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he familiar acronym FFT describes a set of algorithms Though engineers and scientists readily accept the basic 
that permit a Fast evaluation of the discrete Fourier principles and benefits of the FFT, even the prescribed imple- T Transform. Replacing the original sequence by a sum mentation rules, they often find prevailing mathematical jus- 

of shorter ones requires smaller transforms, thereby dramati- tifications difficult to swallow. 
cally reducing the number of computations. Within a few This article provides a visual interpretation of the Cooley- 
years of the FFT’s introduction [l], most of what could be Tukey family of FFT algorithms [l] in terms of the shifting 
said about it had been said, much of it in two special issues properties of the Fourier transform, which equate shifts in one 
of IEEE Transactions [2,3], distilled for wider appeal in ZEEE domain to proportional rotations in the alternative domain. 
Spectrum [4]. This approach was proposed in an appendix to Chapter 6 of 
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[ 5 ] ,  focusing on the radix-2 decimation-in-time algorithm. It 
is revised here and extended to other members of the Cooley- 
Tukey family, to cover decimations in time and in frequency 
and a choice of radices. 

We first introduce the discrete Fourier transform, its shift- 
ing properties and the 3-dimensional graphics needed for 
complex functions. 

Discrete Fourier Transform 

The discrete Fourier transform is the link between the time 

of a signal that is discrete and periodic in both the time 
variable nT and the frequency variable kw. The relationship 
is expressed succinctly by the Fourier pair 

where $d represents the discrete Fourier transform operator, 
and can be interpreted graphically, as illustrated for a typical 
pair in Fig. 1. 

The operations involved in the forward and inverse trans- 
representationflnr] and the frequency representation F [ k w ]  formations are expressed as finite sums of the form 

Time Domain Frequency Domain 

I 
1 .  Tlpical discrete Fourier Transform pair ( N  = 20). 
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Time domain 

2 .  Function with one single frequency component, a time domain exponential ( N  = 12) .  

N- 1 

k = 0 , 1 , 2  ,..., N-1 1 F [ k m ]  = C f [ n T  ] e-jkoonT 

f l = O  ( 1 )  

N- 1 

f [ n r ]  = T F[k00] ejkwonT n = 0, 1 , 2 ,  ..., N-1 

k = O  ( 2 )  

The parameters T and NT = TO represent the temporal sam- 
pling interval and temporal period, and these are inversely 
related to similar frequency domain parameters, namely the 
sampling interval WO = 27c/To, called the fundamental fre- 
quency, and the period os = 2x/T = N W ,  called the sampling 
frequency. 

Transform as sum of exponentials 

The above expressions effectively inter- 
pret each discrete component from one 
domain as a complex exponential in the 
alternative domain. The amplitude of the 
exponential is proportional to that of the 
component, while its period is inversely 
related to the component's distance from 
the origin. For instance, in Eq. 2 ,  a fre- 
quency domain sample F [ l w ] ,  having 
frequency w = loo, becomes a time do- 

main exponential TF[lax)] ejlwonT. The 
transform is the sum of the contributions 
from the N components of one period. 

These complex exponential functions 
can be interpreted as discrete versions of 
related continuous complex exponen- 
tials e", whose real and imaginary parts 
are given by the Euler equation 

8'9 = coscp + j sin cp (3)  

In Eqs. 1 and 2,  the argument cp is a 
product of the frequency and time vari- 
ables, cp = f k a n T ,  one of which, nT 
in Eq. 1 and k a  in Eq. 2,  is a fixed 
parameter of the exponential. We illus- 
trate this with some simple cases. 

Single frequency component 

Figure 2 shows a function whose fre- 
quency domain contains one single 
component F[oo] = 1, repeated peri- 
odically at intervals ws= Now. This 
component is real-valued, of unit mag- 
nitude, and, since k = 1, is located at the 
fundamental frequency w = 00. From 
Eq. 2 ,  the time domain representation 

of this frequency component is  the exponential  

f [ n v  = TeJOonT. 
To show all real and imaginary parts in context, we use 

three-dimensional graphics. If we think of the component 
F[%] as a vector, rotating in its complex plane with angular 
velocity +a and positive angles measured from the real axis 
towards the imaginary axis, then its succesive positions de- 
scribe the angles cp = w n T  of a circle in the frequency domain. 
Stringing out those successive vectors along the time axis, 
generates a right-handed helix representing the complex ex- 
ponential function. 

