
the vizualization process uses a different representation (see
NURBS [4] as an example) or if the object is acquired in a
specific representation, it is possible to derive a triangulated
representation of the object in any cases. Triangles offer many
steganographic possibilities through modifications of their
elementary features, vertices (geometry), and connectivity
(topology). The 3-D object appears as a list of elementary
connected objects (triangles), which is very different from the
usual regular sampling of pixels in use in photographic and
video imagery. Here, we first exploit the properties of the graph
representing the mesh to find where to hide the bits. Then,
as an isolated triangle may be seen as a two-state object, we
flip its state according to the bit to be hidden in this location.
Robustness is another difference with 2-D media. Global
geometrical manipulations (scaling, translation, rotation) are
not easily tackled when working on sampled images. Yet our
scheme provides natural robustness to affine transformations.

II. BACKGROUND

As usually denoted in steganography, the media hiding in-
formation is called thecovermedia, and the information to be
hidden is referred to as thepayload. From a protocol point of
view, one distinguishes between schemes that need the original
cover media to recover the payload and theblind schemes that
do not need it. Blind schemes are of special interest as they pro-
vide automatic retrieving of the payload without any kind of as-
sistance. From a signal processing point of view, the schemes are
classified inadditiveor substitutiveschemes. Additive schemes
are related to the fact that the payload is first coded in a signal
simply added to the cover media. The substitutive schemes flip
binary features of the cover content in order to encode the pay-
load (for example, one could modify the phase of a cover signal
so that it is either 0 or ). Our scheme is a substitutive blind
scheme in the spatial domain.

Several watermarking schemes for meshes have been pro-
posed either in the spatial domain [3], [4] or in a transform do-
main [5], [16], [17]. Embedding in the spatial domain naturally
leads to a relatively poor robustness, whereas capacity increases.
In the general framework of watermarking, transform domains
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Fig. 1. Steganographic paradigm for secret-key schemes. The secret key is
used to embed the payload into the cover media, and the decoder needs the
secret key to extract the recovered payload from the stego media.

have shown to offer a better robustness. Since we are interested
in maximizing capacity, we plan to embed the payload into the
spatial domain.

We present in Fig. 1 the basics of a steganographic system.
The system is build around two major blocks: the encoder and
the decoder. The encoder takes as input the cover media, the
payload, and the secret key. It produces astego-media. The de-
coding block takes the stego-media and the secret key to extract
the payload. From one block to another, the stego-media is sup-
posed to go through an undefined communication channel, and
the payload is supposed to be retrieved even after some degra-
dations.

To evaluate a stego-system, one establishes results on im-
perceptibility, capacity, complexity, and security. In the case of
well-known media such as sounds or photographic images, a
simple measure is used for distortion: the signal-to-noise ratio
(SNR). This measure is dedicated to regularly sampled signals,
which is not the case of 3-D meshes. In our case, there are sev-
eral proposals to address the issue of measuring distortion. The
simplest is the Haussdorff distance, which is based on an infinite
norm. Another proposal was made by Karni and Gotsman [14]
to handle meshes with different topologies. Since our scheme
does not change the topology, we will use an estimation of the
Haussdorff distance to evaluate the distortion induced by the
embedding process.

In the steganographic framework, one usually maximizes the
size of the payload, whereas in watermarking, there is a tradeoff
to commit between capacity and robustness. We assume no ro-
bustness requirements, except trivial operations such as rotation,
scaling, and translation. Capacity is our main goal. We give an
upper bound on the maximal capacity of our scheme.

We estimate the complexity of our scheme by giving common
processing times for the well-knownbunnymodel. The time
used to embed and to retrieve the payload is the same, as both
operations are symmetrical. Finally, as the aim of steganography
is to hide a secret payload, we are interested in the security level
provided by our algorithm. We only give an estimate since a
practical verification of theoretic paradigms is untractable in our
case. Our scheme can easily be shown to be resistant against any
exhaustive search.

