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Anisotropy in the wetting of rough surfaces
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Abstract

Surface roughness amplifies the water-repellency of hydrophobic materials. If the roughness geometry is, on average, isotrop
shape of a sessile drop is almost spherical and the apparent contact angle of the drop on the rough surface is nearly uniform along
line. If the roughness geometry is not isotropic, e.g., parallel grooves, then the apparent contact angle is no longer uniform along
line. The apparent contact angles observed perpendicular and parallel to the direction of the grooves are different. A better under
this problem is critical in designing rough superhydrophobic surfaces. The primary objective of this work is to determine the mech
anisotropic wetting and to propose amethodology to quantify the apparentcontact angles and the drop shape. We report a theoretical and a
experimental study of wetting of surfaces with parallel groove geometry.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Amplification of hydrophobicity due to surface roug
ness is frequently seen in nature[1] and has been demo
strated for microfabricated rough surfaces[2–4]. Roughness
induced superhydrophobicity is considered a viable op
for surface tension induced drop motion in microfluidic d
vices. Another application is inspired by superhydropho
plant leaves. Water drops are almost spherical on some
leaves and can easily roll off, cleaning the surface in
process[1]. There are numerous applications of artificia
prepared ‘self-cleaning’ surfaces.

A drop can typically reside in two ways on a given rou
hydrophobic surface[3–7]. It either sits on the peaks of th
surface roughness or wets the grooves (to be referred to
wetted contact), depending on how it is formed. The ene
of these two states is different—the one with a larger c
tact angle has higher energy[5,8]. Which of the two state
has lower energy is determined by the geometry of the
face roughness[5,8]. A drop that sits on the peaks has ‘a
pockets’ along its contact with the substrate; hence it wil
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termed a ‘composite’ contact. A drop with a composite c
tact is of interest because it easily moves on the substrat
to reduced resistance[9,10]. This is desirable in application
such as ‘self-cleaning’ surfaces[6].

If the roughness geometry is isotropic then the drop sh
is almost spherical and the apparent contact angle of the
with the rough surface is nearly uniform along the con
line. The apparent contact angle for a ‘composite’ sphe
drop is given by Cassie’s formula[11] while that for a ‘wet-
ted’ spherical drop is given by Wenzel’s formula[12].

If the roughness geometry is not isotropic, e.g., para
grooves, then the apparent contact angle is no longer
form along the contact line. It was reported that the appa
contact angles observed perpendicular and parallel to th
rection of the grooves are different[3]. The exact mechanism
for anisotropic wetting and the resultant shape of the d
were not discussed[3]. Anisotropic wetting for chemically
patterned hydrophilic surfaces has also been observed[13].
Wenzel and Cassie formulas are insufficient to unders
this anisotropy in the wetting of rough surfaces. A be
understanding of this problemis critical in designing rough
superhydrophobic surfaces. In this paper we report a t
retical and an experimental study of the wetting of surfa
with anisotropic roughness. The primary objective of t
work is to determine the mechanism of anisotropic wet
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and to propose a methodology to quantify the apparent
tact angles and the drop shape.

In Section2 we will present results based on numeri
simulations to understand the primary characteristics of
drop shape on anisotropic roughness. In Section3, we will
present experimental results of contact angle measurem
The mechanism of anisotropic wetting will be discussed
concept of ‘equivalent’ contact line will be used to the
retically reproduce the experimental results. Discussion
conclusions will be presented in Section4.

2. Numerical simulation of the drop shape

Public domain software by Ken Brakke[14,15]is used to
numerically investigate the 3D drop shapes and the appa
contact angles on rough surfaces. We consider a rough
geometry of horizontal grooves (Fig. 1). A similar investi-
gation of drop shapes on chemically heterogeneous sur
has been reported earlier by Brandon et al.[16,17]. We ne-
glect gravity, which is a reasonable assumption for sm
drops.

