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ABSTRACT 

The combination of a reflective photomask with the non-telecentric illumination and arc shaped slit of the EUV 
scanner introduces what are known as shadowing effects. The compensation of these effects requires proper 
biasing of the photomask to generate the intended image on the wafer. Thus, the physical pattern on the mask 
ends up being noticeably different from the desired pattern to be written on the wafer.  This difference has a 
strong dependence on both the illumination settings and the features to be printed. In this work, the impact of 
shadowing effects from line and space patterns with a nominal CD of 16nm at wafer was investigated with 
particular focus on the influence of pattern orientation and pitch, illumination pupil shape and fill (coherence) 
and absorber height. CD, best focus shift and contrast at best focus are utilized in detail in order to study the 
impact of  the shadowing effects. 
All the simulation cases presented employ a complete scanner arc emulation, i.e. describe the impact of the 
azimuthal angle component of the illumination arc as in the NXE:3300 scanner and as it can be emulated by the 
AIMS™ EUV. 
 
KEYWORDS:  EUV photomask, shadowing effect, EUV scanner, illumination slit, compensational repair, 
EUV absorber, photomask bias, defect inspection, AIMSTM EUV. 
 

 
INTRODUCTION 

 
The technological step required by the introduction of EUV lithography into high volume manufacturing can be 
considered the most complex within the development of photolithography over the last several decades. Waiting 
for the whole infrastructure to be available and make EUV a reality, some of the most challenging characteristics 
can be modelled and studied with the support of simulation platforms in order to achieve the best understanding 
of the EUV lithographic process and the interplay between the several parameters which describe it. One of the 
most critical of these aspects is related to the manufacturability of the EUV photomasks, a complex reflective 
optical component, whose reflectivity is based on the in-phase addition of reflections coming from each 
boundary of a Molybdenum (Mo) Silicon (Si) multi-layer (ML) structure.  
 
The fact that the EUV photomask is a reflective optical component, as are all optics in an EUV system, requires 
the illumination of the features printed on the mask to be non-telecentric. In this scheme EUV illumination of the 
photomask is not normally incident onto the reticle, but has an offset inclination described by a chief ray angle 
(CRA) of 6 degrees. Depending on the shape of the pupil and upon its coherence, the mask is illuminated with a 
variety of angles distributed around the CRA. The reason behind this oblique illumination is that the incident ray 
bundle must be physically decoupled from the one which is reflected from the mask and collected into the 
projection optics system.  
 
Oblique illumination of three-dimensional mask structures introduces a new aspect with respect to the EUV 
lithographic process, known as shadowing effects. The overall effect produced by the absorber onto the mask 
reflective structure and back to the projection optics is a complex combination of angular illumination efficiency 
and mask reflectivity, meaning that the illumination conditions strongly influence the final printed results. To 
make the picture even more complex,  exposure of EUV photomasks in a high volume manufacturing (HVM) 
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scanning system (i.e. ASML NXE:3300) is performed through an arc shaped slit which spans a linear size 
perpendicular to the scanning direction of approximately 100 mm, in which the pupil is kept on axis with the 
scanning direction throughout the whole illumination field. The three-dimensional direction of an EUV photon 
can therefore be described by two angles: the CRA θ, which remains constant through the whole illumination 
domain, and the azimuthal angle φ, which can vary in the range ±18.6 degrees. Targeting the complete emulation 
of the scanner imaging process, the AIMSTM EUV platform matches this sophisticated exposure scheme, 
although engineered to target a much smaller field1.  
The arc shaped illumination setup has to be taken into account during mask design. Clear and opaque features 
are illuminated with different sets of angles depending on their x coordinate on the photomask; as a result, the 
aerial image of the same structure varies across the x direction. Heavy optical proximity corrections (OPC) must 
be studied and applied to the mask structures in order to print at target across the whole exposure field; as a 
consequence, the physical pattern on the mask ends up being noticeably different from the desired pattern to be 
written on the wafer. This is an application where AIMSTM EUV will play a leading role as actinic review of 
EUV photomasks is able to thoroughly determine the overall printing behaviour of biased EUV photomasks.  
 