III. PRESENTATION OF THEPROPOSEDALGORITHM

We keep the basic TSPS idea of encoding a payload by
moving over the mesh, which implies that we always see a
triangle with its associated entry edge and two possible exit

Fig. 2. Top: Triangle viewed from a topological setting: the entry edge (AB)
corresponding to the current bit to insert and the two possible exit edges (ACand
BC). Exit edges ordering is made with a clockwise criteria (the first one isBC
here). Bottom: Original mesh with TSPS path (gray). One triangle carries one
bit. The cell on which we will perform MEP is in black. Geometrical distortion:
none. Topological singularity: stencil.

edges, as in Fig. 2. Our algorithm needs oriented triangles to
proceed.

A. Overview

Our algorithm requires two steps: First, a list of triangles of
the mesh that will contain the payload is established. This oper-
ation is driven by the secret key of the steganographic process.
Second, each so-calledadmissibletriangle of the list is modified
or not according to the binary symbol it has to convey. This last
operation is denoted as a macro embedding procedure (MEP)
[3].

1) Listing Triangles to be Processed:The list of triangles
is established according to the scheme of Fig. 2. A starting tri-
angle is determined on the basis of a specific geometric charac-
teristic (cf. infra). The next triangle in the list is either the first
(its new entry edge being AC) or the second one (its new entry
edge being BC) in clockwise order, depending on the bit value
of the key. The length of the key must be as long as the list of ad-
missible triangles required to convey the payload. The key may
also be the seed of a binary pseudo-noise sequence generator.
The path of visited triangles is called thestencil.

2) Macro Embedding Procedure (MEP):Each triangle
is considered as a two-state object. We define the state of
the triangle by the position of the orthogonal projection of
the triangle summit on the entry edgeAB. We denote this
position as . We divide theAB interval into two subsets

and . If , then we consider that the triangle
is in a “0” state; otherwise, , and the triangle is in
a “1” state. If the and subsets contain intervals defined
as fractions ofAB, states are invariant to an affine transform
of the mesh. To set the triangle in the( or 1) state, two
cases occur:

• : No modifications need be processed.
• : has to be shifted toward so that

.



CAYRE AND MACQ: DATA HIDING ON 3-D TRIANGLE MESHES 941

Fig. 3. Decomposition of the entry edgeAB into two interleaved subsetsS
andS , with the 2n binary values for everyD D .

The mapping has to be reversible and invariant
through affine transformations. Moreover, has to be
small enough to avoid visual degradation of the mesh but large
enough to allow accurate payload detection. We choose to
divide AB, our steganographic space, into subintervals and to
use interval borders as a symmetry axis. The mapping
is a symmetry accross the closest axis orthogonal toAB that
intersects the border of the closest sub-interval belonging to
(see Figs. 4 and 5).

A string containing bits indicating whether a change was
needed for each admissible triangle allows the data hider to
retrieve an unmarked perfect copy of the original mesh. We call
this string the erasing key. It can be seen as a hash of the mesh
parameterized by the secret key and the payload. When the
random selection of triangles leads to an admissible triangle,
we can insert a bit of hidden information. The triangle can be
geometrically modified or not, depending on the difference of
the bit value to be hidden and the initial state of the triangle.
If one wants to be able to recover the original state of the
admissible triangle, it is necessary to store an erasing bit for
every bit of the payload: The erasing bit is set to 1 if the state
of the triangle changed and 0 otherwise. The erasing key is
therefore constructed during embedding, and its size is exactly
the same as the payload size.

B. Partition of the Entry Edge Into and

A graphical summary of the partition is sketched in Fig. 3.
The aim of this decomposition is to extend the QIM concept to
3-D triangle meshes [12], [13]. Our quantizer is implemented by
dividing AB by 2 . Compared with common QIM implemen-
tation, we chose to hide only one bit per vertex (), although
it is possible to hide more. Moreover, we were interested in
keeping reversibility. In Fig. 3, we establish the main outline of
our steganographic space. The are the frontiers between two
elementary binary domains. The are the different pos-
sible bit locations over the entry edge, each constituted of two
elementary binary domains. The value can be seen
as the basic quantization step in the QIM method. The projec-
tion of on AB will select both a and a , which
is the bit value of the triangle. The alternating numbering 0, 1
and1, 0 of the is the most suited for robust steganography.
The interleaved sets and are shown on the top of Fig. 3.
The points represent the borders between elementary binary
domains. To every segment is assigned a value from the
two domains of which it is constituted. The aim of this regular
decomposition is to provide us with an interleaved binary dis-
tribution over the entry edge, thus minimizing the distance be-
tween and in case of a mapping. We extend this partition
of the entry edge to the whole line defined byA andB. This way,

