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Abstract

Soft state has been a mantra of Internet protocol de-
sign for the past decade. System designers build proto-
cols that implement soft state mechanisms based on intu-
ition or on qualitative arguments that the design is “bet-
ter”, yet there has never been a formal performance evalu-
ation study that draws the same conclusion. In fact, previ-
ous attempts [7, 12] to build such a quantitative argument
have found that pure soft state protocols significantly under-
perform their hard state counterparts, and that only soft-
hard hybrids can match hard state protocol performance. In
this paper, we argue otherwise. We develop models that pro-
vide a performance-oriented explanation and justification
of the Internet designer’s intuition. The novel observation
is that, if network conditions are known, a hard state pro-
tocol can always be configured to outperform its soft state
counterpart. However, in reality, network conditions are
unpredictable, and that soft state protocols are much more
resilient to unanticipated fluctuations in these conditions.

Keywords: methodology of designing network protocols,
stochastic analysis, robustness.

1 Introduction

A communication protocol is a procedure used by two
interacting parties to exchange information across a com-
munication channel. The exchange of course includes the
data that the receiving party wishes to obtain from the send-
ing party. However, the same communication channel is
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often used by the end-points to exchange the control in-
formation that is necessary to successfully and efficiently
complete their communication transaction. For instance,
control information is exchanged for the purposes of initiat-
ing and terminating the communication session, recovering
from lost transmissions, and regulating the rate of data ex-
change.

Protocols often maintain a modifiable “state” that is
used to track the progress of the communication. Usually,
the various endpoints’ states are inter-dependent. For in-
stance, if a connection-oriented protocol is used to trans-
fer data from a sender to the receiver, both the sender and
receiver maintain state that indicates the existence of the
connection. Consistency of this state is necessary to ensure
proper and efficient exchange of data: the sender should at-
tempt to send data to the receiver when and only when the
receiver expects to receive this data.

For over 15 years, the Internet community has openly
encouraged the use of “soft state” as the means to main-
tain consistency between inter-dependent states. To define
“soft” state, we must first define the state’s default value. A
communication endpoint’s state can take on several values,
but reverts to its default value if, within a given time period,
the endpoint receives no communication that explicitly sets
the value. This time interval is commonly referred to as
the timeout period and its length is specified within the pro-
tocol. This returning of state to a default value is applied
in almost every communication protocol in existence, re-
gardless of whether the protocol utilizes soft or hard state
design. For instance, a connection-oriented protocol can be
viewed as implicitly maintaining a boolean state that is set
to TRUE when the connection is open, and is FALSE when
the connection is closed. The default state of the connection
would be FALSE. This is because if, after a period of time,
the communication endpoint receives no message within the
timeout interval, it sets its state to FALSE, effectively clos-
ing the connection.

What determines the “softness” of a protocol’s state is
the manner in which the timeout mechanism is used to re-
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vert the state back to its default value. In a hard state
protocol, the timeout is used for this reversion only as an
emergency failsafe, after normal operating procedures have
failed. Thus, hard state protocols must implement messages
whose purpose is to explicitly communicate the desire to re-
vert state to its default value. In our example above, the nor-
mal procedure for terminating a connection in a hard state
protocol would require explicit messaging that communi-
cates that the connection should be terminated, and that the
state should revert to its FALSE value. The change via
timeout is used only in extreme situations when some unex-
pected network condition prevents this explicit messaging
from completing.

In contrast, soft state protocols intentionally utilize the
timeout mechanism under normal operating conditions to
return state to its default value. Hence, soft state protocols
do not require explicit messages that return state to its de-
fault, though such messaging may exist as an optimization.

Internet designers that promote soft state design have
provided intuitive, high level qualitative explanations for
why soft state protocols are “better” than their hard state
alternatives [4]. However, there has never been a study that
quantitatively explains this intuition from a performance
standpoint. In fact, the results of previous work [7, 12] that
compare the performance of hard and soft state protocols,
measure the fraction of time that the communicating entities
have inconsistent views of the system state. These works
conclude that soft state protocols are consistent for a smaller
fraction of time than their hard state counterparts. Further-
more, they posit that, in order to improve consistency, soft
state protocols should incorporate a hard state-like, explicit
messaging to circumvent the long lapses that may occur be-
tween the time when one communication endpoint chooses
to revert to the default state and the other’s refresh interval
completes.