In this work, the printing process of EUV scanners is discussed with respect to shadowing effects. Special 
attention is devoted to the impact that the arc shaped illumination has on the shadows produced by the EUV 
photomask. The structures which have been investigated are lines and spaces with vertical (V), horizontal (H) 
and 45 degrees inclined orientation, with a 16 nm (at wafer level) minimum half pitch; this can be considered as 
the 7 nm node, which is also the target for AIMSTM EUV. The main goal of this work is to highlight the 
complexity of EUV imaging in terms of mask biasing; more than for DUV lithography, the physical size of the 
structures on the EUV photomask will differ from a 4x replica of the wafer target. Actinic aerial image 
inspection will therefore assume a key role within the photomask production line.  
The following sections include the study of the shadowing effects and their dependence on structure pitch, pupil 
shape and coherence and absorber height. In order to best simulate the imaging process, the shift of the best focal 
position and contrast through focus are taken into account in order to emulate the workflow as employed in 
AIMSTM EUV.  

 
 

DESCRIPTION OF SHADOWS  
 
Figure 1 presents a conceptual diagram of the shadowing effects introduced by non-telecentric illumination of 
EUV photomasks. The reflective portion of the EUV reticle is composed of ~40 bilayers of Mo-Si  which 
provide a peak reflectivity at 13.5 nm wavelength of about 69%2,3.  
Each boundary between two subsequent layers contributes only to a small portion (~ 0.1-0.3%) of the whole 
reflectivity of the ML. This means that two EUV photons with the same energy and incidence angle can be 
reflected at different locations within the ML structure, one being reflected and channelled towards the 
projection optics, the other being absorbed by the back side of the absorbing structures on its way back out of the 
mask surface (see Figure 1). This simplified visualization of the reflection process gives a basic idea of the high 
complexity of the EUV reflectivity process.  
Additionally, due to the finite area of the pupil, the mask is illuminated with a distribution of angles centered 
around the CRA, all of which contribute in shaping the aerial image or the wafer print. EUV ML reflectivity is 
strongly dependent on the incident angle of the photon, and therefore different regions within the same pupil 
may give a different contribution to the imaging performance4. This short introduction is necessary to justify the 
use of simulation platforms as the only investigation method of shadowing effects and their effect on scanner 
imaging performance, before actinic imaging with AIMSTM EUV will be available. 
 
In order to give a quantitative description of the difference between a geometric calculation and an actual 
simulation result, the right panel of Figure 1 presents the formulas for the shadows which are produced on a 
EUV photomask: this quantity depends on the absorber height, the penetration depth into the ML structure 
(which together with the absorber height gives the effective height heff to consider for the shadow calculation), 
the CRA, and the magnification of the projection system. In order to obtain the results shown in the left panel of 
Figure 2, azimuth angles of 0±18.6 degrees are considered for H lines, 90±18.6 deg for V lines and 45±18.6  deg 
for 45 deg oblique lines.  
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A further issue to be addressed in the context of the characterization of the shadowing effects dependence on the 
structure pitch is the impact of the pitch driven defocus correction (see left panel of Figure 3) on the measured 
CD across the field. For this purpose, the CD values at the edge of the slit for V, H and 45 deg oriented lines and 
spaces with 128 nm pitch (1:7, the value which nominally has the largest focus shift for all three orientations) 
have been compared before and after correction for the best focal plane shift. The difference between these two 
values, which quantifies the way the azimuthal angle component impacts the shadowing effects, is measured to 
be within 0.1% for all test cases.  
Based on the previous results, it can be concluded that the impact of the azimuthal angle of the illumination on 
the shadowing effects with respect to pitch variation is a minor one. 
The results presented in this and following sections are based on simulations which consider only a few of the 
several parameters which determine the entire lithographic process. They serve as guidelines to achieve 
understanding of the interplay of the different parameters within the EUV lithographic process, as well as to gain 
the confidence that shadowing effects can be tightly predicted and controlled with currently available 
technologies. Other works have addressed the best focus shift dependence on other process parameters; for 
example, the displacement of the best focal plane through pitch also has a strong dependence on the illumination 
settings7 , of which this section considered only one setup configuration. 

 
 

SHADOWS DEPENDENCE ON ILLUMINATION PUPIL 
 

The third parameter considered is the pupil shape and its coherence. The pupil used to illuminate the structures 
on the photomask has an impact on the shadows produced by the lithography process. The way shadows change 
depending on the azimuthal angle of the EUV illumination is also dependent on the pupil shape and coherence, 
and must be carefully investigated for the final modelling of the structure across the whole photomask. 
 