Fig. 4. Top: First-order MEP (n = 1). Two geometrical configurations. This
case degenerates to a simple symmetry. Bottom: First-order MEP on black cell,
same path. Does not show steering symbols. Geometric distortion: sometimes,
strong. No topological singularity.

we can handle triangles for which the projection offalls out
of the segmentAB.

IV. BINARY MEP

In this section, we detail some features of the MEP. This
MEP has to be considered as an example, where other physical
changes are possible.

A. MEP: Projection of the Summit on the Quantized Base

Let us first define the planes ( ), , which are
all orthogonal toAB:

All these planes are placed on a regular grid ofAB. They cut
every into two intervals: [ ] on the left side and
[ ] on the right side. The aim of the regular decompo-
sition is to provide a set of elementary domains over the entry
edge. Each domain is defining a place where the bit
inserted within the triangle is said to be “1” or “0” (see Fig. 3).

We then compute all the distances, , from to
all ( ), and we let

We denote ( ) the corresponding ( ). We thus can state the
boundaries of :

(1)

From now on, we know on which to focus. The link
between and is straightforward, as the projection
of on AB now selects both a and a (or a
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Fig. 5. Top: Second-order MEP (n = 2). Four geometrical configurations:
Geometrical distortion decreases. Bottom: Second-order MEP on black cell,
same path. Does not show steering symbols. Geometric distortion: Sometimes
(generally does not happen on the same triangles as in the first order case),
smoother. No topological singularity, better visual quality.

). represents the minimal amount of geometrical
distortion to be introduced for a change of state.

Let us note that parameterizes the smoothness of the algo-
rithm. As increases, decreases so that the amount of distor-
tion to be introduced gets smaller. On the other hand, the number
of frontiers between domains increases, which can cause bit re-
trieval errors due to the limited machine precision. In our graph-
ical simulations, we only considered the cases and
(see Figs. 4 and 5), although the MEP algorithm does not im-
poses no restrictions on the order.

Usually, watermarking schemes are divided into two cate-
gories: additive or substitutive. The method we propose here
could be additive ( is just the amount of minimal distortion
to be introduced in the scope of changing the triangle state), but
we preferred a substitutive version, which is simple to imple-
ment and fully reversible (given anerasing key).

Keeping this frame in mind, we define our MEP to be the
symmetryof with respect to ( ), hence, the superscript. If
the triangle is in the correct state, no geometrical distortion is
introduced; otherwise, only a (potentially) small reversible shift
is performed.

B. Erasing Key

As explained in Section III-A2, we build at every iteration the
erasing key that should be kept private. For every payload bit, we
define its corresponding erasing bit. The erasing bitis at “1” if
the embedding process of the payload bit numberperforms a
binary-MEP and “0” if it keeps the triangle in its original state.
The erasing key has the same length as the payload size since
exactly one triangle is chosen to be inserted into each bit of the

payload. It is just the bit-wise difference between the payload
and the mesh along the stencil defined by the secret key. By this
way, exact reversibility isonlygranted to the erasing and secret
keys’ holder.

C. Simulations

We present here simulations of the two first orders of the bi-
nary MEP. Even if could be arbitrarily high, we will generally
not consider high orders of the MEP. Tests have been performed
with order 8.

1) Simplest: First-Order MEP:Let ( ) be the symmetric
plane for the entry edgeAB (see Fig. 4). The point is called

if we embedded a “0”; else, . We build a binary-MEP by
moving symmetrically with respect to ( ) from one side of
( ) to another when needed. This is a simple way to make a
reversible bit commitment. This MEP has only two geometrical
configurations. Thus, geometrical distortions are quite strong.
We give a simulation on a two-dimensional (2-D) mesh of the
MEP in Fig. 4. For a better understanding, the black cell on
which we perform the MEP is always in the reference plane.