Given the above result, does this mean that Internet de-
signers’ intuition that soft state is a better design is unjus-
tified? We show that this is not the case. In this paper, we
develop analytical models that provide an explanation that
supports the Internet designer’s intuition that soft state is
indeed “better”. Our observation is that, because network-
ing conditions are unpredictable, it is important to construct
protocols so that they are robust to the wide variety of net-
work conditions to which they may be exposed. By “robust”,
we mean that the protocol’s performance under a variety
of network conditions is above an acceptable threshold, but
need not be optimal.

Our findings are that hard state protocols, which can be
optimized to outperform their soft state counterparts under
a given set of network conditions, are less robust than their
soft state counterparts. As the underlying network condi-
tions are pushed toward unexpected extremes, hard state
protocol performance degrades at a much faster rate than

that of soft state protocols. This observed phenomenon
is in agreement with the philosophy of the mathematical
theory of Highly Optimized Tolerances (HOT) [2], which
states that design decisions that provide optimum protec-
tion against known disturbances or uncertainty can lead to
catastrophic failure against unknown or rare disturbances.

In our paper, we identify three characteristics of soft state
protocols that naturally make them more robust than their
hard state counterparts:

1. Soft state protocols are less trusting of misbehaving
endpoints.

2. Soft state protocols use the timeout mechanism to cre-
ate a a virtual, predictable, feedback channel.

3. Soft state protocols are less likely to flood the network
with signaling traffic when network conditions deviate
from the norm.

We demonstrate each characteristic in the context of an
anomalous network setting that causes the network’s condi-
tions to differ greatly from their expected norms: (1) denial
of service attacks; (2) overload of a shared, bidirectional
communication channel; and (3) the rapid joining and leav-
ing of participants from a broadcast session. To demon-
strate the first two characteristics, we use simple models of
hard and soft state protocols to measure the blocking rate:
the likelihood that a server is unable to serve an incoming
request. The third characteristic is explored using a sim-
ple model of hard and soft state protocols that measures the
feedback rate of the broadcast listeners. These three models
include tunable parameters that vary the intensity of an un-
desirable network condition. We first set the tunable param-
eters to the expected intensity of the condition, and optimize
the protocols’ performance for this set of parameter values.
We then modify these parameters to increase the intensity
of the condition, and observe the performance of hard and
soft state protocols.

Our results show that soft state protocols “survive” un-
der more extreme conditions where their hard state counter-
parts fail. In essence, these results quantify that by using
soft state design, the network, while perhaps often offer-
ing a slightly degraded service under normal conditions, is
more robust to variations in these conditions.

The remainder of the paper proceeds as follows. In Sec-
tion 2, we provide the motivation why one needs to consider
robustness in the design of Internet protocols. In Section 3,
we present a generic and unified model to study the per-
formance of soft/hard state protocols and we use the denial
of service attack to illustrate their respective robustness. In
Section 4, we present a study of a correlated feedback lossy
channel and compare the performance of soft/hard state pro-
tocols. In Section 5, we explore the implosion rate of a
polling protocol and show that servers that utilize soft state
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protocols are not overwhelmed with messages when mem-
bership changes at a high rate. Finally, we conclude in Sec-
tion 6

2 Motivation

We begin by elaborating on what we mean by “robust-
ness”, since it is this property along which we show that
soft state protocols outperform their hard state counter-
parts. Figure 1 illustrates the general phenomenon we ob-
serve. The two increasing curves labeled A and B each plot
the performance of a protocol as a function of some net-
work condition, where a lower value indicates better per-
formance. The performance can be one of many measures,
e.g., the loss rate or delay across the channel. Similarly, the
network condition can be one of many: the rate at which
attackers initiate denial of service attacks, the expected life-
time of a session, or the fraction of links in a network that
have failed.
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Figure 1. Robustness of a protocol.

