
GPU Computation in Bioinspired Algorithms:

A Review

M.G. Arenas, A.M. Mora, G. Romero, and P.A. Castillo

Department of Architecture and Computer Technology. CITIC
University of Granada (Spain)

{mgarenas,amorag,gustavo,pedro}@atc.ugr.es

Abstract. Bioinspired methods usually need a high amount of compu-
tational resources. For this reason, parallelization is an interesting alter-
native in order to decrease the execution time and to provide accurate
results. In this sense, recently there has been a growing interest in devel-
oping parallel algorithms using graphic processing units (GPU) also ref-
ered as GPU computation. Advances in the video gaming industry have
led to the production of low-cost, high-performance graphics processing
units (GPUs) that possess more memory bandwidth and computational
capability than central processing units (CPUs). As GPUs are available
in personal computers, and they are easy to use and manage through
several GPU programming languages (CUDA, OpenCL, etc.), graphics
engines are being adopted widely in scientific computing applications,
particularly in the fields of computational biology and bioinformatics.
This paper reviews the use of GPUs to solve scientific problems, giving
an overview of current software systems.

1 Introduction

Recently there has been a growing interest in Graphics Processing Unit (GPU)
computation. The fact that GPUs have the ability to perform restricted parallel
processing has elicited considerable interest among researchers with applications
requiring intensive parallel computation.

GPUs are specialized stream processors, initially useful for rendering graphics
applications. Typically, a GPU is able to perform graphics manipulations at a
much higher speed than a general purpose CPU, since the graphics processor
is specifically designed to handle certain primitive operations which occur fre-
quently in graphics applications. Internally, the GPU contains a number of small
processors that are used to perform calculations. Depending on the power of a
GPU, the number of threads that can be executed in parallel on such devices
is currently in the order of hundreds and it is expected to multiply in a few
months. Nowadays, developers can write (easily) their own high-level programs
on GPU. Due to the wide availability, programmability, and high-performance
of these consumer-level GPUs, they are cost-effective for, not just game playing,
but also scientific computing. Now, GPUs are exposed to the programmer as a

J. Cabestany, I. Rojas, and G. Joya (Eds.): IWANN 2011, Part I, LNCS 6691, pp. 433–440, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



434 M.G. Arenas et al.

set of general-purpose shared-memory SIMD (Single Instruction Multiple Data)
multi-core processors. This makes these architectures well suited to run large
computational problems, such as those from bioinformatics area.

Then, the goal of this article is to review the use of GPUs to solve bioinfor-
matic problems, explaining the general approach to using a GPU and given an
overview of currently usable software systems.

To this end, the rest of this paper is structured as follows: Section 2 presentes
GPUs as higly parallel devices architectures. Section 3 gives a background on the
different higher level programming languages used to profit GPUs. Finally, Sec-
tion 4 reviews the related works in bioinformatic applications on GPUs, followed
by a brief conclusion (Section 5).

2 Throughput, Parallelism and GPUs

Moore’s Law describes a long-term trend in the history of computing hardware:
the number of transistors that can be placed inexpensively on an integrated
circuit has doubled approximately every two years. The trend has continued for
more than half a century and is not expected to stop (theoretically until not too
many years above 2015). On 2005 Gordon Moore stated in an interview that the
law cannot be sustained indefinitely because transistors would eventually reach
the limits of miniaturization at atomic levels.

Parallel computation has recently become necessary to take full advantage
of the gains allowed by Moore’s law. For years, processor makers consistently
delivered increases in clock rates and instruction-level parallelism, so that single-
threaded code executed faster on newer processors with no modification. Now, to
manage CPU power dissipation, processor makers favor multi-core chip designs,
and software has to be written in a multi-threaded or multi-process manner to
take full advantage of the hardware. Graphics processors have rapidly matured
over the last years, leaving behind their roots as fixed function accelerators and
growing into general purpose computational devices for highly parallel work-
loads. Some of the earliest academic work about GPUs as computational devices
date back to University of Washington in 2002[1] and Stanford in 2004[2].