2) Smoother: Second-Order MEP:We move with respect
to its closest plane ( ), which is always closer to than in
the previous case. This MEP has four geometrical configura-
tions and still hides one bit. It is smoother because distortion
is always less important than in the previous MEP, due to the
higher number of geometrical configurations. We show in Fig. 5
a simulation of this MEP on the black cell. Geometrical distor-
tion gets smaller as increases.To choose the next triangle to be
added to the stencil, simply read the value of the bitof the key
and deduce thekey-edge. This exit edge becomes the next entry
edge of the next triangle. The edge that was not selected with
the key is called thesteering edge. We show in Fig. 6 the visual
effect of the MEP transformation when the MEP order is 4. We
choose colors to indicate the kind of transformation of the trian-
gles, blue being the largest ones (see Fig. 7, for the pseudo-code
of the algorithm, where binary-MEP operations are performed
only on admissible triangles.).

V. MOVING ON THE MESH

Let us recall the general mainframe of the method: The bits
are hidden one after the other in a list of triangles with a geomet-
rical MEP. So far, we only mentioned that the secret key drives
the stencil through the mesh. This section essentially deals with
the way of moving over the mesh. We first explain why we no
longer need peeling. Finally, we address the problem of finding
the initial cell, which is thesynchronization problem.

A. Avoiding Peeling

First, we precise the method we use to move across the cells.
In our case, the criteria for choosing the next cell to add to
the stencil is not based on topological peeling. Our rule is geo-
metrical: Using the clockwise distinction between the two exit
edges, we always get out of the cell using the exit selected by the
secret key. This way, we no longer need to peel off the stencil,
which is more secure.

When selecting the next triangle, we use a generalrule that
may be overridden by an exception case detailed. This rule is to
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Fig. 6. Stego-sphere with 256 bits embedded (48.3% of total capacity). The
order of the MEP is 4. This trivial example is provided to illustrate the effect
of the MEP on real meshes. The cover mesh was a regularly sampled sphere.
A coloring of the triangle was performed with respect to the number of times
it was used for a bit commitment by the algorithm. The maximum value is 3,
blue, and the minimum is 0, red. One could see this coloring as the local degree
of presence of the information: Satured places are in blue.

always get out of the current triangle using the exit edge cor-
responding to the current secret key bit. If the secret key bit is
equal to 1, we use the first edge, and if it is equal to 0, we use the
second edge. It is the geometrical replacement to the topological
rule in the original TSPS method [3] (i.e.,stay on the stencil).

B. Automatic Steering

To address the issues raised by the topological singularities
of the mesh (holes, etc…), we use the so-called steering edge
(which is the equivalent of the steering symbols in [3]). This
is a way to keep the stencil as long as possible; however, mul-
tiple stencils achieve the same results. We automatically insert
steering symbols when needed; therefore, the stencil is unin-
terrupted. This is the only exception to the general rule. In our
setting, steering corresponds only to topological singularities
of the cover mesh. We limited our use of the steering-edge to
simple cases, but virtually all exceptions can be handled this
way. Our implementation can process both manifold and non-
manifold meshes.

C. Admissibility and Upper Bound for Capacity

In the classic TSPS algorithm, the stencil is strictly topologi-
cally separated from the mesh, whereas we materialize the fron-
tier of the stencil by creating a list of the already-used points. At
every iteration, we add to this points list the vertex C used to hide
a bit, which is either modified by an MEP or not. This list con-
tains the points that correspond to a hidden bit of information.
They cannot be moved again during the embedding process. If
later on during embedding the secret key produces a path that

Fig. 7. Pseudo-code of the algorithm. Binary-MEP operations are performed
only on admissible triangles. We show how to build the erasing key dynamically.

selects once again a forbidden point in this list, the triangle is not
admissible. In this case, we simply go on through the mesh with
respect to the key without considering the triangle for embed-
ding or decoding. Since both sides of the algorithm are symmet-
rical, we maintain this list both at the embedding and decoding
side. This way, we protect the stencil by materializing it into a
dynamically created forbidden points list.