The grey box depicts the normal operating regime of the
network. On a day-to-day basis, the value of the network
condition will be within the scope of the grey box, so most
of the time, the performance of the protocol A, indicated by
the solid curve, will be larger (worse) than the performance
of protocol B, indicated by the dashed curve. The horizon-
tal dashed line represents a threshold on the level of accept-
able performance. A protocol’s performance is considered
to be acceptable as long as its value remains below this line,
and is unacceptable when its value rises above the line. For
many performance measures, determining the value of this
threshold in practice is for the most part a matter of opinion

or business strategy. However, for the sake of presenting
our argument, assume that, in this instance, it has a fixed,
known value.

Even though protocol B outperforms protocol A under
normal network conditions, protocol A is more robust, in
the sense that the network condition must be stretched fur-
ther from its normal operating point before protocol A’s per-
formance rises above the acceptable threshold level. In the
next three sections, we will construct simple yet precise
models that show that when one compares hard state and
soft state protocols designed for the same application, hard
state protocols will mimic the behavior of protocol B and
soft state protocols will mimic the behavior of protocol A.

3 The impact of the refresh timer value

In this section we perform a simple cost analysis of the
design choices that determine the timer values of a soft state
protocol (and the corresponding heartbeat value of hard
state protocols). Before proceeding with the analysis, we
enumerate the different kinds of costs that affect the opera-
tion of these signaling protocols (these costs are similar to
those described in [7]).

1. Application-specific inconsistency cost.

2. State (Re)Initialization cost.

3. Refresh overhead.

4. Stale state cost.

Figure 2 presents an abstract analytical model that de-
scribes the behavior of both hard and soft state versions
of protocols. The principle difference in the operation of
the two protocols is the time over which the refresh timer
expires, and that the soft state protocol requires a small
amount of additional time after the session officially ends
for the refresh timer to expire and reset the sender to its de-
fault state.

I V TD

S
p

p

(1−p)

(1−p)λ

Figure 2. Analytical Model for hard and soft
states.
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In the model, we assume that the connection has a life-
time (with an average connection life time of ). The
state I represents the initialization state. A connection is
initialized via initialization messages from a sender that ar-
rive to system at rate . Once initialized, the connection
remains alive for time units in the V (valid) state, with
periodic refresh/heartbeats sent every time units. Finally,
when the sender decides to tear down the connection, the
system transitions to the TD (teardown) state, or, if the tear-
down message is lost then it goes to the S (stale) state. Both
refresh and teardown messages are lost with a probability

. Most implementations of protocols require the loss of a
small number of consecutive refresh/heartbeat messages be-
fore state expires or times out. For simplicity of exposition
we will assume that this number is 1, as it does not affect
the nature of our conclusions.

The parameter in the hands of the designer is the time,
, of the refresh interval. We now explore the tradeoffs

a designer faces in choosing the right , and we measure
performance by associating a different cost with each
event that transpires within the communication system. In
general, these costs can be any non-linear, increasing func-
tions of their respective arguments, but again, for simplicity
of analysis we will model each cost by a linear function, i.e.,
the costs are simply constants multiplying the corre-
sponding arguments. Since the lifetime of a state is , the
total number of refresh events that happen during a connec-
tion lifetime is approximately . Let the cost of each
refresh message be .

The protocol enters an inconsistent state when a refresh
message is lost. For small values of channel loss probability,
the number of such events can be approximated by .
The cost of being in an inconsistent state is application spe-
cific, and is usually in proportion to the length of time spent
in the inconsistent state. This induces a tradeoff on the time
of the refresh timer. A shorter time increases the number
of refresh messages during the lifetime of the connection
and hence increases the likelihood that the system enters an
inconsistent state (modulated with the channel loss proba-
bility ). Conversely, a longer time increases the expected
time spent in the inconsistent state once entered.