3 GPUs Programming

3.1 Programming Model

In respect to the programming tools which a developer can use to exploit a
GPU, most of the Application Program Interfaces (APIs) are based on C-like
languages, but having some restrictions to improve the parallel execution, such
as no recursion or limited pointers. Some of them use the open source compiler
LLVM [3] from University of Illinois.

From 2003 the two main GPU developers, ATI an NVIDIA, started selling
hardware solutions that need to be programmed with proprietary APIs. Despite
previous work, the first widely supported GPUs were DX10 generation GeForce



GPU Computation in Bioinspired Algorithms: A Review 435

8 series from NVIDIA, using the famous API CUDA. On the other hand, the
Radeon HD2xxx series from ATI, applied the API Close To Metal.

In addition, some people at Apple betted on the potencial of GPUs and de-
veloped another tool , known as OpenCL. While, at the same time, Microsoft
created DirectCompute (for Windows).

OpenCL aimed to became the OpenGL of heterogeneous computing for paral-
lel applications. It is a cross-platform API with a broad and inclusive approach to
paralelism, both in software and in hardware. While explicitly targeting GPUs,
it also considers multi-core CPUs and FPGAs. The applications are portable
across different hardware platforms, varying performance while keeping func-
tionality and correctness. The first software implementations date back to 2009.

3.2 Execution Model

OpenCL, DirectCompute and CUDA are APIs designed for heterogeneous com-
puting with both a host CPU and an optional GPU device. The applications have
serial portions, that are executed on the host CPU, and parallel portions, known
as kernels. The parallel kernels may execute on an OpenCL compatible device
(CPU or GPU), but synchronization is enforced between kernels and serial code.
OpenCL is distinctly intended to handle both task and data parallel workloads,
while CUDA and DirectCompute are primarily focused on data parallelism.

A kernel applies a single stream of instructions to vast quantities of data
that are organized as a 1-3 dimensional array. Each piece of data is known as a
work-item in OpenCL terminology, and kernels may have hundreds or thousands
of work-items. The kernel itself is organized into many work-groups that are
relatively limited in size; for example a kernel could have 32K work-items, but
64 work-groups of 512 items each.

Unlike traditional computation, arbitrary communication within a kernel is
strongly limited. However, communication and synchronization is generally al-
lowed locally within a work-group. So work-groups serve two purposes: first,
they break up a kernel into manageable chunks, and second, they define a lim-
ited scope for communication.

3.3 Memory Model

The memory model defines how data is stored and communicated within a device
and between the device and the CPU. DirectCompute, CUDA and OpenCL share
the same four memory types (with different terminology):

– Global memory: it is available for both read and write access to any work-
item and the host CPU.

– Constant memory: is a read-only region for work-items on the GPU device,
but the host CPU has full read and write access. Since the region is read-only,
it is freely accessible to any work-item.



436 M.G. Arenas et al.

– Private memory: is accessible to a single work-item for reads and writes and
inaccessible for the CPU host. The vast majority of computation is done
using private memory, thus in many ways it is the most critical term of
performance.

– Local memory: is accessible to a single work-group for reads and writes and
is inaccessible for the CPU host. It is intended for shared variables and
communication between work-items and is shared between a limited number
of work-items.

4 Bioinpired Methods on GPUs

This section reviews different Evolutionary Computation (EC) approaches using
GPUs found in bibliography. The main EC paradigms are: Evolutionary Strate-
gies (ES) [4], Evolutionary Programming (EP) [5], Genetic Algorithms (GA) [6]
and Genetic Programming (GP) [7,8,9] with hybridations and variations on each
one. Moreover, parallel EC approaches can be classified in master-slave model,
fine-grained, or coarse-grained. All the EC approaches on GPUs are parallel, thus
a classification depending on the parallel model used is presented in this section.
We will focus on master-slave, fine-grained (cellular EAs), coarse-grained (Island
Model or Deme Model) approaches; and a hierarchical model [10].

Master-Slave Approaches. Wong et al. [11] proposed an EP algorithm for
solving five simple test functions, called Fast Evolutionary Programming (FEP).
In this master-slave approach, some actions are executed in the CPU (main loop
of the algorithm and crossover operator), while evaluation and mutation are run
in the GPU (no need of external information). The competition and selection
of the individuals are performed on the CPU, while mutation, reproduction
and evaluation are performed on the GPU. In this case, the reproduction step
implies interaction among, at least, two individuals. A maximum speedup of
x5.02 is obtained when the population size increases. This is the most common
organization in GPU implementations, since no interaction among individuals is
required during the evaluation, so this step can be fully parallelizable.