The numerical procedure is based on minimizing the
energy of the system to obtain the equilibrium drop sha
The free energyG of the system is given by

(1)
G

σlf
= Slf −

�
Ssl

cosθadA,

where l denotes the liquid that makes the drop, f den
the fluid (typically air) surrounding the drop, s denotes
solid surface,Slf andSsl are the liquid–fluid and the solid
liquid interfacial areas of contact andσlf is the liquid–fluid
interfacial tension (or surface energy density).σlf is assumed
to be constant. The intrinsic contact angleθa of the substrate
material is defined by Young’s equation,

(2)cosθa = σsf − σsl

σlf
,

whereσsl andσsf are the local solid–liquid and solid–flui
interfacial tensions, respectively.θa > 90◦ represents a hy
drophobic contact. The expression for the free energy ca
appropriately modified to account for gravity. Minimizin

Fig. 1. Schematic of a sessile drop on a substrate with horizontal gro
Note the definitions of the different views.
.

t
s

s

the free energyG (Eq.(1)) with respect to the liquid–fluid in
terface shape, while constraining the drop volume to a fi
value, gives the equilibrium drop shape. In the solution p
cedure,G/σlf is minimized. Hence, for a given problem, th
only material parameter we need to specify isθa.

It can be shown[18] using variational principles that th
constrained minimization procedure, above, is equivalen
solving the Laplace equation for the pressure drop at e
point on the liquid–fluid interface,

(3)
2σlf

Rm
= �p,

along with Young’s equation(2) on the solid–liquid–fluid
contact line as the boundary condition.Rm is the mean ra-
dius of curvature and�p is the pressure drop, at a point o
the drop surface. A stationary drop on a substrate, in c
stant ambient pressure, will have a constant pressure dr
each point on the liquid–fluid interface (gravity neglected
Hence, it follows directly from Eq.(3) that a sessile dro
should have a constant mean curvature surface. In two
mensions, the arc of a circle is the only constant mean
vature curve. In three dimensions, the spherical surfac
one of the many possible constant mean curvature surfa

Detailed information about the numerical methodolo
to solve the constrained minimization problem (Eq.(1)) is
available in the Surface Evolver manual[14]. A brief de-
scription is given here.

The equilibrium drop shape is obtained iteratively fro
the initial shape. At each iteration the vertices on the liqu
fluid interface are moved in order to reduce the energ
the system while adhering to the imposed constraints (
constant volume). Iterations are repeated until the syste
energy does not change significantly. Suitable modificat
were done to the software to handle a rough substrate.

We consider a drop of a given volume placed on the ro
substrate. We start with an initial drop shape (Fig. 2). The
grooves underneath the drop are initially filled with liqu
(Fig. 2). The intrinsic contact angle of the drop on the so
surface is specified. The Surface Evolver is used to ob
the final equilibrium drop shape from a given initial sha
(Fig. 2).

Our objective here is to understand the general qualita
features of the drop shape. To this end we consider a dro
unit volume. The groove is 0.1 unit wide× 0.1 unit deep.
The pillar width is also taken as 0.1 unit. Multiple equili
rium shapes can be obtained for the drop depending to

Fig. 2. Initial and equilibrium configurations of a drop on six pillars. T
intrinsic contact angle is 90◦ .
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Fig. 3. (a) Front, (b) side, and (c) top views of the drop inFig. 2. A andB are
the lengths of the base of the drop in the side and front views, respect

Fig. 4. Equilibrium drop shapes as a function of the number of pillars
which it settles. Two figures on the left are for five pillars and the two
the right are for four pillars (figures for the two cases are not drawn to
same scale).

number of pillars on which the drop resides[19]. During a
given run we fixed the number of pillars on which a dr
sits and find if an equilibrium shape is possible. Note t
an equilibrium shape is not possible for any choice of
number of pillars underneath the drop.

Fig. 2shows the initial shape (which is arbitrary) and
final equilibrium shape when the drop resides on six pill
The left and the right edges of the drop are constraine
move on the first and the sixth horizontal pillars, respectiv
(seeFig. 2). The equilibrium shape thus obtained is the lo
minimum of the free energy. The resultant equilibrium sh
satisfies the condition that the mean curvature of the sur
is constant. The local contact angle along the actual so
liquid–fluid contact line is equal to the intrinsic contact an
(θa = 90◦ in this case).