The dotted line linking the discrete vectors represents their 
continuous-time envelope3 (t) = T e'. Its projections on the 
vertical and horizontal planes, shown separately in the time 
domain of Fig. 2 ,  give the real and imaginary parts 
Re f ( t )  = T cos wotandIm f ( t )  = T sin at. Slicing theenve- 

Time domain Frequency domain 

I Ifo[nT]I 

3. Transforms of three single frequency components ( N  = 12). 
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Frequency domain 

Time Domain 

\ 
Imaginary plane koa 

4 .  Single time component, afiequency domain exponential (N = 12). 

lope and its projections with parallel planes, spaced at sam- 
pling intervals T ,  gives the discrete functionfinr] and its real 
and imaginary parts,  Re f [ n T ]  = Tcos wnT, and 
Im f[nir]  = T sin wnT,  shown bold in Fig. 2 .  

Note that one full revolution cp= 21c of the fundamental 
component F[co~]  generates one full period t = T 0 of the helix 
and its projections. If the frequency of the component is 
increased, the representative vector rotates faster, thus de- 
scribing a tighter helix in the time domain. This is shown in 
the progression of Fig. 3, where a single frequency component 
is located at o = 0, o = 00, and o = 200, respectively, with 
periodic repetitions at the sampling frequency, O, = Nm. The 
complex function of the time domain is shown both in three 
dimensions and in the more common magnitude-and-angle 
form. 

Single time component 

The above examples have dual 
counterparts in functions consist- 
ing of single, periodically re- 
peated, time components. One 
such component, f l T J  = 1, of unit 
magnitude located at the time t = 
Tis shown in Fig. 4. By Eq. 1, its 
discrete Fourier transform has the 

form F [ ~ W ] =  I/TO e-JkooT, 
where 1/T is a scaling factor and 
the complex exponential is of the 
form of Eq. 3, and cp = - k w T  is 
now a linear function of the fre- 
quency kw, with rate -T. 

In Fig.4, this effect is visual- 
ised by imaginingfiu as a vector 
rotating with angular velocity -T, 
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to describe a circle in the time domain and a left- 
handed helm in the frequency domain. The envelope 
is a continuous function P. (01 = e-JwT, with real 
and imaginary parts Re R(o) = l/To COSOT and 
Im R(w) = -UTo sinoT. Sliced with planes at mul- 
tiples of the fundamental frequency, 00, they repre- 
sent the discrete samples of F[k@].  

A component located at a higher multiple of T 
would describe a tighter helix. A progression with 
t= 0, t = T and t = 2T is illustrated in Fig. 5, where 
the complex function of the frequency domain is 
shown both in three dimensions, and in a magni- 
tude-and-phase representation. 

Shifting properties 

In Fig. 5, we can interpret the functionsfi[nT] and 
f 2 [ n u  as time-shifted versions offo[nu. Clearly, 
a shift of one time interval, T,  does not change the 

magnitude of the frequency representation, but adds the argu- 

ment cp = - k w T  of the exponential e -jkooT to the existing 
phase. 

When an arbitrary functionf [nT] t) F [km] is shifted in 
time, all the exponentials associated with individual time 
componentshavethesameamount ofphaseadded,and this 
addition extendstothecompletefunction,F[k~]. This is an 
effect of the time-shifting property of the discrete Fourier 
transform, expressed analytically as a frequency domain 
multiplication, 

Time domain Frequency domain 

I ko, 

Transforms of three single time components ( N  = 12).  
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c 

I 

6.  Transform of a function timeshifted by halfa period (N = 20). 

f Imw 

--c 

Re w 

I 

7. Roots of unity wi = eik2’IN. 

To quantify this relationship, we observe in Fig. 5 that one 
full backward tum cpl[w,] = -2n of the sampling frequency 
component F[wJ corresponds to a rotation c p l [ ~ ]  = -2n/N of 
the fundamental component F[oo] ,  and shifts the time func- 
tionfinr] by one sampling interval, T.  Conversely, one full 
turn of the fundamental F[%] would correspond to N turns of 
F[wJ and shiftAnn by one time period, TO = NT. An arbitrary 
time shift, mT,  involves mlN turns of the fundamental and m 
tums of F[w,]. 