If we let be the cost per unit time of being in an
inconsistent state, then the total cost over the lifetime of a
connection is approximately . Once the system en-
ters an inconsistent state, there is a cost to re-initialize the
connection, for instance due to a reallocation of resources
at the server. The total number of such events over the life-
time of the connection is 1+ (the initial installation
and subsequent re-installation with every refresh message
loss event). If we assign a cost of for (re)initialization,
then the total cost is . The cost of a stale state
is proportional to the length of time spent in the stale state,
and thus is proportional to the timeout interval, which in

turn is of the order of the refresh interval. Again, assigning
a cost as the cost per unit time being in the stale state,
the total cost for being in the stale state is . For a pure
soft state protocol, this cost is incurred every time a state ex-
pires, whereas for a hard state protocol it is incurred when
the state removal message gets lost, which in turn occurs
with the channel loss probability . We assign a probability
to this event , which is set to 1 for a pure soft state pro-
tocol and is set to for a hard state protocol or a soft state
hybrid that includes explicit state removal [7]. Now we look
at the total cost as a function of the refresh interval, .

is given by

The expected cost is then given by

Observe that some of the costs are inversely proportional
to , whereas others are directly proportional to or inde-
pendent of . We group together costs that are directly pro-
portional to and those that are inversely proportional to

, and scale those costs by constants and . This results
in a cost equation with different emphasis on the different
costs. The rewritten cost equation is then given by

The above equation can be solved to obtain the optimal
value , that minimizes the cost.

(1)

The formula makes intuitive sense: the longer the session
lifetime, the longer one should make the timeout interval.
The channel loss probability appears in both the numerator
and denominator as it affects two kinds of costs, the fixed
stale state cost after teardown, and the periodic state initial-
ization costs. The crucial observation is to note that the op-
timal refresh interval setting is proportional to : this is
the fundamental hard versus soft state tradeoff. A protocol
(or a state) becomes harder with increasing values of ,
and, from a performance standpoint, the range of values of

define a spectrum of soft to hard state protocols. Hard
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Figure 3.

state protocols are used when the cost of concern is the re-
fresh overhead, as well as the cost of accidentally losing an
installed state, and increasing yields a high value of .

Increasing places a greater premium on the stale state
cost, and it increases robustness to unforeseen circum-
stances. It can be viewed as the cost of trusting a particular
state, where a higher value of results in a lower level of
trust. By roughly following the procedure outlined above,
a protocol designer can determine the optimal refresh in-
terval, given assumptions of other parameters, i.e., assume
some , some , choose , to put different emphasis
on different costs to determine the optimum .

Let us consider an example consisting of two cases,
where a protocol designer chooses the refresh interval and
various costs such that for the first case and such that

for the second. In the former case, the designer pro-
duces a “hard state” protocol, whereas in the latter case it is
a soft state protocol. Both designs assume some fixed value
of and a fixed, low value of channel loss probability

. In Figure 3(a) we show how the channel loss probability
impacts both soft and hard state costs. We observe that, un-
der normal conditions (i.e., the conditions under the design
assumptions), the cost of the hard state version is lower than
the soft state version. As conditions deteriorate and deviate
from the expected, the cost of the hard state version grows
at a much faster rate than the soft state version until its cost
rises above the soft state cost. The growth in cost of the soft
state version is much slower, consistent with the notion we
described in the previous section, of extending the accept-
able operating range further as network conditions deteri-
orate. Similar phenomena can be observed if the expected
state lifetime, deviates from the one designed for.

In the next section, we see a more concrete manifesta-
tion of the benefits of having a shorter refresh timer value.

We also use a more realistic non-linear cost function of the
refresh timer, namely, the blocking probability of the server.

3.1 A DoS attack

One of the main consequences of having a shorter refresh
timer is it enables a faster recovery from network failure,
and another subtle effect is resistance to malicious behavior.

Consider a scenario where the protocol operates to re-
serve a resource at a server. The resource could be, for
instance, a forked web server process or a socket or band-
width allocation for a multicast channel. The TCP-SYN
attacks a few years ago [3] demonstrated that an attacker
could launch an effective Denial of Service (DoS) attack
by reserving a resource, and then exiting without explicitly
tearing down the connection. In our model above, such a
DoS attack is equivalent to initiating a session with a life-
time of 0, and a channel loss probability of . The entire
cost incurred is in keeping orphaned states alive.