Fig. 3 shows the various views of the drop inFig. 2. We
see that the fluid ‘pins’ on the edge of the horizontal pilla
For an intrinsic contact angle of 90◦, the apparent contact a
gle on the edge can vary between 90◦ and 180◦ (see Oliver et
al. [20]). The apparent contact angles in the front and side
different (Fig. 3), in qualitative agreement with previous e
periments[3]. We will report similar observations from ou
experiments to be discussed later in this paper. Note tha
apparent contact angles are not equal to the intrinsic co
angle of 90◦.

Fig. 4shows the effect of the number of pillars on whi
the drop resides. All the other parameters, i.e., the drop
ume, the liquid–fluid surface tension and the intrinsic con
angle, are the same as in the case inFig. 2. The shape of the
drop becomes longer as the number of pillars is redu
t

Fig. 5. Equilibrium drop shape forθa = 105◦ . All other parameters are th
same as the case inFig. 2.

Fig. 6. A cartoon of the front view of a drop with a composite contact w
a rough substrate with horizontal grooves.

The apparent contact angle increases in the front view a
number of pillars is reduced. In each case the left and
right edges are pinned on the edge of the horizontal pil
Of the three cases considered here, the free energy o
drop sitting on six pillars (Fig. 3) is minimum. The drop can
acquire any of the configurations above depending on
it is formed. Cases with more pillars were not considere
view of the computational cost.

In Figs. 2–4we considered drops with wetted contac
i.e., the grooves are filled with liquid. The qualitative fe
tures presented above remain typically unaltered for
drophobic cases (i.e.,θa > 90◦) if a wetted contact is forme
(Fig. 5)

In this work we are mainly interested in hydropho
drops with composite contacts with the substrate. In the
sections we will present experimental results for the c
posite contact case. The composite contact case can b
up for numerical simulations as depicted inFig. 6.

Fig. 6shows a cartoon of the front view of a drop on
pillars with a composite contact with the rough substr
The assumptions involved are that the liquid–fluid interf
on top of the empty grooves is almost flat. This is reason
when the drop size is large so that the mean radius of cu
ture is large compared to the size of the roughness feat
The problem is then equivalent to a drop on a heterogen
(i.e., intrinsic contact angle changes) flat surface. On the
izontal pillars the intrinsic contact angle is same as tha
the substrate material and at the location of the groove
effective intrinsic contact angle is 180◦ (Fig. 6).

We solve the composite drop case using Surface Evo
The intrinsic contact angle of the substrate material is ta
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Fig. 7. The drop shape on a rough substrate for the composite contact

to be 120◦. The pillar and groove widths and the drop vo
ume are the same as in the cases depicted inFigs. 2–4.
Similar to the wetted drop case, there are multiple equ
rium shapes depending on the number of pillars on which
drop resides.Fig. 7shows the drop shape for the case wh
there are six pillars underneath the drop. Once again we
pinning of the liquid at the edge of the pillars. The appar
contact angles in the front and side views are different
greater than 120◦.

A few comments are in order. We have observed the
ning of the fluid at the edge of the pillars for the cases
have considered (a few of which are presented above). T
is no guarantee that we have exhausted all the possible c
Thus, pinning may not exist for all possible equilibriu
shapes. However, we note that Surface Evolver simulat
of Brandon et al.[17] for chemically patterned surfaces d
show similar characteristics.

Based on the above we conclude that there are, as
pected, multiple equilibrium shapesfor a drop on a rough
surface with parallel grooves. A particular equilibrium sha
can be typically obtained by fixing the number of pillars
which the drop resides. For the case of a composite con
of a hydrophobic drop, the apparent contact angles in
front and side views are different and both are usually la
than the intrinsic value of the substrate material. In addit
the apparent angle in the front view is usually larger th
the apparent angle in the side view (also see the next
tion). This is a consequence of the squeezing and pinning o
the drop in the front view and stretching of the drop in
side view. Further discussion on this will follow in the ne
section.
.

s.