A GP method proposed by Harding and Banzhaf [12] uses the GPU only for
performing the evaluation, while the rest of the steps of the algorithm are run on
the CPU. The authors tested real-coded expressions until 10000 nodes, boolean
expressions until 1500 nodes, and some real world problem where they evaluate
expressions until 10000 nodes. In some cases, the results yielded speedup of
thousand times.

Zhang et al. [10] adapt different EAs to a GPU using CUDA. The authors
implemented an hierarchical parallel genetic algorithm using a deme model at the
high level, and a master-slave schema at the low level. In this implementation,
the CPU initializes the populations and distributes them to thread blocks in
shared memory. Then, GPU threads within each block run a GA independently
(selection, crossover, mutation and evaluation), and migrates individuals to other
thread blocks in its neighborhood. In this case, no speedup results were reported.



GPU Computation in Bioinspired Algorithms: A Review 437

Fine-grained Approaches. In this scheme, Wong et al. [13,14] proposed a
parallel hybrid GA (HGA) where the whole evolutionary process is run on the
GPU, and only the random number generation is done in CPU. Each GA indi-
vidual is set to each GPU, and each one selects probabilistically an individual in
its neighborhood to mate with. Just one offspring individual is generated, and
replaces the old one in that GPU. The authors compare HGA with a standard
GA run in a CPU and the FEP [11] algorithm. Using a new pseudo-deterministic
selection method, the amount of random numbers transferred from the CPU is
reduced.HGA reaches speedup of 5.30 when compared against the sequential
version.

Yu et al. [15] implemented the first real cellular EA using GPU, for solving the
Colville minimization problem. They place the population in a toroidal 2D grid
and use the classical Von Newmann neighborhood structure with five cells. They
store chromosomes and their fitness values in texture memory on the graphic
card, and both, fitness evaluation and genetic operations, are implemented en-
tirely with fragment programs executed in parallel on GPU. Real-coded indi-
viduals of a population are represented as a set of 2D texture maps. BLX − α
crossover and non-uniform mutation are run as tiny programs on every pixel at
each step in a SIMD-like fashion, solving some function optimization problems
and reaching a speedup of x15 with a population of 512x512 individuals. They
store a set of random numbers at the beginning of the evolution process to solve
the random number generation problem when using GPU processors.

Luo et al. [16] implemented a cellular algorithm on GPU to solve three dif-
ferent SAT problems using a greedy local search (GSAT) [17] and a cellular GA
(cGA). They saved local minimums using a random walk strategy, jumping to
other search space location. The cellular GA adopts a 2D toroidal grid, using
the Moore neighborhood, stored on texture GPU memory. This implementation
generates the random numbers in the GPU (using a generated seed on the CPU
at the beginning of the process). The GPU version reduces in about 6 times the
running time.

Li et al. [18] proposed a cellular algorithm on GPU for solving some common
approximation functions. The authors reported experiments using big popula-
tions (up to 10000 individuals) reaching speedups of x73.6 for some implemen-
tations.

In [19] the authors propose a fine-grained parallel immune algorithm (FGIA)
based on GPU acceleration, which maps parallel IA algorithm to GPU using
CUDA. The results show that the proposed method (even increasing the popu-
lation size) reduces running time.

Alba et al. [20] use CUDA and store individuals and their fitness values in the
GPU global memory. Both, fitness evaluation and genetic operators, are run on
GPU (no CPU is used). They use a pseudo random number generator provided
by the SDK of CUDA named Merseinne Twister. Their experiments include
some general discrete and continuous optimization problems, and they compare
physical efficiency and numerical efficacy with respect to CPU implementation.



438 M.G. Arenas et al.

Coarse-grained Approaches (island model). With regard to the last topol-
ogy, one of the first island models on GPU approaches was published on the GPU
competition of GECCO 2009 [21]. It presents some technical details of an island
model entirely hard-coded on GPU, with a ring-like topology. Nevertheless, the
evolutionary operators implemented on GPU are only specific to the GECCO
competition, and the validity of the experiments just works on a small number
of problems.