By analogy, a shift of the frequency representation 
F[k@]  is govemed by the frequency-shifting property of the 
discrete Fourier transform, 

The sequence of Fig. 3 is an example involving a single 
frequency component. 

Shifting a function by half its period is relevant to radix-2 
algorithms. Take for instance the functionf [nu * F[koo] of 
Fig. 1 and rotate the fundamental frequency component 
F[m] half a tum and all other components a proportional 
number of half tums, as shown in Fig. 6. This operation is 

translated to the time domain as a shift o f f lnu  
by half its period, TO = NT. 

Simplified notation 

To simplify expressions, it is customary to nor- 
malize the time-sampling interval to T = 1, giving 
a temporal period To = N ,  sampling frequency 
os = 2x and fundamental frequency oo = 2xfN. 

Next, the exponential core, eJwT, is given the 

notation eJWT = eJ2’IN = W N  . It represents the 
principal Nth root of unity (Fig. 7), whose N 

powers w!&, Wh, wh, ..., d-’ form the set of N 
distinct roots of unity. Any higher power, as well 
as negative powers, coincide with one of the 
distinct roots. For even N ,  the relationship 

WR”~ = -w: holds, and will be used later to 
simplify the radix-2 decimation-in-time algo- 
rithm. 

Finally, if oh is dropped from the notation 
F[kwo], Eqs. 1 and 2 can be written more com- 
pactly as the pair 

N- 1 N- 1 
*N 1 

k=o IF0 (6) 
f [nl = F[kId# * F[kI = C f  [n1w7Tk 

where the subscript N of the Fourier operator 
specifies the length of the transform. We u;e this 
notation in the remaining graphics, highlighting 
samples included in the sums by bolder lines. 

The economics of FFT algorithms 

To compute one value of Eq. 6 involves the addition of N 
complex terms, each containing a multiplication. A complete 
N-point transform thus involves a number of complex opera- 
tions proportional to N2. Halving the size N reduces the 
number of operations to one quarter. 

The FFT algorithms exploit this quadratic law. If N is 
composite, being the product of smaller factors, such as 
N = N I  N2, one domain of the original sequence is the sum of 
NI interleaved sequences, each of length N2. Such separation 
is called decimation in the FFT literature, and the factor N I  
determines the radix of the algorithm. We start with an easy 
case where the radix is 2 and decimation takes place in 
frequency. 

Radix-2 Decimation -in -Frequency 

Given a discrete functionf[n] t , F [ k ]  whose length N is an 
even number, we interpret the frequency representation F[k]  
as a sum of two sequences, F[kI =Fo[kl  + Fi[kl, where 
Fork] extracts the even-numbered and FJ [k] the odd-num- 
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3. Separating F[k] into even- and odd-numbered functions Fo[k] 
and FiIkl 

1 I I I 

1 '  f I f 

Computing ~.~ulues of Fo[k] with half-length transform. 

bered samples of F [ k ] ,  suitably interleaved with zeros, as 
shown in the frequency domain of the lower half of Fig.8. 

To obtain the corresponding time representations, we first 
form an auxiliary function 7 [ n ]  tj F[k] ,  by inverting all 
odd-numbered samples of F [k ]  (second row, Fig.8). But this 
represents a half-period time-shift offin], as shown earlier in 
Fig. 6, so thatJ[n] =f[nkN/2], where the f sign shows 
indifference towards left-shifting or right-shifting a periodic 
function by half a period. 

The function Fo[k] is now seen as the semi-sum of F[k]  and 
F [ k ] ,  while F l [ k ]  is their semi-difference. More to the point, 
the same sums performed in the time domain yield their 
transforms fo[n] and f l [ n ]  (Fig. 8). 

Re?,[m] ' " 
t 

0. Computing values of Fllk]  with half-length transform. 

Even-numbered and odd-numbered samples 

Since the odd-numbered samples of the sequence Fo[k] are 
zero-valued and the period offo[n] is effectively of length N/2, 
we can obtain the even-numbered values of the original 
function F[k] by taking the half-length discrete Fourier trans- 
form ! 3 ~ / 2  of the equivalent half-length function 
fo[m] w ko[O[,], shown in Fig. 9, where the change of variables 
reflects the change of fundamental frequency and effective 
time period. 