-

t

-

Table 1
Experimental data for drops of different volumesV on a rough surface o
parallel groove geometry

V (mm3) θF (◦) θS (◦) �θ (◦) A (mm) B (mm) Pillars

0.59 140.4 125.4 15 0.898 0.698 15
1.432 143.7 125 18.7 1.215 0.898 19
2.077 144.1 125.5 18.6 1.376 1.008 21
4.818 148.1 128 20.1 1.764 1.267 26
5.151 149.5 126.5 23 1.855 1.247 26
5.679 150.7 127.2 23.5 1.887 1.267 26

θF is the apparent contact angle in the front view,θS is the apparent con
tact angle in the side view and�θ = θF − θS. The number of pillars are
estimated based onB and the pillar and groove dimensions.

3. Experimental observation of anisotropic wetting

We fabricated a rough substrate with a parallel gro
geometry. The fabrication method is discussed by He
al. [4]. The substrate material was made of PDMS (θa =
114◦). The pillar width was 23 µm, the groove width w
25.6 µm and the pillar height (i.e., also the groove depth)
30 µm. A droplet of specified volume was gently depos
on the substrate by an automatic pipette. This resulted
composite contact[4]. The contact angles were then me
sured in the front and side views. We also measured
length of the base of the drop (see definitions inFig. 3) in
the front and side views. These measurements were don
a goniometer (AST Products Inc., VCA Optima XE, Bosto
MA) that takes and analyzes images of sessile droplet
surfaces. The data are given inTable 1. Each case was mea
sured after depositing a new drop.

In all cases the apparent contact angles in the two vi
are unequal and both are greater than the intrinsic con
angle of PDMS (θa = 114◦). The angle in the front view
is larger than the angle in the side view; correspondin
the base lengthB in the front view is smaller than the ba
lengthA in the side view (Fig. 8).

The apparent contact angleθc for a spherical compos
ite drop on this substrate can be calculated by Cassie
mula [5,11]. For the geometric parameters given above
getθc = 136◦. This value is betweenθF andθS. The Cassie
formula assumes a spherical drop with a circular contact
so that the apparent contact angle is uniform as seen fro
Fig. 8. Front (left) and side (right) views of a sessile drop on a rough surfacewith parallel groove geometry. It is evident from the front view that the drop is
sitting on top of the pillars. The drop volume is 5.15 mm3, θF = 149.5◦ , θS = 126.5◦ andB < A.
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Table 2
Comparison ofDsp,A,B andD for the experiments inTable 1

V (mm3) Dsp (mm) A (mm) B (mm) D (mm)

0.59 0.736 0.898 0.698 0.798
1.432 0.989 1.215 0.898 1.057
2.077 1.12 1.376 1.008 1.192
4.818 1.48 1.764 1.267 1.516
5.151 1.52 1.855 1.247 1.551
5.679 1.566 1.887 1.267 1.577

directions. This is not the case here. The average shape
contact line in this case is not circular sinceA �= B. Thus,
Cassie formula does not fully explain the observed beha
in Table 1.

The anisotropy in wetting can be explained based on
results presented in Section2. To this end, consider a sphe
cal composite drop on the rough substrate. The diameteDsp
of the circular contact line at the base of the spherical d
is given by

(4)Dsp= 2

(
3V

π(1− cosθc)2(2+ cosθc)

)1/3

sinθc,

whereV is the drop volume. InTable 2we list the value of
Dsp for different drop volumes in the experiment. For co
parison, the values ofA andB are listed again inTable 2.
We also note thatDsp is a good estimate (within 7%) of th
mean diameter,D = (A + B)/2, of the base of the drop (Ta-
ble 2).

It is seen fromTable 2that Dsp is always greater tha
B while it is always less thanA. This implies that the ex
perimentally observed drop is such that it resides on fe
pillars compared to a spherical composite drop on the s
substrate. Thus the base of the drop is ‘squeezed’ (Fig. 8)
in the front view compared to a spherical composite d
on the same substrate (B < Dsp). The ‘squeezing’ is poss
ble because the drop pins on the edge of the pillars as
in the front view (Section2). Due to squeezing and pin
ning, the apparent angleθF in the front view is larger than
θc = 136◦ (which is itself larger than the intrinsic conta
angleθa = 114◦ of the substrate material because of the p
ence of air in the grooves).

