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Abstract
We present a type and effect system for flow analysis that makes
essential use of higher-ranked polymorphism. We show that,
for higher-order functions, the expressiveness of higher-ranked
types enables us to improve on the precision of conventional let-
polymorphic analyses. Modularity and decidability of the analysis
are guaranteed by making the analysis of each program parametric
in the analyses of its inputs; in particular, we have that higher-order
functions give rise to higher-order operations on effects. As flow
typing is archetypical to a whole class of type and effect systems,
our approach can be used to boost the precision of a wide range of
type-based program analyses for higher-order languages.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis; F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Functional con-
structs, Type structure

General Terms Languages, Theory

Keywords type-based program analysis, higher-ranked polymor-
phism

1. Introduction
The use of polymorphic types in type and effect systems for static
program analysis is usually limited to ML-style let-polymorphism.
This restriction precludes the formal parameters of higher-order
functions from being analysed polyvariantly rather than monovari-
antly. In this paper, we consider a type and effect system that allows
analyses to be expressed in terms of higher-ranked polymorphic
types and argue how the resulting polyvariant analyses are more
powerful than the analyses obtained from let-polymorphic systems.

Specifically, our contributions are the following:

• We present an annotated type and effect system for flow anal-
ysis that makes essential use of higher-ranked polymorphism
in both annotations and effects (Section 5). The resulting anal-
ysis is polyvariant in its treatment of lambda-bound variables,
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applicable to all well-typed terms in an explicitly typed lambda-
calculus with Booleans and conditionals (Section 6.1), and
sound with respect to an instrumented, flow-tracking seman-
tics (Section 6.2).

• The main technical innovations of our system are its use of so-
called fully flexible types to maintain the modularity of the anal-
yses (Section 4.1) and its use of annotation and effect operators
to have the analyses of higher-order functions explicitly param-
eterised in the analyses of their arguments (Section 4.2).

• For all terms with fully flexibly typed free variables, our system
admits “best analyses” (Section 6.3), which can be obtained
by means of a strikingly straightforward inference algorithm
(Section 7).

We stress that flow typing is, in a sense, archetypical to a
whole class of type and effect systems; as a wide range of other
analyses, including binding-time analysis, strictness analysis, and
usage analysis, are known to be expressible as variations of type-
based control-flow analysis, we expect our approach to also apply
to most if not all of these analyses.

2. Motivation
Numerous static program analyses depend on information about the
flow of control in the program under analysis. Whereas for first-
order languages this information is directly available from the pro-
gram text, the situation for higher-order languages, in which func-
tions or procedures can be passed as arguments to other functions
or procedures, is considerably different; for these languages, one
has to deal with the dynamic dispatch problem. Consider, for exam-
ple, the following program fragment, written in some typed higher-
order functional language:

h : (bool→ bool)→ bool
h f = if f false then f true else false.

As the function parameter f can, at run-time, be bound to any
suitably typed function, it is not obvious to what code control
is transferred when the condition f false in the body of h is
evaluated.

To cope with the dynamic dispatch problem, several flow anal-
yses have been proposed. Of particular interest are flow analyses
that, in some way or another, take advantage of the structure that
is imposed on programs by a static typing discipline for the lan-
guage under analysis; such type-based analyses can typically be
more effective than analyses for dynamically typed languages or
analyses that ignore the well-typedness of analysed programs (Pals-
berg 2001). An important class of type-based analyses is then that
of so-called type and effect systems that extend the typing disci-
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plines of languages as to express properties beyond just plain data
types (Nielson and Nielson 1999).

For instance, to track the flow of Boolean values through a pro-
gram, we can decorate all occurrences of the Boolean constructors
false and true in a program with labels `1, `2, . . . , as in

h f = if f false`1 then f true`2 else false`3 ,

and adopt an extended type system that annotates the type bool of
Boolean values with sets of labels identifying the possible construc-
tion sites of these values. The Boolean identity function, id x = x,
then, for example, can have the type bool{`1,`2 } → bool{`1,`2 },
indicating that if its argument x is a Boolean constructed at any
of the sites labelled with `1 or `2, then so is its result. Assigning
the function id this type prepares it for being passed as an argu-
ment to the function h above, which can be of type (bool{`1,`2 }→
bool{`1,`2 }) → bool{`1,`2,`3 }. However, in general the assigned
type is too specific as id could be used in other contexts as well.
This is suggestive of annotating the argument and result types of id
with a larger set as to reflect all uses of id in the program, but this
is undesirable for at least two reasons. First, it requires the whole
program to be available as information is required about all possi-
ble uses of id and thus precludes the analysis from being modular.
Second, it renders the analysis of program fragments that directly
or indirectly use id rather imprecise as the larger set shows up for
every value that is obtained by applying id, irrespective of the ac-
tual argument supplied. This latter issue is known as the poisoning
problem (Wansbrough and Peyton Jones 1999). In general, poison-
ing can be reduced by making the analysis more polyvariant, that
is, allowing different uses of an identifier to be analysed indepen-
dently.

One way to make an analysis based on a type and effect system
both more modular and more polyvariant is by making use of
annotation polymorphism. For example, id can be assigned the
polymorphic type ∀β .boolβ → boolβ with β ranging over sets
of constructor labels. Indeed, this type can be derived from just the
definition of id and instantiated to a more specific type for each use
of id.

The use of polymorphism in type and effect systems is usually
limited to ML-style let-polymorphism (Damas and Milner 1982),
meaning that polymorphic types can only be assigned to identi-
fiers bound at top level or in local definitions. This seems like a
natural restriction as program analyses are almost always required
to be performed fully automatically and ML-style polymorphic
types allow for mechanically and modularly deriving “best anal-
yses”, which are then typically defined in terms of principal types,
whereas more expressive uses of polymorphism do not necessarily
admit such mechanisation.

To see why we may still want to consider less restrictive uses
of polymorphism, consider once more applying the function h
from the example above to the Boolean identity function id. In
a let-polymorphic type and effect system, h can be expected to
have a type much like ∀β .(bool{`1,`2 }→ boolβ )→ boolβ∪{`3 }.
The aforementioned polymorphic type of id is then instantiated to
bool{`1,`2 } → bool{`1,`2 } and instantiating the variable β in the
type of h then yields bool{`1,`2,`3 } as the type obtained for the
application h id. Note that this result is imprecise in the sense that
the Boolean constructed at the site labelled with `1 never flows to
the result of any invocation of h. This imprecision is caused by the
restriction that, in an ML-style type and effect system, the formal
parameter f of h has to be assigned a monomorphic type. Hence,
uses of f in the body of h are analysed monovariantly and subjected
to poisoning.

Now, if the type and effect system were to somehow allow the
parameter f of h to have a polymorphic type, we could have

h : (∀β .boolβ → boolβ )→ bool{`2,`3 }

with different choices for β for different uses of f in the body of
h allowing for a more polyvariant analysis. Here, we require h to
have a so-called rank-2 polymorphic type. In general, the rank of a
polymorphic type describes the maximum depth at which universal
quantifiers occur in contravariant positions (Kfoury and Tiuryn
1992).

As it is well-known that the higher-ranked fragment of the
polymorphic lambda-calculus does not admit principal types and
that type inference is undecidable for rank 3 and higher, it is not
immediately obvious that higher-ranked polymorphic types can be
of any practical use in type and effect systems for fully automatic
program analysis. However, here it is crucial that we only need to
consider types that are polymorphic in the annotations that decorate
types rather than in the types themselves. As it turns out, higher-
ranked annotation polymorphism does indeed provide a feasible
basis for attaining analyses that are fully polyvariant with respect
to the formal parameters of higher-order functions.1

The main challenge of incorporating higher-ranked polymor-
phic types in a type and effect system is then to take advantage
of their expressive power without compromising the modularity of
the analysis. For example, the rank-2 type for h that was proposed
above is too specific as it presumes that the function bound to the
parameter f will manifest identity-like behaviour, which in gen-
eral is obviously unacceptably restrictive. Below, we will rise to
the challenge and present a modular type and effect system with
higher-ranked polymorphic types that admits analyses for higher-
order functions like h that are adaptive enough for all appropriately
typed functions to be passed in as arguments, while still allowing
for the formal parameters of these higher-order functions to be anal-
ysed polyvariantly.