If only the same could be said of F l [ k ] ,  the full N-point 
discrete Fourier transform of the original function f in]  could 
be obtained from two N/2-point transforms, thereby halving 
the overall number of computations. But the non-zero sam- 
ples of Fl[k] fall half-way between the sampling points of the 
half-length transform %,V,?, while the effective period of 
fi[n] remains at full length, N. 

However, we can still use the half-length transform, if we 
first shift the whole function F l [ k ] ,  including its envelope, one 
frequency-sampling interval to the left. By the frequency- 
shifting property, Eq. 5, this involves rotating the time sam- 
plesfi[n], in proportion to their position IZ, as shown in the 
time domain of Fig. 10. We find that the component fi[N 
takes one full tum, whilefi[N/2] takes a half tum, with the 
result that the function fi[n] with period N, becomes the 
function $[m] whose period is half that length. The half- 
length transform of $[m] now provides the odd-numbered 
samples of the original transform, F ( k )  . 

Decimation stage 

We showed ear l ier  that the sum 
fo[n] + f i [n]  =fin] w Fo[k] + Fi[k]  = F[k]  reconstructs both 
domains of the original function (Fig.8), and this brings 
together our interpretation of the radix-2 decimation-in-fre- 
quency algorithm. The even-numbered samples of F [k ]  come 
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~2 f[m] - YZ f[m+?] = f,[m] x w: = fSm1 F,[I] = F[21+1] 

‘1. AIgebraic operations inio/ved in one decimation stage ( N  = 8). 

12. Decimation-in-frequency “butterfly” 

from Fo [2I] = fio[I], while its odd-numbered samples are 
taken from Fi [2I+ 11 = f i ~  [ I ] .  

The algebraic operations involved in one decimation stage 
are shown in full in Fig. 11, for the case N = 8. All the 
intermediate sequences, shown boxed, are of length N/2. It is 
customary to combine the semi-sum and semi-difference of 
one related pair of samples into a diagram called ‘butterfly’ 
in the FFT literature (Fig. 12), where the associated multiplier 
w 7  is called their ‘twiddle factor.’ Using such representation 
for each of the N/2 pairs, a full decimation stage can be 

expressed succinctly, as shown in the diagram of 
Fig. 13. Note that the outputs&[n] and$[n] (n = 
0, 1 ,..., N/2 -1) from the decimation stage can be 
interpreted as half-length time sequences whose 
discrete Fourier transforms, however obtained, 
provide the even and odd samples, respectively, 
of F [ k ] .  One could think of the decimation stage 
as merely conditioning the time sequencefin] for 
a later transformation. 

Rad ix-2 a lgorit h m 

When the composite number N is a power of 2, 
N = 2‘, and all intermediate output sequences, of 
the fom$[m], are of a length divisible by 2. The 
decimation process can then be recursively ap- 
plied to subsequent stages, each with its own 
even and odd samples, leading to the well known 
radix-2 decimation-in-frequency algorithm. The 
particular case N = 2 = 8, which has r = 3 stages, 
is illustrated in Fig. 14. 

As a consequence of repeatedly interleaving 
the even and odd samples of each decimation 
stage, the output samples F[k]  emerge in an order 
that is not the natural order 0, 1, ..., N-1 of the 
input. But the disorder is rigidly structured and 
easily compensated by so-called ‘bit-reversal’ 
algorithms found in the literature. 

3 

The scaling factors halving the inputs need not appear at 
every decimation stage. They represent each stage’s contri- 
bution to the overall scaling factor 1/N of Eq. 6 and can be 
collected, to be applied only once, either to the input sequence 
f i n ]  or the output sequence F[k]  of the algorithm. In Fig. 14, 
the overall scaling factors 1/N are introduced when re-order- 
ing the outputs F [ k ] .  Having thus justified the FFT procedure, 
it is nevertheless remarkable that a few sample rearrange- 
ments, seemingly postponing the transformation, acting to- 
gether should achieve that transformation. 