In this section, a description of the dependence of the shadows introduced by the arc shaped illumination on the 
pupil is given. In these simulations of 16 nm line and space patterns with a 32 nm pitch (wafer level), an 
absorber height of 50 nm has been considered. Annular and disar pupils are employed with a variable coherence, 
which spans the range 0.2-0.9 in steps of 0.1 while keeping the outer radius of 0.9 constant. Fundamental 
quantities like best focus shift in response to mask and system parameter change and contrast at best focus are 
considered as input and control parameters of the simulations. 
 
Values for the best focus shift and contrast at best focus were calculated as in the last section and they are shown 
in Figure 5, in which the disar and annular pupil cases are respectively shown in the left and right panels. The 
blue data points in each plot show the shift of the best focal plane (at mask level) as a function of the inner sigma 
used for the illumination pupil. Ranging from the most to the least coherent illumination settings, the shift of the 
best focal plane for both pupil shapes can be as high as 50 nm. Once the displacement of the best focal plane is 
taken into account the imaging performance is also improved; contrast enhancement is measured to be on the 
order of 14% for the disar pupil and 7% for the annular pupil. As already stated for the pitch section, the 
measurements of the best focus shift have to be considered with respect to one another and not as an absolute 
estimation of the best focal plane vertical position. 
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Fourth, Coherence has an opposite impact on the shadowing effects for the two pupil shapes employed in this 
example. A smaller coherence (larger σin) produces a larger shadow at the edge of the slit for the disar pupil, 
whereas for the annular pupil the effect is reversed. Although the shadow is larger for a disar pupil with σin =0.8, 
the image contrast is the highest registered (94%). 
 
The dependence of the shadowing effects across the azimuthal angle illumination due to the pupil shape and 
coherence is  a small effect with the largest differences calculated on the order of 1.2 nm at mask level. It is 
however important to describe the dependence of shadowing effects on the illumination setup in order to 
correctly bias a photomask across its whole patterned surface, in this way maximizing the process window.  
The results from this section have also been considered as base to select proper illumination settings for the 
study of the impact on shadowing effects across the illumination field of quantity such as the structure pitch 
(previous section) and the absorber height (next section). Disar and annular pupils with a σ=0.6-0.9 have been 
selected for this purposes because they provide average shadow effects and good contrast for the 1:1 pitch case 
with 50 nm absorber height.  
 
 

SHADOW DEPENDENCE ON ABSORBER HEIGHT 
 
The last parameter that has been considered within this work is the height of the absorber. The goal of this 
section is to describe the impact of the azimuthal angle component of the CRA on the imaging of L/S structures 
in relation to its dependence on the absorber height. Two application relevant topics have been considered: the 
impact of a clear absorber repair (deposition) with an incorrect height and the overlay error introduced by a non-
uniform absorber height deposition.  
 
The CD printed at a certain X location (or azimuthal angle φ) CDφ can be written as the target CD plus a 
structure and process dependent shadow ΔCDφ. In formulas: 
 

φφ CDCDCD ett Δ+= arg , 
 
where the φ index identifies a certain azimuthal angle within the range ±18.6 deg, and the factor ΔCDφ represents 
the shadow produced on the aerial image. This can also be written in an explicit form as 
 