3. Preliminaries
Throughout this paper, we use, as the language under analysis, an
eagerly evaluated and simply typed Church-style lambda-calculus
with Booleans, conditionals, and general recursion.

Assuming an abstract set of program labels and a countable
infinite set of variable symbols,

` ∈ Lab labels
x ∈ Var variables,

terms in our language are constructed from variables, producers,
and consumers; that is, we have

t ∈ Tm terms
p ∈ Prod producers
c ∈ Cons consumers

with

t ::= x | p` | c`
p ::= false | true | λx : τ. t1
c ::= if t1 then t2 else t3 | t1 t2 | fix t1.

All producers and consumers are labelled. A producer is either
one of the Boolean constructors false and true or a lambda-
abstraction, while consumers subsume conditionals, function ap-
plications, and fixed points. As usual, function application asso-
ciates to the left and lambda-abstractions extend as far to the right
as possible. Each abstraction is annotated with the type of its formal
parameter, where types,

1 This approach is reminiscent of the use of polymorphic recursion in the
type-based binding-time analysis of Dussart et al. (1995): while polymor-
phic recursion in its full, untamed glory renders type inference undecidable,
its restriction to binding-time annotations has proven to allow for a very ex-
pressive yet workable analysis. See Section 4.3.
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Evaluation t ⇓F p`

p` ⇓{ } p`
[e-prod]

t1 ⇓F1 true
`p t2 ⇓F2 p`

(if t1 then t2 else t3)`c ⇓F1∪{(`c ,`p)}∪F2
p`

[e-if-true]

t1 ⇓F1 false
`p t3 ⇓F3 p`

(if t1 then t2 else t3)`c ⇓F1∪{(`c ,`p)}∪F3
p`

[e-if-false]

t1 ⇓F1 (λx : τ. t0)`p t2 ⇓F2 p2
`2 [x 7→ p2

`2 ]t0 ⇓F0 p`

(t1 t2)`c ⇓F1∪F2∪{(`c ,`p)}∪F0
p`

[e-app]

t1 ⇓F1 (λx : τ. t0)`p [x 7→ (fix t1)`c ]t0 ⇓F0 p`

(fix t1)`c ⇓F1∪{(`c ,`p)}∪F0
p`

[e-fix]

Figure 1. Instrumented natural semantics.

Typing Γ ` t : τ

Γ(x) = τ

Γ ` x : τ
[t-var]

Γ ` false` : bool
[t-false]

Γ ` true` : bool
[t-true]

Γ[x 7→ τ1 ] ` t1 : τ2

Γ ` (λx : τ1. t1)` : τ1→ τ2
[t-abs]

Γ ` t1 : bool Γ ` t2 : τ Γ ` t3 : τ

Γ ` (if t1 then t2 else t3)` : τ
[t-if ]

Γ ` t1 : τ2→ τ Γ ` t2 : τ2

Γ ` (t1 t2)` : τ
[t-app]

Γ ` t1 : τ → τ

Γ ` (fix t1)` : τ
[t-fix]

Figure 2. The underlying type system.

τ ∈ Ty types,

are given by

τ ::= bool | τ1→ τ2.

An instrumented natural semantics is given in Figure 1 as a set
of inference rules for deriving judgements of the form t ⇓F p`,
indicating that the term t evaluates in zero or more steps to the value
produced by the `-labelled producer p, while the flow of values
during evaluation is captured by the flow set F,

F ∈ Flow = P(Lab×Lab) flow.

Concretely, each pair (`c, `p) in a flow set F witnesses the con-
sumption of a value produced at a program point labelled with `p
by a consumer labelled with `c. Note that Boolean values (pro-
duced by the constructors false and true) are consumed by con-
ditionals, while functions (produced by lambda-abstractions) are
consumed by function applications and occurrences of the fixed-
point operator. Evaluation proceeds under a call-by-value strategy;
capture-avoiding substitution, in rules [e-app] en [e-fix], is denoted
by [· 7→ ·]ˆ .

The static semantics of the language is presented in Figure 2 in
terms of typing rules for deriving judgements Γ ` t : τ , expressing
that, in the type environment Γ, the term t has the type τ . Here, type
environments are finite maps from variables to types:

Γ ∈ TyEnv = Var→fin Ty type environments.

In the sequel, we are only concerned with well-typed terms. The
static semantics of Figure 2 is referred to as the underlying type

system and the types from the underlying type system play a crucial
rôle in our approach as they guide our polyvariant flow analysis.

4. Key Ideas
In this section, we discuss the key ideas behind the type and effect
system that will be presented in Section 5. Recall that our main
objective is to provide a modular flow analysis that allows lambda-
bound variables to be analysed polyvariantly rather than monovari-
antly.

To this end, we associate with each term t in the program a triple
τ̂ψ & ϕ , consisting of an annotated type τ̂ , an annotation ψ , and an
effect ϕ . The idea is that the annotation ψ describes the possible
production sites of the values that t can evaluate to and that the
effect ϕ describes the flow that may be incurred from the evaluation
of t. Thus, annotations are essentially sets of labels `, while effects
are sets of pairs (`,ψ) consisting of a consumer label ` and an
annotation ψ . Annotated types are constructed from the type bool
of Booleans and annotated function types of the form τ̂1

ψ1
ϕ0−→ τ̂ψ2 ,

where ψ1 and ψ2 denote the production sites of, respectively, the
argument and the result of a function, and ϕ0 is the so-called latent
effect of a function, i.e., the effect that may be observed from
applying the function to an argument. Furthermore, and crucially,
we allow universal quantification over both annotations and effects
to occur anywhere in an annotated type.

4.1 Fully Flexible Types
As an example, consider the Boolean negation function produced
by

(λx : bool.(if x then false`1 else true`2)`3)`4 .

Analysing this function may then result in the triple

(∀β .boolβ
{(`3,β )}−−−−−→bool{`1,`2 }){`4 }&{ },

expressing that the `4-labelled lambda-abstraction immediately
(i.e., flowlessly) produces a function that may have its argument
consumed by the conditional labelled with `3 before returning a
Boolean that is produced at either `1 or `2. Note that the annotated
type for the negation function is polymorphic in the annotation for
its argument x and how this is crucial for obtaining an analysis that
is modular: whatever Boolean it is applied to, the type of the func-
tion can always be instantiated to obtain a suitable analysis for the
application.

As modularity is a key aspect of our analysis, let us from
now on assume that functions are always analysed with maximum
applicability in mind and, hence, that all functions have types that
are indeed polymorphic in their argument annotations. We shall
refer to such types as fully flexible types.

4.2 Annotation and Effect Operators
To demonstrate how the notion of fully flexible types extends to
higher-order functions, let us consider the second-order function
produced by

(λf : bool→ bool.(f true`5)`6)`7 ,

which applies its argument to the Boolean true produced at `5.
How can we, for such a function, obtain an analysis that can

be regarded as fully flexible? Clearly, modularity requires us to be
polymorphic in the annotation of the argument function f . More-
over, as we assume that all functions have fully flexible types,
the type of any function to be bound to f will itself be polymor-
phic in its argument annotation too, i.e., have a type of the form
∀β .boolβ

ϕ−→ boolψ . In general, the latent effect ϕ and the re-
sult annotation ψ of f depend on the argument annotation β . We
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can make this explicit by writing ϕ and ψ as functions of β :

∀β .boolβ
ϕ0 β−−→ boolψ0 β . If we allow annotation and effect ab-

straction in annotated types, then the annotated types for all func-
tions of underlying type bool→ bool can be written in this form.
For instance, for the annotated type of the negation function from
Section 4.1, we have ϕ0 = λβ ′.{(`3,β

′)} and ψ0 = λβ ′.{`1, `2},
yielding

∀β .boolβ
(λβ ′.{(`3,β

′)}) β−−−−−−−−−−−→bool((λβ ′.{`1,`2 }) β ).

Returning to the analysis of the second-order function as a
whole, modularity once more requires us to assume a type for f
that can be instantiated for all possible choices for ϕ0 and ψ0 and,
hence, we end up with a triple consisting of the rank-2 type

∀β f .∀δ0.∀β0.