Radix-2 stage Half-length transforms Stage 1 Stage 2 Stage 3 Shuffle & Scale 

3. Decimation-in-frequency stage ( N  = 8). 14. Radi.u-2 decimation-infrequency algorithm (N = 8). 
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I flnl 1 Flkl 
1, 

N k  

I I I I 
5. Decimation-in-time, separation of f f n ]  into even- and odd- 

numbered functions fofn] and f i [n] .  

-.- I 

5. Half-length transform of even-numbered function fofn] .  

Radix-2 Decimation-in-Time 

Symmetries of the Fourier transform make it almost inevita- 
ble that the dual counterparts of the arguments put forward in 
the preceding section should lead to the decimation-in-time 
algorithm. To stress transform dualities, we use a new func- 
tionfln] tj F[k] (top row of Fig. 15), obtained by exchanging 
the domains of the corresponding function of Fig.8. For time 
- domain decimation we again form an auxiliary function 
f[n] ++ F [k], this time inverting the odd samples offln], or, 

equivalently, multiplying by factors eJnx (second row of Fig. 
15). From the frequency-shifting property, Eq. 5, this repre- 
sents a half-period shift of F[k]. 

Appropriate semi-sums and semi-differences yield the 
functionsfo[n] tj Fo[k] and f i[n]  t) Fl[k]  of Fig. 15, which 
contain, respectively, the even- and odd-numbered samples 
offln]. Interleaved in time, the latter reconstruct both domains 
of the original function. 

Half-length transforms 

All non-zero samples of fo[n] are even-numbered and the 
effective period of Fo[k] is of length N/2 (top row of Fig. 16), 
so that this function is well conditioned for half-length trans- 
formation (middle row of Fig. 16). The resulting sequence 
po[d ,  of lengthN/2, only needs duplicating (lower half of Fig. 
16), to give the contribution offo[n] to the original N-point 
transform, F [ k ] .  

The odd-numbered function fln] is ill-conditioned and 
must first be nudged one time-sampling interval to the left 
(upper half of Fig. 17). In terms of the time-shifting property, 
Eq. 4, this operation involves rotating its frequency compo- 
nents F l [ k ]  by multiples k of the angle (PN = 2WN; that is, 
multiplying each component by the kIh power of wN = eP". 

After taking the half-length transform, the results can be 
restored to their original positions by back-shifting the time 
domain one sampling interval to the right, as indicated in the 
time domain of the lower half of Fig. 17. In the frequency 
domain, this would involve duplicating the N/2-point se- 
quence pl[l], thus assembling one full N-point period, and 
then undoing the earlier rotations by multiplying by corre- 
sponding negative powers of wN. But, recalling the property, 
w$"' = half the above multiplications are redundant, as 
the replication scheme shown in the lower half of Fig. 17 
yields the full contribution offi[n] to the original transform 
F[kI. 

Decimation stage and radix-2 algorithm 

To build up the decimation-in-time algorithm, we need to 
change our strategy. Thus we now start with the final decima- 
tion stage and back-propagate the arguments towards the 
input stage. Figures 15 to 17 justify the use of half-length 
transforms, but for actual implementation we only require the 
final replication schemes, highlighted in the lower right of 
Figs. 16 & 17. They represent the two halves of the well 
known decimation-in-time 'butterfly,' as shown in Fig. 18, 

where the multiplier w i  represents the applicable 'twiddle 
factor.' 

A complete radix-2 decimation-in-time algorithm (N = 8) 
is shown in Fig. 19. The right-hand box encloses the final 
decimation stage, whose inputs are two half-length sequences 
p ~ [ l ]  and PI[/]. But these are the outputs of the preceding 
decimation stage, which had similar quarter-length sequences 
as the inputs. The recursive process eventually leads to the 
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i f , [n+l l  I 

7. Odd-numbered function f i[n]  and half-length transform. 

18. Decimation-in-time "butte f l y " .  

Shuffle & scale Stage 1 Stage 2 Stage 3 

9. Radix-2 decimation-in-time algorithm. 

first stage, whose inputs are unit-length sequences repre- 
senting individual samples offln]. 

Due to repeated separation into even- and 
odd-numbered samples, the functionfln] must be 
shuffled before the first stage, as shown on the 
left side of Fig. 19. Also, since each separation 
involved semi-sums and semi-differences of 
samples, either the input or the output functions 
must be scaled by UN. 