Since the drop is ‘trapped’ on fewer pillars, i.e., squee
as seen in the front view, it leads to ‘stretching’ (Fig. 8) in
the side view compared to a spherical composite drop on
same substrate (A > Dsp). This results in an elongated dro
as simulated in Section2. Stretching causes the apparent
gle θS in the side view to be smaller thanθc. Note thatθS
is still larger than the intrinsic contact angle of the subst
due to the presence of air.

The above two paragraphs qualitatively explain whyθF
andθS are greater than the intrinsic contact angle of the s
strate material. The fact thatθF > θS is because the drop si
on fewer pillars compared to the number of pillars on wh
a spherical composite drop would sit on the same subst
It is possible thatθF would be less thanθS if the drop some-
how got trapped on more number of pillars compared
e

n

.

the number of pillars on which a spherical composite d
would sit on the same substrate. We did not get this c
experimentally. These conclusions are consistent with
results of Brandon et al.[17] for chemically patterned su
faces.

In Section2 we have seen that different equilibrium dr
shapes are obtained depending on the number of pillar
which a drop resides. We also saw that the fewer the pi
on which the drop resides, the greater the apparent ang
the front view. The experimental observations are consis
with the simulation results. The discussion here, altho
qualitative, highlights the mechanism of anisotropy in w
ting.

Next, we obtain quantitative information regarding t
apparent contact angles and the drop shape. One opt
to perform simulations as in Section2 for a composite drop
on the substrate. The number of pillars on which the dr
in the experiments, reside range from 15 to 26. It is com
tationally very expensive to resolve the drop shape in s
detail. We consider a different approach, which is discus
below.

At the microscopic scale the actual contact line o
drop on a rough substrate is not smooth. However, the
tual contact line can be approximated, e.g., by an equiva
smooth circular contact line in the case of a spherical c
posite drop. This particular drop shape can be regarde
the one with the lowest energy among all the constant m
curvature surfaces of spherical shape[21]. This approxima-
tion works well for isotropic rough surfaces. For anisotro
rough surfaces, the drop can form a different mean curva
surface that is not spherical. In order to approximate su
shape we assume an equivalent smooth noncircular co
line along the base of the drop instead of resolving the de
of the actual contact line. We can then find a constant m
curvature surface that has this specified noncircular con
line. The resultant shape will give the apparent contact
gles in the front and side views.

We hypothesized different shapes for the equivalent c
tact line that matched the valuesA andB in the two views.
An ellipse is one choice but we found that a cubic equa
resulted in better agreement with the experimental data.
equation for the cubic contact line is

(5)

(
2|x|
A

)3

+
(

2|y|
B

)3

= 1,

where| | denotes the positive value of the variable. For e
of the experimental cases, we used the experimental va
of A andB in the cubic equation above. This gave the equ
alent contact line of the drop. Then we used Surface Evo
to find a constant mean curvature surface that has the s
fied contact line and the specified (experimental value)
ume. The resultant drop shapes were long—similar to th
in Section2. The apparent contact angles in the side
front views were then calculated from the simulated d
shapes.Fig. 9 shows a comparison of the experimental a
numerical values ofθF andθS. We see that the agreement
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Fig. 9. Comparison of the experimental and numerical values ofθF andθS.

Fig. 10. Comparison of the elliptic and cubic shapes of the equivalent
tact line forA = 1.887 andB = 1.267. The inset shows the direction of th
pillars and grooves. The contact line is shown only in the first quadran
can be symmetrically reproduced in the remaining quadrants.

fairly good (within 10–15%) and consistent in terms of t
trend. We note that a correct trend was obtained even wit
elliptic contact line but the quantitative agreement with
experimental data was not very good. This indicates tha
cubic curve for the equivalent contact line is a good appr
imation of the average shape of the actual contact line o
drop, at least for the parameter we have considered.