Tsutsui et al. [22] propose run a coarse-grained GA on GPU to solve the
quadratic assignment problem (QAP) using CUDA. This is one of the hard-
est optimization problems in permutation domains. Their model generates the
initial population on CPU and copied it to the GPU VRAM; then, each subpop-
ulation in a GPU (NVIDIA GeForce GTX285) is evolved. At some generations,
individuals in subpopulations are shuffled via the GPU VRAM. Results showed
a speedup from x3 to x12 (using eight QAP instances), compared to the Intel i7
965 processor.

The model by Luong et al. [23] is based on a re-design of the island model.
Three different schemes are proposed: The first one implements a coarse-grained
EA using a master-slave model to run the evaluation step on GPU. The second
one distributes the EA population on GPUs, while the third proposal extends
the second one using fast on-chip memory. Second and third approaches reduce
the CPU/GPU memory latency, although their parameters (number of islands,
migration topology, frequency and number of migrants) must be adapted to the
GPU features. Sequential and parallel implementations are compared, obtaining
a speedup of x1757 using the third approach.

Posṕıchal et al. [24,25] propose a parallel GA with island model running on
GPU. The authors map threads to individuals, thus, threads-individuals can be
synchronized easily in order to maintain data consistency, and on-chip hardware
scheduler can swiftly swap existing islands between multiprocessors to hide mem-
ory latency. Fast, shared memory within the multiprocessor is used to maintain
populations. Since the population size is limited to 16KB per island on most
GPUs, if the population is larger, slower main memory has to be used. The mi-
gration process is based on an asynchronous unidirectional ring, that requires an
inter-island communication (slower main memory has to be used). The authors
report speedups up to 7000 times higher on GPU compared to CPU sequential
version of the algorithm.

5 Conclusions

In this paper we have reviewed the use of GPUs to implement bioinspired algo-
rithms to solve optimization problems. We have commented the GPU computing
general approach, and given an overview of currently usable programming lan-
guages and software tools.

Most of the bio-inspired methods use the GPU mainly to speed up just the
fitness evaluation (usually the most time-expensive process). In most of the
EC approaches, competition and selection are performed by CPU, while fitness



GPU Computation in Bioinspired Algorithms: A Review 439

evaluation, mutation and reproduction are performed on GPU (which is a
massively parallel machine with shared memory). GPU allows processors to
communicate with any other processors directly, thus more flexible fine-grained
algorithms can be implemented on GPU.

In general, approaches found in literature obtain speedups up to several thou-
sands times higher on GPU compared to CPU sequential versions of the same
algorithms.

However, as the programming tools improve, newer EC approaches run the
whole optimization algorithm on the GPU side, with no need of CPU interaction.

Acknowledgements

This work has been supported in part by the CEI BioTIC GENIL (CEB09-0010)
Programa CEI del MICINN (PYR-2010-13) project, the Junta de Andalućıa
TIC-3903 and P08-TIC-03928 projects, and the Jaén University UJA-08-16-30
project.

References

1. Thompson, C.J., Hahn, S., Oskin, M.: Using modern graphics architectures for
general-purpose computing: a framework and analysis. In: Proceedings of the 35th
Annual ACM/IEEE International Symposium on Microarchitecture. MICRO 35,
pp. 306–317. IEEE Computer Society Press, Los Alamitos (2002)

2. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Han-
rahan, P.: Brook for gpus: stream computing on graphics hardware. ACM Trans.
Graph. 23, 777–786 (2004)

3. Illinois, U.: The LLVM Compiler Infrastructure. University of Illinois at Urbana-
Champaign (2011), http://llvm.org

4. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzip-
ien der biologischen evolution. Frommann-Hozboog, Stuttgart (1973)

5. Fogel, L.: Artificial Intelligence Through Simulated Evolution. John Wiley & Sons,
Chichester (1966)

6. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan,
Boston (1975)

7. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge (1992)

8. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge (1994)

9. Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.: Genetic Programming 3:
Darwinian Invention and Problem Solving. Morgan Kaufman, San Francisco (1999)