(∀β .boolβ
δ0 β−−→bool(β0 β ))β f

{(`6,β f )}∪δ0 {`5 }−−−−−−−−−−−→bool(β0 {`5 }),

the singleton annotation and {`7} and the empty effect { }. Here,
the variables δ0 and β0 range over, respectively, effect and annota-
tion operators rather than proper effects and annotations. Note how
both the latent effect {(`6,β f )}∪δ0 {`5} and the result annotation
β0 {`5} express that for any call of the second-order function, the
polymorphic type of the function bound to its parameter f is in-
stantiated with the annotation {`5} and that the supplied effect and
annotation operators are applied accordingly.

Essentially, what we have done here amounts to parameterising
the analysis of a function by the analyses of its arguments. For a
first-order function, the analysis of an argument is captured by a
single annotation that identifies its possible production sites. For
a higher-order function, the analysis of an argument of function
type is captured by a proper annotation that identifies the possible
production sites of the supplied function, and effect and annotation
operators that describe how the analysis of the argument function
depends on the analyses for its own arguments.

Now, concretely, if we instantiate the annotated type of the
second-order function above as to prepare it for being applied to
the negation function from Section 4.1 and thus supply it with
the analysis for the negation function, then, after beta-reducing the
effects and annotations, we obtain the instantiated type

(∀β .boolβ
{(`3,β )}−−−−−→bool{`1,`2 }){`4 }

{(`6,{`4 }),(`3,{`5 })}−−−−−−−−−−−−−→bool{`1,`2 }.

As a final example of the use of annotation and effect operators,
consider the higher-order abstraction (cf. the running example from
Section 2)

(λf : bool→ bool.
(if (f false`1)`2 then (f true`3)`4 else false`5)`6)`7

and its fully flexible annotated type

∀β f .∀δ0.∀β0.(∀β .boolβ
δ0 β−−→bool(β0 β ))β f

{(`2,β f )}∪δ0 {`1 }∪{(`6,β0 {`1 })}∪{(`4,β f )}∪δ0 {`3 }−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
bool(β0 {`3 }∪{`5 }),

and how this type can be instantiated with the analysis for the
Boolean identity function produced by (λx : bool.x)`8 to yield the
desired polyvariant

(∀β .boolβ
{ }−→boolβ )

{(`2,`8),(`6,`1),(`4,`8)}−−−−−−−−−−−−−−→bool{`3,`5 }.

4.3 Polymorphic Recursion
Being able to associate polymorphic annotated types with lambda-
bound variables naturally induces polymorphic recursion (Mycroft

1984) for fixed points. Indeed, as recursive functions are con-
structed as fixed points fix t1 of terms t1 with higher-order types
(τ1→ τ2)→ τ1→ τ2 and higher-ranked polymorphism allows for
arguments to such t1 to have polymorphic annotated types of the
form ∀β . τ̂1

β
ϕ−→ τ̂2

ψ , it follows that recursive calls, i.e., uses of its
argument by t1, may be analysed polyvariantly rather than mono-
variantly.

As expected, higher-ranked polymorphism gives you polymor-
phic recursion for free.

5. Flow Analysis with Higher-ranked Types
In this section, we present the details of our type and effect system
for flow analysis with higher-ranked polymorphic types.

5.1 Annotations and Effects
We assume to have at our disposal countable infinite sets of annota-
tion variables (ranged over by β ) and effect variables (ranged over
by δ ):

β ∈ AnnVar annotation variables
δ ∈ EffVar effect variables.

Annotations and effects are then given by

ψ ∈ Ann annotations
ϕ ∈ Eff effects

with
ψ ::= β | { } | {`} | λβ :: s.ψ1 | ψ1 ψ2 | ψ1∪ψ2
ϕ ::= δ | { } | {(`,ψ)} | λβ :: s.ϕ1 | ϕ1 ψ

| λδ :: s.ϕ1 | ϕ1 ϕ2 | ϕ1∪ϕ2.

Note that annotations ψ may contain annotation abstractions λβ ::
s.ψ1 and annotation applications ψ1 ψ2, while effects may contain
annotation abstractions λβ :: s.ϕ1 and annotation applications ϕ1 ψ

as well as effect abstractions λδ :: s.ϕ1 and effect applications
ϕ1 ϕ2. Furthermore, note that abstractions over annotations and
effects make mention of sorts s,

s ∈ Sort sorts.

That is, to make sure that abstractions and applications in annota-
tions and effects are used in meaningful ways only, we depend on
sorts to act as the “types” of annotations and effects. Sorts are then
constructed from

s ::= ann | eff | s1→ s2,

where ann denotes the sort of proper annotations, eff the sort of
proper effects, and s1 → s2 the sort of operators that take annota-
tions or effects of sort s1 to annotations or effects of sort s2. Storing
the sorts of free annotation and effect variables in a sort environ-
ment Σ,

Σ ∈ SortEnv = (AnnVar∪EffVar)→fin Sort sort env.,

which maps from annotation and effect variables to sorts, rules
for assigning sorts to annotations and effects can be given as in
Figure 3.

In Figure 4, we have a collection of rules for definitional equiv-
alence relations between annotations and effects. These rules allow
us, when necessary, to treat the ∪-constructor that appears in anno-
tations and effects as a commutative, associative, and idempotent
operation with { } as unit, and to consider annotations and effects
as equal up to beta-equivalence and distribution of union over flow
construction.

5.2 Type and Effect System
The actual type and effect system is defined in terms of rules for
deriving judgements of the form
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Annotation sorting Σ ` ψ :: s

Σ(β ) = s
Σ ` β :: s

[sa-var]
Σ ` { } :: ann

[sa-nil]

Σ ` {`} :: ann
[sa-sing]

Σ[β 7→ s1 ] ` ψ1 :: s2

Σ ` λβ :: s1.ψ1 :: s1→ s2
[sa-abs]

Σ ` ψ1 :: s2→ s Σ ` ψ2 :: s2

Σ ` ψ1 ψ2 :: s
[sa-app]

Σ ` ψ1 :: ann Σ ` ψ2 :: ann
Σ ` ψ1 ∪ψ2 :: ann

[sa-union]

Effect sorting Σ ` ϕ :: s

Σ(δ ) = s
Σ ` δ :: s

[se-var]
Σ ` { } :: eff

[se-nil]

Σ ` ψ :: ann
Σ ` {(`,ψ)} :: eff

[se-sing]

Σ[β 7→ s1 ] ` ϕ1 :: s2

Σ ` λβ :: s1.ϕ1 :: s1→ s2
[se-abs-ann]

Σ ` ϕ1 :: s2→ s Σ ` ψ :: s2

Σ ` ϕ1 ψ :: s
[se-app-ann]

Σ[δ 7→ s1 ] ` ϕ1 :: s2

Σ ` λδ :: s1.ϕ1 :: s1→ s2
[se-abs-eff ]

Σ ` ϕ1 :: s2→ s Σ ` ϕ2 :: s2

Σ ` ϕ1 ϕ2 :: s
[se-app-eff ]

Σ ` ϕ1 :: eff Σ ` ϕ2 :: eff
Σ ` ϕ1 ∪ϕ2 :: eff

[se-union]

Figure 3. Sorting for annotations and effects.

Σ | Γ̂ ` t : τ̂ψ & ϕ,

expressing that in the sort environment Σ and the annotated type
environment Γ̂, the term t can be assigned the annotated type τ̂ as
well as the annotation ψ and the effect ϕ .

Annotated types are given by

τ̂ ∈ T̂y annotated types

with

τ̂ ::= bool | τ̂1
ψ1

ϕ−→ τ̂2
ψ2 | ∀β :: s. τ̂1 | ∀δ :: s. τ̂1.

Types are considered equal up to alpha-renaming. We require the
argument and result annotations ψ1 and ψ2 and the latent effect ϕ

in an annotated function type τ̂1
ψ1

ϕ−→ τ̂2
ψ2 to be proper annotations

and effects; this requirement is captured by the rules for type well-
formedness, listed in Figure 5. We write bτ̂c for the underlying type
that is obtained by removing all annotations and effects from the
annotated type τ̂ . If bτ̂c= τ , we say that τ̂ is a completion of τ .