Assume that the server has a finite number, , of re-
sources. Expecting well behaved users and ambient traffic,
designers would configure to give a low blocking proba-
bility. Without loss of generality, we assume the arrival rate
of valid connections is 1 per time unit, and the mean ses-
sion length is 1 time unit. Using the Erlang-B formula [9],
to provide a blocking probability of about , the server
needs to allocate 32 resources. Let us examine, however,
what happens to the blocking probabilities at two servers
that are identical except that one implements a soft state
connection-oriented protocol while the other implements a
hard state version when an attacker starts injecting mali-
cious connections. We plot the blocking probability of the
server under attack in two scenarios, one where the ratio of
the hard state refresh timer ( ) to the soft state refresh
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timer ( ) is 100, and the other where the ratio is 10. We
gradually increase the percentage of attack traffic (in terms
of arrival rate of malicious connections) to total traffic.

We observe in Figure 3(b) that even a modest (10 %)
amount of DoS traffic can cause unacceptable levels of
blocking when using a hard state protocol (i.e., close to 0.3),
whereas the blocking probability does not exceed for
the soft state version, even when the attack traffic is as much
as 30% of the total traffic. In Figure 3(c), where the ratio
of the refresh timers is much smaller, 10, reveals similar be-
havior, where the blocking probability for the “softer” ver-
sion of the protocol grows, but at a much slower rate com-
pared to the hard state version. This demonstrates that the
“softer” a protocol is, the more robust it is to attacks.

4 A Correlated, Lossy Feedback Channel

One of the obvious benefits of soft state design is that the
state is naturally refreshed and returned to a consistent state
simply by waiting, without requiring the receiver to con-
tact the sender. Such a mechanism is of great importance
in a network that offers “best-effort” service, since there
is no guarantee that explicit communication attempting to
revert the system back to its default state will succeed. In
fact, there is evidence that a poorly designed protocol can be
self-defeating, i.e., it behaves in a manner that worsens the
network conditions and its reaction to these worsening con-
ditions only further deteriorates the conditions. The canon-
ical example is the phenomenon of congestion collapse: if
a reliable transfer protocol attempts to keep the rate of reli-
able transfer fixed by increasing its rate proportional to the
rate at which packets are lost, the throughput across a fixed-
capacity channel will ground to a halt.

In this section, we construct a model that shows that a
hard state protocol can induce a similar phenomenon. We
look at a communication crossing a symmetric, lossy com-
munication channel: heavy traffic from the server to the
clients induces loss on the channel that is used by the clients
to contact the server. Such a phenomenon is common, and
will likely occur if the paths in the two directions share a
common medium or are transmitted through the same de-
vice.

Our model contains a server that transmits fixed-rate ses-
sions (e.g., smoothed video) and has sufficient processing
power to simultaneously host up to such sessions.
The channel used to communicate between the sender and
receiver has the capacity to support sessions with-
out loss. If the number of sessions, , is higher than ,
then the channel exhibits a loss rate. Formally,

loss rate
if ,
if .

(2)

We assume that the server has a backlog of session requests

to serve and can initiate new connections with an average
rate of . The mean time needed to complete the transfer of
data is , where the decision to terminate the connection
is left to the client.

In the hard state protocol, the client attempts times to
deliver a message to the server to terminate the connec-
tion. If these explicit requests fail to reach the server, the
client aborts, and the server continues to transmit session
data across the communication channel. Without an appro-
priate failsafe, such a system is doomed to collapse. We
therefore assume that the protocol includes a soft state fail-
safe: a time with mean after the time client aborts, the
server can “sense” the absence of the client and terminates
the session. Because, under normal network operations, it
is unlikely that a client will fail to contact the server and
terminate the connection, to prevent accidental premature
terminations, is kept large.