10. Zhang, S., He, Z.: Implementation of parallel genetic algorithm based on CUDA.
In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 24–30.
Springer, Heidelberg (2009)

11. Wong, M., Wong, T., Fok, K.: Parallel evolutionary algorithms on graphics pro-
cessing unit. In: The 2005 IEEE Congress on Evolutionary Computation, vol. 3,
pp. 2286–2293 (2005)

http://llvm.org


440 M.G. Arenas et al.

12. Harding, S., Banzhaf, W.: Fast genetic programming and artificial developmental
systems on gpus. In: 21st International Symposium on High Performance Comput-
ing Systems and Applications, HPCS 2007, vol. 2 (2007)

13. Wong, M., Wong, T.: Parallel hybrid genetic algorithms on Consumer-Level graph-
ics hardware. In: IEEE Congress on Evolutionary Computation, CEC 2006, pp.
2973–2980 (2006)

14. Wong, M., Wong, T.: Implementation of parallel genetic algorithms on graphics
processing units. In: et al., M.G., ed.: Intelligent and Evolutionary Systems. SCI,
vol. 187, pp. 197–216. Springer, Heidelberg (2009)

15. Yu, Q., Chen, C., Pan, Z.: Parallel genetic algorithms on programmable graphics
hardware. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612,
pp. 1051–1059. Springer, Heidelberg (2005)

16. Luo, Z., Liu, H.: Cellular genetic algorithms and local search for 3-SAT problem on
graphic hardware. In: IEEE Congress on Evolutionary Computation, CEC 2006,
pp. 2988–2992 (2006)

17. Selman, B., Kautz, H.: Domain-independent extensions to gsat: Solving large struc-
tured satisfiability problems. In: PROC. IJCAI 1993, vol. 93, pp. 290–295 (1993)

18. Li, J., Wang, X., He, R., Chi, Z.: An efficient fine-grained parallel genetic algorithm
based on GPU-Accelerated. In: IFIP International Conference on Network and
Parallel Computing Workshops, NPC 2007, pp. 855–862 (2007)

19. Li, J., Zhang, L., Liu, L.: A parallel immune algorithm based on fine-grained model
with gpu-acceleration. In: Proceedings of the 2009 Fourth International Conference
on Innovative Computing, Information and Control, ICICIC 2009, pp. 683–686.
IEEE Computer Society, Los Alamitos (2009)

20. Vidal, P., Alba, E.: Cellular genetic algorithm on graphic processing units. In: et
al., J.G., ed.: Nature Inspired Cooperative Strategies for Optimization (NICSO
2010). SCI, vol. 284, pp. 223–232. Springer, Heidelberg (2010)

21. Pospichal, P., Jaros., J.: Gpu-based acceleration of the genetic algorithm. Technical
report, GECOO competition (2009)

22. Tsutsui, S., Fujimoto, N.: Solving quadratic assignment problems by genetic algo-
rithms with gpu computation: a case study. In: GECCO 2009: Proceedings of the
11th Annual Conference Companion on Genetic and Evolutionary Computation
Conference, pp. 2523–2530. ACM, New York (2009)

23. Luong, T.V., Melab, N., Talbi, E.G.: GPU-based Island Model for Evolutionary
Algorithms. In: Genetic and Evolutionary Computation Conference (GECCO),
Portland United States (2010)

24. Posṕıchal, P., Jaros, J., Schwarz, J.: Parallel genetic algorithm on the CUDA ar-
chitecture. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yan-
nakakis, G.N. (eds.) EvoApplicatons 2010. LNCS, vol. 6024, pp. 442–451. Springer,
Heidelberg (2010)

25. Posṕıchal, P., Schwarz, J., Jaroš, J.: Parallel genetic algorithm solving 0/1 knapsack
problem running on the gpu. In: 16th International Conference on Soft Computing
MENDEL 2010, Brno University of Technology, pp. 64–70 (2010)


	GPU Computation in Bioinspired Algorithms: A Review
	Introduction
	Throughput, Parallelism and GPUs
	GPUs Programming
	Programming Model
	Execution Model
	Memory Model

	Bioinpired Methods on GPUs
	Conclusions
	References