Annotated type environments Γ̂ map variables to pairs (τ̂,ψ)
consisting of an annotated type τ̂ and an annotation ψ:

Γ̂ ∈ T̂yEnv = Var→fin (T̂y×Ann) annotated type env.

We write bΓ̂c for the underlying type environment that is obtained
by removing all annotations and effects from the annotated type
environment Γ̂.

The rules for flow typing are given in Figure 6. The rule [f-
var] expresses that the annotated type τ̂ and the annotation ψ for a

Annotation equivalence ψ ≡ ψ ′

ψ ≡ ψ
[qa-refl]

ψ ′ ≡ ψ

ψ ≡ ψ ′
[qa-symm]

ψ ≡ ψ ′′ ψ ′′ ≡ ψ ′

ψ ≡ ψ ′
[qa-trans]

ψ1 ≡ ψ ′1
λβ :: s.ψ1 ≡ λβ :: s.ψ ′1

[qa-abs]
ψ1 ≡ ψ ′1 ψ2 ≡ ψ ′2

ψ1 ψ2 ≡ ψ ′1 ψ ′2
[qa-app]

ψ1 ≡ ψ ′1 ψ2 ≡ ψ ′2
ψ1 ∪ψ2 ≡ ψ ′1 ∪ψ ′2

[qa-union]

(λβ .ψ11) ψ2 ≡ [β 7→ ψ2 ]ψ11
[qa-beta]

ψ ≡ ψ ∪{ }
[qa-unit]

ψ ≡ ψ ∪ψ
[qa-idem]

ψ1 ∪ψ2 ≡ ψ2 ∪ψ1
[qa-comm]

ψ1 ∪ (ψ2 ∪ψ3)≡ (ψ1 ∪ψ2)∪ψ3
[qa-ass]

Effect equivalence ϕ ≡ ϕ ′

ϕ ≡ ϕ
[qe-refl]

ϕ ′ ≡ ϕ

ϕ ≡ ϕ ′
[qe-symm]

ϕ ≡ ϕ ′′ ϕ ′′ ≡ ϕ ′

ϕ ≡ ϕ ′
[qe-trans]

ψ ≡ ψ ′

{(`,ψ)} ≡ {(`,ψ ′)}
[qe-sing]

ϕ1 ≡ ϕ ′1
λβ :: s.ϕ1 ≡ λβ .ϕ ′1

[qe-abs-ann]
ϕ1 ≡ ϕ ′1 ψ ≡ ψ ′

ϕ1 ψ ≡ ϕ ′1 ψ ′
[qe-app-ann]

ϕ1 ≡ ϕ ′1
λδ :: s.ϕ1 ≡ λδ :: s.ϕ ′1

[qe-abs-eff ]

ϕ1 ≡ ϕ ′1 ϕ2 ≡ ϕ ′2
ϕ1 ϕ2 ≡ ϕ ′1 ϕ ′2

[qe-app-eff ]

ϕ1 ≡ ϕ ′1 ϕ2 ≡ ϕ ′2
ϕ1 ∪ϕ2 ≡ ϕ ′1 ∪ϕ ′2

[qe-union]

(λβ .ϕ11) ψ ≡ [β 7→ ψ ]ϕ11
[qe-beta-ann]

(λδ .ϕ11) ϕ2 ≡ [δ 7→ ϕ2 ]ϕ11
[qe-beta-eff ]

ϕ ≡ ϕ ∪{ }
[qe-unit]

ϕ ≡ ϕ ∪ϕ
[qe-idem]

ϕ1 ∪ϕ2 ≡ ϕ2 ∪ϕ1
[qe-comm]

ϕ1 ∪ (ϕ2 ∪ϕ3)≡ (ϕ1 ∪ϕ2)∪ϕ3
[qe-ass]

{(`,ψ1)∪{(`,ψ2)} ≡ {(`,ψ1 ∪ψ2)}
[qe-dist]

Figure 4. Definitional equivalence for annotations and effects.

Well-formedness Σ ` τ̂ wft

Σ ` bool wft
[w-bool]

Σ ` ϕ :: eff
Σ ` τ̂1 wft Σ ` ψ1 :: ann Σ ` τ̂2 wft Σ ` ψ2 :: ann

Σ ` τ̂1
ψ1

ϕ−→ τ̂2
ψ2 wft

[w-arr]

Σ[β 7→ s] ` τ̂1 wft
Σ ` ∀β :: s. τ̂1 wft

[w-forall-ann]
Σ[δ 7→ s] ` τ̂1 wft
Σ ` ∀δ :: s. τ̂1 wft

[w-forall-eff ]

Figure 5. Type well-formedness.
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Flow analysis Σ | Γ̂ ` t : τ̂ψ & ϕ

Γ̂(x) = (τ̂,ψ)

Σ | Γ̂ ` x : τ̂ψ &{ }
[f-var]

Σ | Γ̂ ` false` : bool{`}&{ }
[f-false]

Σ | Γ̂ ` true` : bool{`}&{ }
[f-true]

Σ ` τ̂1 wft Σ ` ψ1 :: ann Σ | Γ̂[x 7→ (τ̂1,ψ1)] ` t1 : τ̂2
ψ2 & ϕ0

Σ | Γ̂ ` (λx : bτ̂1c. t1)` : (τ̂1
ψ1

ϕ0−→ τ̂2
ψ2 ){`}&{ }

[f-abs]

Σ | Γ̂ ` t1 : boolψ1 & ϕ1 Σ | Γ̂ ` t2 : τ̂ψ & ϕ2 Σ | Γ̂ ` t3 : τ̂ψ & ϕ3

Σ | Γ̂ ` (if t1 then t2 else t3)` : τ̂ψ & ϕ1 ∪{(`,ψ1)}∪ϕ2 ∪ϕ3
[f-if ]

Σ | Γ̂ ` t1 : (τ̂2
ψ2

ϕ0−→ τ̂ψ )ψ1 & ϕ1 Σ | Γ̂ ` t2 : τ̂2
ψ2 & ϕ2

Σ | Γ̂ ` (t1 t2)` : τ̂ψ & ϕ1 ∪ϕ2 ∪{(`,ψ1)}∪ϕ0
[f-app]

Σ | Γ̂ ` t1 : (τ̂ψ
ϕ0−→ τ̂ψ )ψ1 & ϕ1

Σ | Γ̂ ` (fix t1)` : τ̂ψ & ϕ1 ∪{(`,ψ1)}∪ϕ0
[f-fix]

Σ[β 7→ s] | Γ̂ ` t : τ̂1
ψ & ϕ

Σ | Γ̂ ` t : (∀β :: s. τ̂1)
ψ & ϕ

[f-gen-ann]
Σ | Γ̂ ` t : (∀β :: s. τ̂1)

ψ & ϕ Σ ` ψ0 :: s

Σ | Γ̂ ` t : ([β 7→ ψ0 ]τ̂1)
ψ & ϕ

[f-inst-ann]

Σ[δ 7→ s ] | Γ̂ ` t : τ̂1
ψ & ϕ

Σ | Γ̂ ` t : (∀δ :: s. τ̂1)
ψ & ϕ

[f-gen-eff ]
Σ | Γ̂ ` t : (∀δ :: s. τ̂1)

ψ & ϕ Σ ` ϕ0 :: s

Σ | Γ̂ ` t : ([δ 7→ ϕ0 ]τ̂1)
ψ & ϕ

[f-inst-eff ]

Σ | Γ̂ ` t : τ̂ψ ′ & ϕ ′

ψ ≡ ψ ′ Σ ` ψ :: ann ϕ ≡ ϕ ′ Σ ` ϕ :: eff

Σ | Γ̂ ` t : τ̂ψ & ϕ
[f-eq]

Σ | Γ̂ ` t : τ̂ ′ψ1 & ϕ1
τ̂ ′ 6 τ̂ Σ ` τ̂ wft Σ ` ψ2 :: ann Σ ` ϕ2 :: eff

Σ | Γ̂ ` t : τ̂(ψ1∪ψ2) & (ϕ1 ∪ϕ2)
[f-sub]