Other Radices 

The algorithms examined so far assume that the 
composite length N contains the factor 2. But the 
arguments are easily extended to other factors 
that are not necessarily multiples of 2. For brev- 
ity, we merely outline the essential concepts un- 
derlying radix-3 and radix-4 algorithms when 
decimation is in frequency. Other cases can be 
developed by analogy. 

Recall the cases of radix-2 decimation, where 
we extracted even-numbered and odd-numbered 
samples by adding and subtracting an auxiliary 
function A n ]  H F[k], where subtraction repre- 
sents addition of the negated function. Negation 
means scaling by the real factor a = -1 = eJ'. 
Interpreted as a complex number operation, it is 
equivalent to rotating both domains of the func- 
tion, each in its own complex plane, by the same 
angle 8 = n. 

Sequences with other radices can be similarly 
extracted with the aid of complex scaling factors of the form 
a = de, of unit magnitude and argument 8 = 2n/radix. Since 
the Fourier transform is a linear operator, such scaling merely 
rotates both domains of a function by the same angle, 8. An 
example relevant to radix-3 decimation is given in Fig. 20, 
where the scaling factors are powers of a = 

Radix3 decimation stage 

To frequency-decimate a functionfln] e, F [ k ] ,  whose period 
N is divisible by 3, we need to separate the original function 
F[k]  into three functions Fo[k], F1 [ k ] ,  F2[k] ,  each of effective 
length N/3, containing the samples (0, 3, 6, ..., N-3), (1,4,7,  
..., N-2) and (2,5,8, ..., N-l), respectively (look ahead to the 
right half of Fig. 22). 

To visualize the corresponding time domain repre- 
sentations, we proceed as in the~adix-2 case, but using two 
auxiliary functions, F[k] and F, obtained by shifting the 
original time representation An] by N/3 and 2NI3 samples, 
respectively (Fig. 21). This is equivalent to rotating the fun- 
damental frequency component F [  11 by angles 8 = -2n/3 and 
8 = 4x13 = +2n/3, respectively, with proportional rotations 
of all other components of F [ k ] .  

The function Fo[k] i s  now simply the sum 
Fo[k] = ( F [ k ]  + F [ k ]  +fik])/3 (top row of Fig. 22), with a 
corresponding summation in the time domain. To obtain 
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I k  
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k 

20. Scaling a function by powers of a = d', cp = 2x13. 

. L 1 

1 

21. Auxiliaiy functions for radix-3 decimation in Pequency (N = 21). 

F,[k] and its transformfi[n] , we first rotate both 
domains of the function >n]tjF[k] by the angle 
0 = 2~13,  as shown earlier in Fig. 20, and both 
domains ofJln]tjF[k] by 8 = -2d3, to then add 
the frequency domains as 
F , [ k ]  = (F[k]  + e12n'3 F[k] + e-12"'3 fik])13, and 
similarly the time domains, with the results 
shown in the middle row of Fig. 22. 
- Similar counter-rotations of An] tj F[k]  and 
AnlHF[k l ,  and sums of the form 
F2[k] = ( F [ k ]  + e-J2rri3 F[k] + eJ2"/3~[k])/3, lead to 
the remaining function f2[n] H Fz[k] (bottom 
row of Fig. 22). The above operations resemble 
phasor additions in 3-phase electric networks. It 
is clear from the figure that, interleaved by addi- 
tion, the functions thus obtained reconstruct the 
original function as Fo[k]+FI[k]+F2[k] = F [ k ] ,  
with consistent results for the time domain. 

The functionfo[n] H Fo[k] is well conditioned 
for N/3-point Fourier transformation, while F I  [k ]  
andF2[k] mustfustbenudgedoneandtwosamples, 
respectively, to the left, with equivalent rotations of 
their time domains, as shown in Fig. 23. 

The process leading to the results of Fig. 23 
provides the basis for the radix-3 decimation-in- 
frequency algorithm of Fig. 24. The procedure is 
essentially the same as for radix-2, and is left to 
the reader. The extended 'butterfly' processes the 
input samples in sets of 3, whereby a typical input 
set { f  [m], f [m+N/3], f [m+2Nl3] } gives rise to 
an intermediate output set &[\o[ml,$[ml,h[mll. 