We can then deduce the upper bound for capacity. If we let the
algorithm run long enough, it will add every point of the mesh
into the forbidden points list. The final number of points in the
forbidden points list is the number of points in the mesh. Since
every point inside this list corresponds to a bit of information,
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Fig. 8. Results for various models. For testings, we chose the fourth MEP
order. In practice, MEP order has shown to be of no significance regarding the
bit error rate. No errors were found in the recovered payloads.

the theoretical upper bound for the capacity of our scheme is
the number of points inside the cover mesh. Let be the
number of bits actually embedded, and let be the number
of vertices in the mesh. We can state the following constraint on
our scheme:

(2)

In order to quantify the remaining space, we then define the
so-called filling rate:

(3)

We provide typical results in Fig. 8. Those results are discussed
in Section VII. A visual example is given in Fig. 9, where the
capacity is 87.7% of the total capacity. One could use this filling
rate beforehand to set up the algorithm with the desired capacity.
We keep this simple measure as the capacity of our algorithm.
The only issue remaining now is synchronization, thanks to the
fact that the algorithm produces no topological singularity to
facilitate the recovery of the original stencil.

D. Topological Boundaries: Initial and the Final Cells

The last issue we have to address is to uniquely determine the
initial cell and edge. Since the information is no longer topo-
logically separated from the mesh, we have to find the initial
cell using some local information. This is a synchronization
problem. This information has to be local because the initial cell
is essentially local and geometrical because there is no longer
any peeling. A content-based approach has been followed in
[20]; we will use this path as another possible synchronization

Fig. 9. Stego mesh for modelbunny (12 Kbits, 87.7% of total capacity).

procedure. In the literature [10], some solutions are proposed
and divided into geometrical and topological approaches. One
may select as the initial cell the triangle of lowest or greatest
area (geometrical synchronization setting) or ask the initial cell
to have a certain property in terms of connectivity such that the
subset of matching cells is very small. A content-based proposal
can be found in [20], and we will follow this path as another
possible synchronization procedure. We used two different tech-
niques. The first one is based on triangle areas as we selected the
triangle of smallest area for geometrical distortion reasons. The
second one is based on a principal component analysis (PCA)
that gives three principal axes centered on the gravity center
whose intersections with the mesh leads to a small (6) number of
possible initial cells. The former is very quick, compared with
the later, but we check the speed of theraw method by imposing
the index of the initial cell at embedding and retrieving (arbitrary
initial cell). Performing a PCA is a way to link the payload to
the content of the mesh. Such an operation can be performed in
other concerns [25], like mesh indexation, for example.

Finding the initial edge when the initial cell is known is quite
easy. A local ordering of the edges inside a cell is straightfor-
ward: We take the largest edge of the initial cell for the very first
entry edge of the geometrical stencil. We just described several
ways of finding the initial cell, which is of greatest interest, but
in the original TSPS implementation, the final cell was found
topologically (when the stencil stops). In our case, we have to
know when to stop. Two ways are possible, at least. One knows
the number of bits to be retrieved, or one adds alead-outse-
quence. For simplicity, we assume the size of the payload is
known.

E. Security

There are already results for validating the level of security
offered by an algorithm. Unfortunately, we found them un-
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(a)

(b)

(c)

Fig. 10. Figures for the embedding of 12 Kbits inside modelbunny. (a)
Coding speed (ratio between total stencil length and payload length) is
very much related to processing time and complexity. (b) Distortion rate:
exponentially decreasing with MEP order. (c) Processing time: exponentially
growing with payload length.

tractable to evaluate security in practice due to the large amount
of needed processing power. However, we can still estimate

how secure our stego-system is. The two challenges an attacker
has to address are finding the initial cell and getting the path
over the mesh. Just by looking at these two issues, one can
state that this scheme is secure in the cryptographic sense. It is
resistant against exhaustive search. This means that it is much
easier to remove the payload than to read it without the key. We
believe that retrieving the message without the key is virtually
impossible. This problem is NP-hard with respect to the number
of cells in the mesh. Moreover, we embed the payload in an
undeterministic way, which makes any steganalysis difficult
[23], [24] or impossible.