Subtyping τ̂ 6 τ̂ ′

τ̂ 6 τ̂ ′
[s-refl]

ϕ ′ ≡ ϕ ∪ϕ ′′ τ̂ ′1 6 τ̂1 ψ1 ≡ ψ ′1 ∪ψ ′′1 τ̂2 6 τ̂ ′2 ψ ′2 ≡ ψ2 ∪ψ ′′2

τ̂1
ψ1

ϕ−→ τ̂2
ψ2 6 τ̂ ′1

ψ ′1
ϕ ′−→ τ̂ ′2

ψ ′2
[s-arr]

τ̂1 6 τ̂ ′1
∀β :: s. τ̂1 6 ∀β :: s. τ̂ ′1

[s-forall-ann]
τ̂1 6 τ̂ ′1

∀δ :: s. τ̂1 6 ∀δ :: s. τ̂ ′1
[s-forall-eff ]

Figure 6. Type and effect system for flow analysis.

variable x are to be retrieved from the annotated type environment
Γ̂. In the call-by-value semantics of our language, the evaluation of
a variable does not result in flow; hence, the effect component in the
conclusion of rule [f-var] stays empty. For the Boolean producers
false` and true` we have axioms [f-false] and [f-true] that assign
the annotated type bool and a singleton annotation {`} that reflects
the production site `. Producers are already fully evaluated and so
no effect is recorded.

Lambda-abstractions (λx : τ. t1)` are dealt with by the rule [f-
abs]. It states that the body t1 of the abstraction is to be analysed
in an extended annotated type environment that maps the formal
parameter x to the pair (τ̂1,ψ1), where ψ1 is a proper annotation
and τ̂1 a possibly polymorphic completion of τ that is well-formed
with respect to the sorting environment Σ. While τ̂1 and ψ1 are
then used as the argument type and annotation for the abstraction,
the annotated type τ̂2 and the annotation ψ2, obtained from the
analysis of the body, both end up in result position; the effect ϕ0
of t1 constitutes the latent effect. The annotation and effect for the
abstraction as a whole are taken to be {`} and { }, respectively.

The rule for conditionals (if t1 then t2 else t3)`, [f-if ], requires
the condition t1 to be of Boolean type and the branches t2 and t3
to agree on their annotated types and annotations, which will then
be used as the annotated type and annotation for the conditional
itself. The effect for the conditional is constructed by taking the
union over the effects of the three subterms and recording that
the Boolean values that may flow to the condition t1 are possibly
consumed at the site labelled with `.

In the rule [f-app] for applications (t1 t2)`, the annotated type
τ̂2 and the annotation ψ2 of the argument term t2 are to match
with the argument type and annotation of the function term t1. The

annotated type τ̂ and annotation ψ are then retrieved from the result
positions in the type of t1. The effect for the application subsumes
the effects for its subterms t1 and t2 as well as the possible flow
from the function labels ψ1 to the application site ` and the latent
effect ϕ0 of t1.

For the fixed point (fix t1)` of a term t1, the annotated type
τ̂ψ is retrieved from the type of t1, which is required to be of
the form τψ

ϕ0−→ τψ . The effect component is then constructed by
combining the effect ϕ1 of t1, the singleton effect {(`,ψ1)} with
ψ1 the annotation of t1, and the latent effect ϕ0 of t1.

The rules [f-gen-ann] and [f-inst-ann] form a pair of introduc-
tion and elimination rules for annotation polymorphism. Quantifi-
cation over an s-sorted annotation is allowed, if the correspond-
ing binding in the sort environment admits a valid analysis. Instan-
tiation requires an annotation of appropriate sort to be supplied.
Rules [f-gen-eff ] and [f-inst-eff ] are analogue rules for effect poly-
morphism. The rule [f-eq] expresses that annotations and effects at
top level can always be safely replaced by well-sorted definitional
equivalents.

The rule [f-sub], finally, is a combined rule for subtyping and
subeffecting (Tang and Jouvelot 1995) that allows for overapprox-
imation of annotations and effects. This rule is typically used im-
mediately before the rule [f-if ] in order to have the branches of a
conditional agree on their types and annotations. The rules for sub-
typing are given in the lower part of Figure 6.

6. Properties
Let us now briefly review the most important metatheoretical prop-
erties of our type and effect system.
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6.1 Applicability
Our flow analysis is a conservative extension of the underlying type
system from Section 3 in the sense that every program typeable in
the underlying system can be successfully subjected to the analysis.
Furthermore, both systems agree on the shape of types assignable.

Theorem 1 (Conservative extension).

1. If Γ ` t : τ , then there exist Γ̂, τ̂ , ψ , and ϕ with bΓ̂c = Γ and
bτ̂c= τ , such that [ ] | Γ ` t : τ̂ψ & ϕ .

2. If Σ | Γ̂ ` t : τ̂ψ & ϕ , then bΓ̂c ` t : bτ̂c. �

6.2 Semantic Correctness
To establish the correctness of the analysis with respect to the in-
strumented natural semantics from Section 3, we consider interpre-
tations J·K of annotations ψ as sets of labels,

J{ }K = { }
J{`}K = {`}
Jψ1∪ψ2K = Jψ1K∪ Jψ2K,

and of effects ϕ as flows,

J{ }K = { }
J{`,ψ }K = {(`,`′) | `′ ∈ JψK}
Jϕ1∪ϕ2K = Jϕ1K∪ Jϕ2K.

Both interpretations are partial in the sense that they do not account
for abstractions, applications, and free variables in annotations and
effects. Hence, we only consider closed environments and observe
that the type and effect system guarantees all top-level annotations
and effects to be proper annotations and effects.

Lemma 2. If [ ] | [ ] ` t : τ̂ψ & ϕ , then [ ] ` τ̂ wft, [ ] ` ψ :: ann, and
[ ] ` ϕ :: eff. �

As proper annotations and effects are always definitionally equiv-
alent to forms without abstractions and applications, we can now
formulate the following result.

Theorem 3 (Semantic soundness). If [ ] | [ ] ` t : τ̂ψ & ϕ and t ⇓F
p`, then there exist ψ ′ and ϕ ′ with ψ ≡ ψ ′ and ϕ ≡ ϕ ′, such that
` ∈ Jψ ′K and F⊆ Jϕ ′K. �

6.3 Existence of “Best” Analyses
While Theorem 1 establishes that all well-typed programs can be
analysed, we now wish to state that each analysable program admits
an analysis that is in some sense “better” than all other analyses
for that program. As we are interested in analyses that guarantee
modularity, we shall restrict ourselves to analyses that provide fully
flexible types.

To this end, let χ range over both annotation and effect vari-
ables, together referred to as flow variables,

χ ∈ AnnVar∪EffVar flow variables,

and let us use overbar notation to denote sequences, where we
feel free to “downcast” sequences of flow variables to sets of flow
variables. We write ε for the empty sequence, ffv(τ̂) and ffv(Γ̂)
for the set of free, i.e., unbound, flow variables in, respectively,
an annotated type τ̂ and an annotated type environment Γ̂, and
annvars(χi) for the subsequence of annotation variables contained
in χi. Then, fully flexible types are defined as follows.

Definition 1. An annotated type τ̂ is fully parametric if

1. τ̂ = bool, or

2. τ̂ = (∀χi :: si. τ̂1
β

δ0χi−−→ τ̂2
(β0βi′ )) for some δ0 and β0 with (a) τ̂1

and τ̂2 fully parametric, (b) χi = {β }∪ ffv(τ̂1), and (c) βi′ =
annvars(χi). �

Definition 2. An annotated type τ̂ is fully flexible if

1. τ̂ = bool, or
2. τ̂ = (∀χi :: si. τ̂1

β
ϕ−→ τ̂2

ψ2 ) for some ϕ and ψ2 with (a) τ̂1 fully
parametric, (b) τ̂2 fully flexible, and (c) χi = {β }∪ ffv(τ̂1). �

Note that full parametricity implies full flexibility and how higher-
order function types give rise to higher-ranked polymorphism and
higher-order operators over annotations and effects. Full flexibility
extends naturally to closed type environments.