- 

Radix-4 decimation stage 

By similar arguments, when N is divisible by 4, 
we form three auxiliary functions 

F[k], f ik]  and [k], which result from shifting 
An] by N/4, NI2 and 3N14 samples, respectively, 
as shown in Fig.25. Their purpose is to extract 
four interleaving sequences from F [k], whose 
indices 0, 1, 2. and 3 identify their first non-zero 
values, as shown in Fig. 26. 

With appropriate conditioning, these lead to 
four N/4-point Fourier transforms, each requiring 
1/16th the number of complex operations of the 
original N-point transform, and give rise to the 
algorithm of Fig. 27. 

The potential savings per stage are a factor of 
4, comparable to those of an equivalent pair of 
radix-2 stages. The multipliers within the ex- 
tended butterfly only take the values 1, j ,  - 1, or 
-j, attainable by simple exchanges involving real 
and imaginary parts, so that multiplication can be 
avoided. The subtle attraction of radix-4 decima- 
tion is that its larger size implies a smaller number 

- - 
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22. Radix-3 decimation in frequency (N = 21). 

I 

I 

I 
23. Functions conditioned for NI3 point transform (N = 21). 

of decimation stages, hence a reduced number of multiplica- 
tions involving ‘twiddle factors’. 

Conclusions 

This article has provided basic and consistent interpretations 
of the Cooley-Tukey family of FlT algorithms. The develop- 
ments rely entirely on linearity and the shifting properties of 
the discrete Fourier transform. 

These algorithms apply to sequences whose length, N, is 
composite, such that N = NI N2. The first step is to separate 
one domain of the original sequence into N I  sequences, each 

Radix-3 stage %-length transforms 

4 .  Radix-3 decimation-in-frequency stage (N = 21). 

containing N2 equally spaced samples from the original se- 
quence, suitably padded with zeros. This process is called ‘deci- 
mation’, with NI the radix. We provided a sequence of examples 
of decimation-in-frequency, and one of decimation-in-time. 

In principle, the next step would involve short transforms of 
what are, in essence, sequences of length Nz. However, all but one 
of these sequences are ill-conditioned for such treatment, and need 
to be smed in the decimated domain by either 1, 2, or up to 
N I  - 1 samples, to move their first non-zero sample to the origin. 
We showed that such shifting winds up the complex functions of 
the transformed domain, thereby Creating NI identical cycles of 
length NINI within one original period of length N. All N I  
functions are thus made suitable for N2-point transformation. 

The above concepts need only be translated into algebraic 
operations or algorithmic flow charts. Depending on which 
domain is chosen for decimation, the algorithm is started from 
either the input stage or the output stage, to be extended 
forward or backward, with progressively shorter sequences, 
until the opposite end is reached. 

To simplify the graphics we used very simple real even-sym- 
metric functions for illustration. But the concepts are equally 
valid for arbitrary complex functions, where rotations in the 
complex plane represent additions to existing arguments. 

The most popular FFT algorithms are those whose length, N 
is a power r of the radix 2, that is, N = 2‘. Common implemen- 
tations usually have a number r of radix-2 stages, although the 
use of radix4 and radix-8 stages can sometimes be advanta- 
geous. Combining different radices widens the choice for the 
length N. Readers wishing to explore implementation aspects of 
various FIT algorithms, and to compare their relative advan- 
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5. Auxiliary functions for radix-4 decimation infrequency (N = 24). 
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1. Radix-4 decimation-in-frequency {N = 24). 

tages, are referred to Chapter 9 of [6], which also places the 
Cooley-Tukey family of algorithms into a wider FFT context. 

+ 

+ 
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Aadlx-4 stage %-length transforms 

7. Radis-4 decimation-in-frequency stage (N = 12). 

The arguments presented in this article were developed 
with the aid of 3-dimensional graphics, a natural way to 
visualise complex functions. Concepts that may appear intri- 
cate in algebraic notation can be grasped at a glance. This 
approach is developed much further in [ 5 ] ,  where it is used to 
derive the discrete Fourier transform, placing it in the wider 
context of the continuous Fourier transform and the Laplace 
and z-transforms, to then present their applications to continu- 
ous and discrete signals and systems. 
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