VI. A LGORITHM AND ACCURACY MEASURES

In this section, we focus on the algorithm, and we deduce two
measures to evaluate our implementation. They are related to
the amount of distortion caused by the MEP (geometrical part
of the algorithm) and to the coding speed (topological part of
the algorithm).

A. Algorithm

We have mainly focused on the separate aspects of this
steganographic scheme in order to sharpen the definitely
strong possibilities of steganography on connected tri-
angles. We present the pseudo-code algorithm in Fig. 7.
As the pseudo-macros and

are not of much interest (they correspond
to forbidden points management and topological exceptions
handling), they will no longer be taken into account here. This
way, one can observe that the way we use to move on the mesh
leads to common parts for implementation. As a matter of fact,
when we are on a triangle, we know it is admissible, and we
only have to choose the access type to the information inside
the cell:embed, or retrieve, or even possiblyerase.

In the scope of this presentation, we do not present some of
the refinements that may improve this basic implementation. For
example, one could addlead-inandlead-outsequences to better
control the retrieval step. We mainly focus on the algorithm ma-
chinery since optimization from previous work [10] can directly
be transposed in our case.

B. Accuracy Measures

In the still-image case, one may generally want to evaluate the
distortion of the algorithm on the original content. This is usu-
ally done with SNR computations in the still image case [21],
and some proposals have been made for meshes mostly based
on the Haussdorff distance‘ and some others on Laplacian. The
measure we define for estimating the distortion induced by our
algorithm is very simple: During embedding, we save the value
of the maximal , and we divide it by the length of the largest
edge in the mesh . This is some sort of normalized Haus-
dorff distance, but it is not at all related to any psycho-visual or
perceptual statement. We let be the distortion rate

(4)

If we had taken only as a measure, it would have been in
fact the Hausdorff distance. Since we want to compare distortion
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Fig. 11. Stego meshes for models (top left)horse(40 Kbits), (top right)buddha (25 Kbits), (middle left)face(20 Kbits), (middle right)inopl (8 Kbits), (bottom
left) venus(7 Kbits), and (bottom right)skull (4 Kbits). Saturated regions are in blue and information-free regions in red.
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results between several meshes, we choose to divide by
the length of the largest edge in the mesh as a normalization.
This measure only holds since the topology is not changed by
the embedding process. However, the results will emphasize the
effect of MEP order over distortion. Similarly, we define another
measure for the topological part of the method: the so-called
coding speed . We then let

(5)

where is the number of triangles in the final stencil
when considering the embedding of bits. The final stencil
contains both triangles that convey the information and trian-
gles that links the previous ones one another. This will lead to
an accurate measure of coding speed, as there are in the stencil
as many admissible triangles as there are to embed. The
coding speed can also be seen as an empirical measure of the
complexity of the algorithm, as it is very closely related to pro-
cessing time. The search for admissible triangles is clearly a
random process, and we will therefore have to keep an empir-
ical measure of its behavior. During this random search for the
next admissible triangle, the stencil may need to visit more tri-
angles than the number of bits to embed. This is due to the fact
that the number of forbidden points increases as the payload is
embedded. This way, the coding speed can be greater than 1 as
the filling rate gets close to 1.

VII. RESULTS AND FUTURE IMPROVEMENTS

A. Practical Implementation

Here, we give some results that we obtained with some
models (the bench set was constituted of 11 meshes); they are
expressed with the two rates defined previously: the so-called
distortion rateand thecoding speed. Coding speed, distortion
rate, and processing time are detailed in Fig. 10 for the case of
the bunny model. Visual results of the watermarking are shown
in examples of Fig. 11. The former is related to the geometrical
distortion we introduced into the mesh, and the later deals with
the coding efficiency of the algorithm. By looking at Fig. 8, one
can see that the achieved filling rate is quite good in practice:
Our way of moving over the mesh is sufficient. Furthermore,
the order of the MEP used for embedding performs little
distortion, but we still give full control over this parameter to
the user. Despite these good results, the coding speed is quite
high, which means that security is improved but, in addition,
that processing time is far from optimum. This lack of control
lies in the randomness of our moving strategy.