Definition 3. An annotated type environment Γ̂ is fully flexible if
ffv(Γ̂) = { } and if, for all x, τ̂ , and ψ with Γ̂(x) = (τ̂,ψ), we have
that τ̂ is fully flexible. �

Now, in a fully flexible environment, each analysable term ad-
mits a fully flexible type.

Lemma 4. If [ ] | Γ̂ ` t : τ̂ ′ψ
′
& ϕ ′ with Γ̂ fully flexible, then there

exist τ̂ , ψ , and ϕ such that τ̂ is fully flexible and Γ̂ ` t : τ̂ψ &ϕ . �

Amongst all possible analyses for a given term in a given en-
vironment, we are interested in a fully flexible analysis that makes
the most accurate prediction about production sites and flow, i.e.,
the analysis that results in the “smallest” types, annotations, and
effects. As all fully flexible types for a term agree on their negative
positions, the notion of a best analysis can be straightforwardly ex-
pressed in terms of subtyping and definitional equivalence.

Definition 4. The triple (τ̂,ψ,ϕ) consisting of a fully flexible
annotated type τ̂ , an annotation ψ , and an effect ϕ constitutes a
best analysis for t in Γ̂, if [ ] | Γ̂ ` t : τ̂ψ & ϕ and if, for all τ̂ ′, ψ ′,
and ϕ ′ with [ ] | Γ̂ ` t : τ̂ ′ψ

′
& ϕ ′ and τ̂ ′ fully flexible, we have that

τ̂ 6 τ̂ ′, ψ ′ ≡ ψ ∪ψ ′′, and ϕ ′ ≡ ϕ ∪ϕ ′′ for some ψ ′′ and ϕ ′′. �

Theorem 5 (Existence of best analyses). If [ ] | Γ̂ ` t : τ̂ ′ψ
′
&

ϕ ′ with τ̂ ′ fully flexible, then there exist τ̂ , ψ , and ϕ , such that
(τ̂,ψ,ϕ) is a best analysis for t in Γ̂. �

7. Algorithm
In this section, we present an inference algorithm for obtaining best
analyses. The algorithm naturally breaks up in two parts: a recon-
struction algorithm R that produces annotated types, annotations,
and effects for terms as well as constraints between flow variables
(Section 7.1), and a procedure S for solving the constraints pro-
duced by R (Section 7.2).

A crucial aspect of the algorithm is that the constraints that are
generated for the body of a lambda-abstraction are solved locally,
allowing for annotations and effects to be generalised over at the
binding-sites of formal parameters.

7.1 Flow Reconstruction
The algorithm R for reconstructing types, annotations, and effects
is given in Figure 7. It takes as input a pair (Γ̂, t) consisting of an an-
notated type environment Γ̂ and a term t and produces a quadruple
(τ̂,β ,δ ,C) consisting of an annotated type τ̂ , an annotation vari-
able β , an effect variable δ , and a finite set C of constraints over
β and δ as well as any intermediate flow variables. Constraints are
given by

q ∈ Constraint constraints
C ∈ F (Constraint) constraint sets,

where

q ::= ψ ⊆ β | ϕ ⊆ δ .

That is, a constraint expresses either the inclusion of an annotation
ψ in the annotation represented by the annotation variable β or
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R(Γ̂,x) = let (τ̂,ψ) = Γ̂(x)
β ,δ be fresh

in (τ̂,β ,δ ,{ψ ⊆ β })

R(Γ̂,false`) = let β ,δ be fresh in (bool,β ,δ ,{{`} ⊆ β })

R(Γ̂,true`) = let β ,δ be fresh in (bool,β ,δ ,{{`} ⊆ β })

R(Γ̂,(λx : τ1. t1)`) =
let (τ̂1,χi :: si) = C(τ1,ε)

β1 be fresh
(τ̂2,β2,δ0,C1) = R(Γ̂[x 7→ (τ̂1,β1)], t1)

X = {β1}∪{χi}∪ ffv(Γ̂)
(ψ2,ϕ0) = S(C1,X ,β2,δ0)

τ̂ = ∀β1 :: ann.∀χi :: si. τ̂1
β1

ϕ0−→ τ̂2
ψ2

β ,δ be fresh
in (τ̂,β ,δ ,{{`} ⊆ β })

R(Γ̂,(if t1 then t2 else t3)`) =
let (bool,β1,δ1,C1) = R(Γ̂, t1)

(τ̂2,β2,δ2,C2) = R(Γ̂, t2)
(τ̂3,β3,δ3,C3) = R(Γ̂, t3)
τ̂ = J(τ̂2, τ̂3)
β ,δ be fresh
C = {δ1 ⊆ δ }∪{{(`,β1)} ⊆ δ }∪{δ2 ⊆ δ }∪{δ3 ⊆ δ }∪
{β2 ⊆ β }∪{β3 ⊆ β }∪C1 ∪C2 ∪C3

in (τ̂,β ,δ ,C)

R(Γ̂,(t1 t2)`) =
let (τ̂1,β1,δ1,C1) = R(Γ̂, t1)

(τ̂2,β2,δ2,C2) = R(Γ̂, t2)

τ̂ ′2
β ′2

ϕ ′0−→ τ̂ ′ψ
′
= I(τ̂1)

θ = [β ′2 7→ β2 ]◦M([ ], τ̂2, τ̂
′
2)

β ,δ be fresh
C = {δ1 ⊆ δ }∪{δ2 ⊆ δ }∪{{(`,β1)} ⊆ δ }∪{θ ϕ ′0 ⊆ δ }∪
{θ ψ ′ ⊆ β }∪C1 ∪C2

in (θ τ̂ ′,β ,δ ,C)

R(Γ̂,(fix t1)`) =
let (τ̂1,β1,δ1,C1) = R(Γ̂, t1)

τ̂ ′β
′ ϕ ′0−→ τ̂ ′′ψ

′′
= I(τ̂1)

θ1 =M([ ], τ̂ ′′, τ̂ ′)
θ2 = [β ′ 7→ θ1 ψ ′′ ]

β ,δ be fresh
C = {δ1 ⊆ δ }∪{{(`,β1)} ⊆ δ }∪{θ2 (θ1 ϕ ′0)⊆ δ }∪
{θ2 (θ1 ψ ′′)⊆ β }∪C1

in (θ2 (θ1 τ̂ ′),β ,δ ,C)

Figure 7. Reconstruction algorithm.

the inclusion of an effect ϕ in the effect represented by the effect
variable δ . We carefully maintain the invariant that all annotated
types produced are fully flexible.

Turning to the details of the algorithm, the cases for variables
and Boolean constants false` and true` are straightforward: we
generate fresh annotation and effect variables and propagate the
relevant information from either the type environment Γ̂ or the
producer label ` to the result tuple.

More interesting is the case for lambda-abstractions (λx :
τ1. t1)`. Here, we first make a call to the subsidiary procedure
C, given in Figure 8, that produces a pair (τ̂1,χi :: si) consisting
of a fully parametric (cf. Definition 1) completion τ̂1 of τ1 and a

C(bool,χi :: si) = (bool,{ })

C(τ1→ τ2,χi :: si) =
let (τ̂1,χ j :: s j) = C(τ1,ε)

β1 be fresh
(τ̂2,χk :: sk) = C(τ2,(χi :: si,β1 :: ann,χ j :: s j))

βi′ :: si′ = annvars(χi :: si)

β j′ :: s j′ = annvars(χ j :: s j)
β0,δ0 be fresh

in (∀β1 :: ann.∀χ j :: s j. τ̂1
β1

δ0χiβ1χ j−−−−−→ τ̂2
(β0βi′ β1β j′ ),

(δ0 :: si→ ann→ s j → eff,β0 :: si′ → ann→ s j′ → ann,
χk :: sk))

Figure 8. Completion algorithm.