In Fig. 10we compare the elliptic and cubic shapes of
equivalent contact line forA = 1.887 andB = 1.267 (last
experimental date point inTables 1 and 2). We note that the
cubic line is ‘flatter’ on the sides, thus indicating a sha
closer to the ‘pinned’ contact line seen in Section2 above.
This further corroborates the mechanism of anisotropic w
ting as discussed above.

The trend inFig. 9can be understood better by consid
ing the parameters that influence the value of�θ . Nondi-
mensionalizing the variables of interest (�θ,V,A,B) we
get�θ = f (V ′, ε), where

(6)V ′ = 8V

πD3 , ε = A − B

A + B
.

V ′ is the nondimensional volume of the drop andε is a
nondimensional measure of the aspect ratio of the con
line of the drop. InFig. 11we plot�θ as a function ofε for
increasing values ofV ′. The plot is obtained from numerica
simulations by assuming an elliptic contact line at the b
Fig. 11. Plot of�θ as a function ofε for increasing values ofV ′. The plot
is obtained from numerical simulations by assuming an elliptic contact
at the base of the drop.

Table 3
�θ , V ′ andε for the experimental data points plotted inFig. 9

V (mm3) �θ (◦) (expt.) V ′ ε

0.59 15 2.955 0.125
1.432 18.7 3.091 0.150
2.077 18.6 3.121 0.154
4.818 20.1 3.523 0.164
5.151 23 3.514 0.196
5.679 23.5 3.686 0.196

of the drop. The qualitative features for the cubic contact
will be the same. We see that�θ increases with increasingε.
This is expected since larger values ofε imply a less spher
ical drop leading to greater anisotropy.Fig. 11 also shows
that for the same value ofε,�θ decreases asV ′ increases
The drop tends to be more spherical for larger volumes.

In Table 3we list �θ , V ′ andε for the experimental dat
points plotted inFig. 9. The results inFig. 11readily shed
light on the qualitative features of the changes in the va
of �θ .

4. Discussion and conclusions

We conclude that there are, as expected, multiple e
librium shapes for a drop on a rough surface with para
grooves. A particular equilibrium shape can be typically
tained by fixing the number of pillars on which the dr
resides. This helps to explain the anisotropy in the wet
of rough surfaces with parallel grooves.

We considered (theoretically and experimentally) a
drophobic composite drop, i.e., a drop that does not we
grooves of the rough surface. The apparent contact an
in the front and side views are different and both are lar
than the intrinsic value of the substrate material. The d
is typically trapped in a state where it resides on fewer
lars compared to a spherical composite drop on the ro
surface. As a result, the apparent angle in the front vie
larger than the apparent angle in the side view. This is a
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sequence of the squeezing and pinning of the drop in the
front view and stretching of the drop in the side view.

We find that the experimental data are reproduced
numerically if we assume an equivalent smooth noncirc
contact line along the base of the drop and find the
responding constant mean curvature surface. The resu
drop shape is not spherical. The apparent contact angl
the front and side views are in good agreement with the
perimental data.

It must be noted that the state of the drop we obse
experimentally is not necessarily the lowest energy stat
only implies that the observed state is a local low ene
state that is well separated from the ‘neighboring’ lower
ergy states by an energy barrier. Hence, it gets trapped i
observed state. Numerical simulations of Brandon et al.[17]
for chemically patterned surfaces show that the shape
whichA andB are almost equal (i.e., shapes close to sp
ical) have the lowest energy among all the possible equ
rium states. The same is expected to be valid for the prob
considered in this paper and is supported by our prelimin
results not reported here. Thus the optimum number of
lars under the drop would correspond to the most sphe
drop shape. A detailed investigation of this aspect can
done either by highly resolved simulations as outlined i
Section2 or by considering the approach of an equival
noncircular contact line discussed in Section3.

Yoshimitsu et al.[22] showed that the sliding prope
ties of drops are different on anisotropic substrates suc
those considered in this work. They showed that drops s
better when the grooves are parallel to the slope. This
pears consistent with the conclusions of our work. Pinn
of the fluid on the edge of the pillars will cause greater
sistance to sliding when the grooves are perpendicular t
slope.
t

r
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