φθφ sin)(tan2 ××=Δ MhCD eff , 
 
with θ=6 deg CRA and M=4 magnification factor. The quantity heff can be thought as an effective height which 
takes into account both the height of the absorber on top of the photomask, and the penetration depth of the EUV 
photons within the multi-layer reflective structure of the photomask itself. Whereas a linear relation exists 
between heff and the absorber height, the relation between heff and the penetration depth cannot be easily put into 
a geometric formula, due to the complex nature of EUV reflectivity. The dependence of the CD variation in 
response to an absorber height variation has been investigated in the literature8. Rigorous simulations show an 
increase (decrease) of the measured CD at wafer level for increasing (decreasing) absorber thickness, with 
embedded oscillations showing a period of about half the exposure wavelength9. This effect has also been 
confirmed experimentally via wafer print studies10. As a conclusion, a direct proportionality between CD and 
absorber thickness variation can be expected, which will affect the overall dependence of the shadowing effects 
on the absorber height across the scanner illumination field. 
The results of simulations run for the two different pupil shapes are shown in Figure 7. As reported in Reference 
7, the absorber height also has an impact on the best focal plane: different height values are focused at different 
vertical planes. This has been taken into account within the simulation setup, with the best focus shift being 
calculated from the contrast vs. defocus curves as explained in the previous sections. Typical values are within 
25 nm at reticle level.   
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From the plot it is noticeable that H lines have the highest ΔCD at the center, and this quantity diminishes 
towards the edge of the slit; the impact of a repair with a height deviating from the nominal on H lines is 
therefore higher in the center of the imaging field than at the edges. This property can be expected, since it has 
already been shown that H lines need the highest compensation for the azimuthal bias at φ=0 deg. For V lines 
this effect is the opposite, whereas for the 45 deg lines the impact is variable across the entire field. In order to 
better quantify the process sensitivity to a non-nominal repair height, the repair number shall be introduced. This 
is a typical quantity used in the process of defect repair, defined as CD variation per nm absorber height 
deposited (or etched). For the test cases presented in Figure 9, this number can be derived by dividing the ΔCD 
values by the 30 nm difference in absorber height (for nominal and repair). Throughout the calculations, a linear 
trend of the ΔCD vs absorber height has been assumed; as it has been shown in Figure 8, this assumption can be 
thought as a valid first order approximation. Repair numbers for the over and under deposition cases described 
above are reported in the right panel of Figure 9. Interestingly, it is possible to notice that the repair number is 
different for over and under deposition cases.  
The maximum absorber height deviation which would still provide an acceptable repair can be found dividing 
the ΔCD specification of 0.8 nm (at wafer level) by the correspondent repair number shown in the Table. As a 
result for the 16 nm half-pitch node, V lines at the center of the illumination field can be repaired with a ≤ 20 nm 
over-deposition or ≤ 26nm under-deposition processes. For H lines the process must be more tightly controlled: a 
repair with 8nm over-deposition or 10 nm under-deposition is the limit for printing within the target CD of 16 
nm ± 5%.  
Some conclusions can be drawn on the basis of the findings described above. First,  H lines are the most 
sensitive to the height of the absorber deposition or etch within a repair process, contributing to higher height 
control requirements for this orientation.  Second, the repair numbers for the over and under deposition cases are 
different from each other. Third, a height control of ±8 nm, as well as all the other values reported in this work, 
is well within the MeRiT® capabilities of repairing absorber materials. The absorber height control capabilities 
by the current MeRiT® platform is within nm precision13,14, and therefore the tight control of the repair process 
is not an issue with respect to shadowing effects and bias.  
 
One more aspect related to the impact of the absorber height onto the imaging performance relates to the overlay 
or image placement error. With the simulations it is possible to measure the shift of the central coordinate of the 
aerial image in response to a variation in the height of the absorber. This is shown in Figure 10, where the aerial 
images of H and 45 deg oriented lines with a 1:1 duty cycle and illuminated by a disar pupil with σ=0.6-0.9 are 
presented. A first glance at the plots shows that the center of the images, identified as the point of lowest 
intensity in the different colored curves, is subject to a drift towards X values lower than 16 nm (the center of the 
simulation domain) as the absorber thickness is increased changed. The behavior of this shift is displayed in the 
insets within each panel of Figure 10, where the center of the aerial image for H (left panel) and 45 deg (right 
panel) lines is plotted against the absorber height. V lines are not shown because no shift has been measured for 
this orientation in response to an absorber height variation. 
 
The shift of the aerial image center has been measured for both H and 45 deg oriented lines towards lower X 
coordinates. A good linear trend between this shift and the absorber height was found and quantified by R2 
values higher than 0.9 for both cases. Between the absorber thickness values of 40 and 70 nm, the largest shift 
was measured for H lines to be 1.3 nm; the highest gradient measured within this trend is about 0.5 nm for 10 nm 
variation in the height of the absorber. According to the 2013 release of the international technology roadmap for 
semiconductor (ITRS)15, overlay specification for production EUV photomasks will be 3% of the pitch size. 
Considering the structures which have been simulated in this last section, a 1:1 lines and space pattern with CD 
of 16 nm is described by a pitch of 64 nm. Therefore, overlay specifications must be within 2 nm. A 0.5 nm 
overlay error (at wafer level) introduced by a 10 nm absorber height variation from nominal can absorb up to 
100% of the 2 nm (at mask level) overlay specification, i.e. the entire budget for overlay errors. This argument 
shows the fundamental importance of height control within the EUV photomask production and repair process. 
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