J(bool,bool) = bool

J(τ̂1
β1

ϕ1−→ τ̂12
ψ12 , τ̂1

β1
ϕ2−→ τ̂22

ψ22 ) = τ̂1
β1

ϕ1∪ϕ2−−−−→J(τ̂12, τ̂22)
(ψ12∪ψ22)

J(∀β :: s. τ̂11,∀β :: s. τ̂21) = ∀β :: s.J(τ̂11, τ̂21)

J(∀δ :: s. τ̂11,∀δ :: s. τ̂21) = ∀δ :: s.J(τ̂11, τ̂21)

J(τ̂1, τ̂2) = fail in all other cases

Figure 9. Join algorithm.

sequence χi :: si that contains the free flow variables of τ̂1 accom-
panied by their sorts. Then we create a mapping from the formal
parameter x to the pair (τ̂1,β1), where β1 is a fresh annotation
variable, and use it in a recursive invocation of R for the body
t1 of the abstraction. This recursive invocation results in a tuple
(τ̂2,β2,δ0,C1). The constraints in C1 are then solved with respect
to a finite set of active flow variables X (see Section 7.2),

X ∈ F (AnnVar∪EffVar) flow-variable sets,

to yield a least solution (ψ2,ϕ0) for the flow variables β2 and δ0.
An annotated type for the abstraction is then formed by quantifying
over the argument annotation variable β1 and the free flow variables
χi of the argument type τ̂1; choosing τ̂1 and β1 as argument type
and annotation; choosing τ̂2 and ψ2 as result type and annotation;
and, choosing ϕ0 as latent effect. For the annotation and effect of
the abstraction as a whole, we pick fresh variables β and δ and
record that ` is to be included in a solution for β .

For conditionals (if t1 then t2 else t3)` we make recursive calls
to R for all three subterms. The thus obtained constraint sets C1,
C2, and C3 are then combined with the constraints that account for
the flow that is involved with evaluating a conditional to form the
constraint set C for the conditional as a whole. The annotated type τ̂

for the conditional is obtained by taking the least upper bound of the
recursively obtained types τ̂2 and τ̂3 with respect to the subtyping
relation of Figure 6. This least upper bound is computed by the
join algorithm J in Figure 9. Note how J makes essential use of the
invariant that all types are fully flexible (and that the types to join
thus agree in their argument positions) as well as the fact that types
are to be considered equal up to alpha-renaming (in the cases for
quantified types).

In the case for applications (t1 t2)`, we make recursive calls to R
for the function term t1 and the argument term t2. The thus obtained
annotated type for τ̂1 for t1, for which our invariant guarantees
that it is fully flexible, is then instantiated by means of a call to
the auxiliary procedure I (Figure 10), from which we retrieve the
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I(∀β :: s. τ̂1) = let β ′ be fresh in [β 7→ β ′ ](I(τ̂1))

I(∀δ :: s. τ̂1) = let δ ′ be fresh in [δ 7→ δ ′ ](I(τ̂1))

I(τ̂) = τ̂ in all other cases

Figure 10. Instantiation algorithm.

M(Σ,bool,bool) = id

M(Σ, τ̂1
β1

ϕ−→ τ̂2
ψ2 , τ̂1

β1
δ0χi−−→ τ̂ ′2

β0β j ) =

[δ0 7→ (λχi :: Σ(χi). ϕ)]◦ [β0 7→ (λβ j :: Σ(β j). ψ2)]◦M(Σ, τ̂2, τ̂
′
2)

M(Σ,∀β :: s. τ̂1,∀β :: s, τ̂ ′1) =M(Σ[β 7→ s ], τ̂1, τ̂2)

M(Σ,∀δ :: s. τ̂1,∀δ :: s, τ̂ ′1) =M(Σ[δ 7→ s], τ̂1, τ̂2)

M(Σ, τ̂, τ̂ ′) = fail in all other cases

Figure 11. Matching algorithm.

fully parametric parameter type τ̂ ′2 and the parameter annotation
β ′2. Against these we then match the actual argument type τ̂2 and
the actual argument annotation β2, resulting in a substitution θ ,

θ ∈ Subst substitutions.

For the matching of τ̂2 against τ̂ ′2 we rely on a subsidiary procedure
M, given in Figure 11. The substitution θ is used to determine the
annotated type of the application as a whole from the result type
τ̂ ′ from t1. For the annotation and the effect of the application,
we generate fresh variables β and δ and in the constraint set
C we include constraints obtained for t1 and t2 as well as the
constraints that are obtained by considering the flow incurred by
the application.

Finally, the case for fixed points (fix t1)` is similar to the case
for applications with the most important difference that a substi-
tution is constructed in two steps here. First, a substitution θ1 is
constructed by matching the result type of t1 against its fully para-
metric parameter type. Then, the “recursive knot is tied” by sub-
stituting the result annotation for the annotation variable β ′ that
constitutes the parameter annotation.

7.2 Constraint Solving
For solving the constraints produced by the reconstruction algo-
rithm R, we rely on a standard worklist algorithm. This algorithm,
S, is given in Figure 12. As inputs it takes a constraint set C, a set of
active flow variables X that are to be considered as constants dur-
ing solving, an annotation variable β , and an effect variable δ . As
outputs it produces least solutions ψ and ϕ for β and δ under C.

During solving there is no need for explicitly distinguishing
between annotation constraints and effect constaints. Therefore we
take

ξ ∈ Ann∪Eff flow terms

and write all constraints as ξ ⊆ χ .
The algorithm maintains a finite set worklist for keeping track

of constraints that are still to be considered. Furthermore, it uses
a finite map analysis from flow variables to flow terms, in which
intermediate solutions for β , δ , and the flow variables in X and
the right-hand sides of C are kept; and a finite map dependencies
that stores, for each flow variable χ , which constraints need to be
reconsidered if the solution for χ is updated.

S(C,X ,β ,δ ) = do
(* initialisation *)
worklist :={ }
analysis :=[ ]
dependencies :=[ ]

for all (ξ ⊆ χ) in C do
worklist :=worklist∪{ξ ⊆ χ }
analysis :=analysis[χ 7→ { }]
for all ξ ′ in ffv(ξ ) do dependencies :=dependencies[ξ ′ 7→ { }]

for all (ξ ⊆ χ) in C do
for all ξ ′ in ffv(ξ ) do

dependencies :=
dependencies[ξ ′ 7→ dependencies(ξ ′)∪{ξ ⊆ χ }]

for all χ in X do analysis :=analysis[χ 7→ χ ]
analysis :=analysis[β 7→ { }][δ 7→ { }]
(* iteration *)
while worklist 6= { } do

let C1 ]{ξ ⊆ χ }= worklist
in do worklist :=C1

if (analysis ξ ) 6⊆ analysis(χ) then do
analysis :=analysis[χ 7→ analysis(χ)∪ (analysis ξ )]
for all q in dependencies[χ ] do

worklist :=worklist∪{q}
(* finalisation *)
return (analysis(β ),analysis(δ ))

Figure 12. Worklist algorithm for constraint solving.

After intialisation of the worklist set and the finite maps, the
algorithm proceeds by considering constraints from the worklist as
long as these are available. In each iteration a constraint is selected
and tested for satisfaction. Here, we use the finite map analysis as
a substitution and write analysis ξ for the interpretation of the flow
term ξ under the subsitution provided by analysis. If a constraint
is found unsatisfied, we update the solution for its right-hand-side
flow variable χ and add all dependent constraints to the worklist.
If the worklist is empty, the algorithm produces a pair consisting
of the solutions for the flow variables β and δ . These are then
guaranteed to consist of flow terms that, besides from applications
and abstractions, are exclusively constructed from concrete labels
and the flow variables from X .

7.3 Syntactic Correctness
A trivial observation about the completion algorithm from Figure 8
with respect to the defintions from Section 6 is the following:

Lemma 6. For all types τ , there is a fully parametric τ̂ , such that
C(τ,ε) = τ̂ . �

Now, the correctness of both the reconstruction algorithm from
Figure 7 and the worklist algorithm from Figure 12 with respect to
the type and effect system from Section 5 comes in two parts. First,
we have that each analysis produced by the algorithm is indeed
admitted by the flow-typing rules of Figure 6.