We used a PC-based 800-MHz SMP workstation running the
Visualization ToolKit (VTK) under Linux to perform the tests
on the models. Synchronization (finding the initial cell) may last
25 s in the case of a PCA synchronization for thebunnymodel.
Again, we are only interested in evaluating the raw scheme. The
code was written in C++, and the processing time is the same for
embedding and decoding: It is comparable with other schemes
for 3-D meshes.

Fig. 12. Open steganographic paradigm for no-key schemes. A trivial rule is
used to generate the key both at embedding and decoding. We embed the payload
into the cover media, and the decoder only needs the rule for moving on the mesh
to extract the recovered payload from the stego media.

B. Improvements

We present here several improvements one could add in order
to better custom design his steganographic scheme using this
method. The two main drawbacks of this method are its lack of
local geometrical robustness, as well as its spatial localization.
Moreover, when considering small triangles, machine precision
errors can occur. The improvements presented here are various
suggestions to help in the design of a customized scheme.

1) Multiple Stencils: We described the basic method for the
generation of one stencil. We saw that the coding speed was not
optimal, resulting in time-consuming embedding and decoding
steps. To speed up the process, one could use multiple stencils.
This is a way of improving the overall processing time. The for-
bidden point list must be the same for all stencils. One decides
to start with another stencil when too many successive triangles
are not admissible. For our current implementation, we let the
algorithm generate up to four stencils. Considering a pure PCA
synchronization, one could take advantage of the six channels it
initiates.

Using multiple stencils allows a decrease in processing
time, at least for the beginning of the process. At the end
of the process, when reaching capacity limit, the problem
remains the same, and the process is still time consuming. This
improvement is of topological concern.

2) Increasing Capacity:Our scheme hides one bit per
vertex. It is derived from the QIM concept. Still, it is possible
to hide more than one sole bit per vertex. Using another
decomposition of the entry edge, it enables the hiding of a
certain amount of bits per vertex. For example, one could use a
more elaborated version of the decomposition of every .
Since we only hide one bit, we need to divide the into
two parts. Hiding bits per vertex would require the division
of the into 2 intervals. Since we can parameterize the
order of the MEP with , the definitive capacity limit is reached
when machine-precision errors occur. As stated before, we did
not implement such decompositions of the entry edge, but we
plan to consider such issues for future work. It would result in
generalized a QIM method for 3-D meshes. This improvement
is of geometrical concern.

3) Key and the Open Steganographic Channel:Our method
is designed to fit with the classical secret key paradigm. How-
ever, depending on the application, one could find it useful to
make the information public. We then have to fit another par-
adigm: the open steganographic paradigm: see Fig. 12. Since
the key represents the directions we want the stencil to follow
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successively, we have a way of making a simple open stegano-
graphic channel. If we take a simple rule (such as an alternate
“0” and “1” pattern for the so-called key), we are able to make
information public, as in other works [10].

Another choice could be a uniform string of “1” (resp. “0”) for
the key, thus letting the topological part of the algorithm find the
admissible triangles to store the bits in (forbidden points man-
agement and admissibility criteria). This could translate into a
simple rule:always try to get out of the current triangle using
the first (resp. second) exit edge.

Moreover, when addinglead-in sequences [10], one could
choose to make them select different areas of the mesh so that
multiple public payloads are allowed from the same initial cell.
Such added sequences would turn into a table of content (TOC)
of the public information.

VIII. C ONCLUSION

We developed a new spatial steganographic scheme for 3-D
triangle meshes by dividing our approach into geometrical and
topological considerations. The main difference with previous
works [3], [10] is that these two issues are clearly separate from
each other. This allows fine parameterization of the algorithm
on both geometrical (order of the binary MEP) and topological
aspects (use of rules). Security was also improved (no topolog-
ical singularity is generated [3], and the retrieval process might
be private and not only public [10]) through the use of a key to
set up the stencil successive directions to follow.

This method is robust against translation, rotation, and scaling
but offers poor robustness when performing local mesh manipu-
lations like simplification or remeshing because it is triangle-re-
alization dependent. To address the issue of finding the initial
triangle, we proposed the use of a PCA to link the content of the
mesh to the payload itself.
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