Theorem 7 (Syntactic soundness). If we have that R(Γ̂, t) =

(τ̂,β ,δ ,C) and S(C,{ },β ,δ ) = (ψ,ϕ) for a fully flexible Γ̂, then
[ ] | Γ̂ ` t : τ̂ψ & ϕ . �

Second, we have that the algorithm produces best analyses for
all analysable terms. This result depends crucially on the invariant
maintainind by the reconstruction algorithm, i.e., that R always
produces fully flexible types. In particular, we have that the join
algorithm from Figure 9 will not fail if it invoked with two fully
flexible completions of a single underlying type.
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Lemma 8. If τ̂1 and τ̂2 are fully flexible with bτ̂1c = bτ̂2c = τ for
some τ , then J(τ̂1, τ̂2) = τ̂ with bτ̂c= τ . �

Similarly, the matching algorithm from Figure 11 is guaranteed
to succeed when invoked with one fully flexible and one fully
parametric completion of the same underlying type:

Lemma 9. If τ̂ is fully flexible and τ̂ ′ fully parametric with bτ̂c=
bτ̂ ′c, then M([ ], τ̂, τ̂ ′) = θ with θ τ̂ ′ ≡ τ̂ . �

Theorem 10 (Syntactic completeness). If [ ] | Γ̂ ` t : τ̂ ′ψ
′
& ϕ ′

with Γ̂ fully flexible, then there are τ̂ , β , δ , C, ψ , and ϕ with
R(Γ̂, t) = (τ̂,β ,δ ,C) and S(C,{ },β ,δ ) = (ψ,ϕ) and (τ̂,ψ,ϕ) a
best analysis for t in Γ̂. �

8. Related Work
Early approaches to flow analysis for higher-order languages, e.g.,
the closure analysis of Sestoft (1991) and the set-based analysis of
Heintze (1994), were monovariant, allowing only a single, context-
insensitive analysis result to be associated with each of a program’s
functions. Later work resulted in polyvariant analyses that allow
for the analysis results associated with at least some identifiers in a
program to be context-sensitive; examples include Shivers’ k-CFA
(1991) and Nielson and Nielson’s infinitary analysis (1997).

Polymorphic type and effect systems for flow analysis, such as
Fähndrich’s (2008), typically restrict polyvariant analysis results
to be associated with let-bound identifiers only, leaving function
parameters to be analysed monovariantly. Exceptions are the ap-
proaches of Faxén (1997) and Smith and Wang (2000), who also
present polymorphic type and effect systems for flow analysis that
allow for function parameters to be analysed polyvariantly rather
than monovariantly. The most important difference between our
approach and both the approach of Faxén and that of Smith and
Wang is that, while we propose a single analysis, Faxén and Smith
and Wang investigate families of constraint systems parameterised
over inference strategies; the choices of strategies that lead to de-
cidable analyses in their systems are rather ad hoc. Furthermore, the
look-and-feel of the systems of Faxén and Smith and Wang differs
significantly from ours, as we are, to the best of our knowledge, the
first to consider the use of first-class operators on effects and anno-
tations. Gustavsson and Svenningsson (2001) propose constrained
type schemes that show a superficial similarity to ours, but do not
allow quantification over effect operators; moreover, they do not al-
low type schemes to be associated with lambda-bound identifiers.

An important class of type-based flow analyses makes use of
intersection types rather than polymorphic types. In general, inter-
section types allow for more fine-grained analysis results than poly-
morphic types (Wells et al. 2002). Kfoury and Wells (1999) show
that inference is decidable if analyses are restricted to intersection
types of finite rank. Their inference algorithm makes essential use
of so-called expansion variables and is arguably much more com-
plicated than the one we give for our analysis in Section 7. Banerjee
and Jensen (2003) demonstrate that the restriction to rank-2 inter-
section types allows for a simpler algorithm, but only at the expense
of decreased precision, while Mossin (2003) proceeds in the oppo-
site direction and shows that exact flow analyses can be obtained at
the expense of a nonelementary recursive inference problem.

A major advantage of the use of intersection types is that
they admit principal typings rather than mere principal types (Jim
1996). As type systems with principal typings allow for terms to be
typed independently from the types of their free variables, analyses
based on intersection typing are even more modular than systems
with just principal types. Our type and effect system does not ad-
mit principal typings, but, interestingly, in practice, the same level
of modularity can be achieved as for systems with intersection
types. That is, if, for a given term, the underlying types of its free

variables are given, rather than their annotated types, an analy-
sis can be computed for which the best analysis for that term in
any given annotated type environment is a substitution instance.
More precisely, if for a given term t, we are given an underlying
type environment Γ, such that Γ ` t : τ for some type τ , then Σ,
Γ̂, τ̂ , ψ , and ϕ can be computed, such that Σ | Γ̂ ` t : τ̂ψ & ϕ with
bΓ̂c= Γ and bτ̂c= τ , and, moreover, for each fully flexible Γ̂′ with
bΓ̂′c = Γ, there is a computable substitution θ mapping annota-
tion variables to annotations and effect variables to effects, such
that (θ τ̂,θψ,θϕ) is a best analysis for t in Γ̂′. The idea is to first
tentatively “guess” a fully parametric completion of the given un-
derlying type environment and then, as flow inference proceeds,
to gradually adapt this completion by “growing” a substitution on
flow variables. Then, effectively, our type and effect system admits,
in a sense, principal typings, but only as far as annotations and ef-
fects are concerned. For practical purposes, this suffices, because,
as real-world higher-order functional languages are typically based
on the Damas-Milner typing discipline, which itself does not admit
principal typings, underlying type environments can be expected to
be available for all terms under analysis.

The increased precision obtained from the use of polymor-
phic recursion in type-based analyses, as realised by Dussart et al.
(1995), is reported on by several authors, including Henglein and
Mossin (1994), and Tofte and Talpin (1994). To the best of our
knowledge, we are the first to consider the generalisation to poly-
morphic types for all function arguments rather than for just those
of functions from which fixed points are obtained.

9. Conclusions and Further Work
In this paper, we have presented a type and effect system for
flow analysis with higher-ranked polymorphic types and higher-
order effect operators. This system allows us to attain precision
beyond what is offered by the ML-style let-polymorphic types
that are typically used in polymorphic effect systems. The key
innovation of our work is the use of fully flexible types, i.e., types
that are as polymorphic as possible but impose no restrictions on
the arguments that can be passed to functions. Given fully flexible
types for all free variables, our analysis, which is a conservative
extension of the standard Damas-Milner typing discipline, admits
“best analyses” for all programs analysable: such analyses are both
precise and modular.

Our analysis distinguishes between producers and consumers.
In the present paper we have focused on producers and consumers
for Boolean and function values, but our approach applies to other
data types as well. In particular, although the details are syntac-
tically rather heavy, our analysis can be extended to user-defined,
algebraic data types, as found in modern functional languages such
as Haskell and ML. Accounting for the use of let-polymorphism in
the underlying type system is largely an orthogonal issue.

The flow analysis presented in this paper is a typical forward
analysis: we keep track of the flow from producers to consumers.
As future work—and as part of our research agenda to develop
a reusable framework that can be used to construct precise and
modular type and effect systems, much like monotone frameworks
(Kam and Ullman 1977) are used to construct data-flow analyses—
we aim at formulating a backward variation of our analysis, in
which we keep track, for each production site, at which program
points constructed values are consumed.

Many static analyses for higher-order languages can, in a type-
based formulation, be expressed as variations on flow analysis.
We expect our approach to be of value to these analyses as well
and, hence, we plan to define higher-ranked polymorphic type and
effect systems for analyses such as binding-time analysis, strictness
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analysis, and usage analysis, and to compare the results obtained
with those from existing let-polymorphic systems.

If a polyvariant type-based analysis is used to drive an optimis-
ing program transformation, a trade-off arises between the modu-
larity of the analysis and the effectiveness of the transformation.
For let-polymorphism, this trade-off may be resolved by differ-
entiating between local and global let-bound identifiers (Holder-
mans and Hage 2010). For higher-ranked polymorphism, a similar
measure may be in order, i.e., to obtain more effective transforma-
tions, selected lambda-bound identifiers may have to receive non-
fully parametric types. Investigating how the algorithm of Section 7
can be adapted to such scenarios is a challenging but nevertheless
appealing direction for further work.

Finally, characterising the difference in expressiveness and the
trade-offs in implementation techniques between our analysis and
systems based on intersection types of various ranks promises to be
an interesting topic for further research.
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