In the soft state protocol, the client pings the server peri-
odically at a high rate, and ceases to ping the server when it
wishes to end the session. When the server does not receive
pings for a time with mean , it terminates the
session from its end.
CTMC for hard state protocol: To construct a model
for above mentioned application with a tractable solution,
we employ continuous time Markovian chains (CTMC). To
model the hard state protocol, let be a two-dimensional
CTMC where . For a
given state , represents the number of active sessions
whose clients are still interested in receiving data from the
sender, and represents the number of inactive (or aborted)
sessions that continue to utilize the channel, even though
no client receives the transmission. Session arrivals are de-
scribed by a Poisson process with an average rate of , and
active session lifetimes and inconsistency periods are ex-
ponentially distributed. Letting represents the loss
probability of the communication channel when it is in state

, we have

if
if (3)

Let be the probability that, in the hard state proto-
col, the receiver fails to explicitly inform the sender of its
departure:

(4)

In the event of such a failure, an active session becomes an
inactive session. The additional time required to tear down
this inactive session is an exponentially distributed random
variable with mean . , the transition rate matrix of

is

with when ,
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with

when ,

with when

,

with when .

CTMC for soft state protocol: For the soft state proto-
col, let be a two-dimensional CTMC where

and the interpretation of the state
is similar to the of the hard state protocol. When

an active session finishes, it always becomes an inactive ses-
sion for a period of time that is an exponentially distributed
random variable with mean . Let be the transition
rate matrix of and it is specified as:

with when ,

with when

and ,

with when .

Let and respectively denote the steady state
probabilities of being in states in and respec-
tively. The steady state probability vector is easily com-
puted using standard numerical methods [14].

Let , and respectively denote the num-
ber of active sessions, the number of inactive sessions, and
the effective throughput at time of the soft state proto-
col. Let , and be defined similarly for the
hard state protocol. We will use the average values of these
quantities as our performance measures, which are easily
determined in terms of the steady state probabilities of the
respective systems:

for . (5)

for . (6)

for . (7)

Figure 4(a) to 4(b) illustrate the effect of the session’s
holding time ( ) on the three performance measures. For
these figures, the system parameters are ,

, , and . We observe that
the soft state protocol maintains a low number of inactive
sessions for all values of and a reasonably high number
of active sessions, even when the session holding time is
short (e.g., ). On the other hand, inactive sessions
dominate the channel when a hard state protocol is utilized,
significantly lowering the effective throughput.
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Figure 4.

Figures 5(a) and 5(b) depict the hard state protocol’s sen-
sitivity to its tear down time, ( ). Figure 5(a) shows that,
as long as the tear down time is no less than the session’s
holding time , the average number of active sessions for
the hard state protocol is relatively low in comparison to
that for the soft state protocol (Fig. 5(a)). Also, Figure 5(b)
shows that the effective throughput of the soft state proto-
col is much higher than the hard state protocol for the same
operating region of .

In summary, our results demonstrate that soft state pro-
tocols are more robust to increases in demand over a com-
munication channel in which quality of the channel deterio-
rates with increasing load. In these overloading conditions,
hard state protocols competing for this limited bandwidth
will waste much of the bandwidth on sessions that cannot
quickly be terminated.
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5 Broadcast Flooding

Implosion is the phenomenon where a single communi-
cation point is overwhelmed with messages that originate
from a diverse set of communication points. The canonical
example of implosion often used is a poorly designed reli-
able multicast protocol. If the protocol requires the server
to receive acknowledgments from each connected client,
the server’s processing capabilities become the bottleneck
when the number of clients grows excessively large [15].
One solution involves modification of multicast routers so
that they can filter redundant messages, but this places a sig-
nificant and undesirable burden on these routers. A variety
of methods have been introduced in the reliable multicast
context to reduce feedback levels, including timer-based ap-
proaches [5], the use of multiple multicast groups [8], and
the use of parity encoding techniques [11].

In this section, we explore how soft state mechanisms

can be (and have been) used to reduce client feedback that,
under extreme conditions, would otherwise cause implo-
sion. These methods have been used extensively in the
reliable multicast community to minimize levels of implo-
sion within reliable multicast communication [6, 13]. The
scalability of the mechanism arises in many-to-one commu-
nication scenarios where the consistent state of the server
is the 1-bit logical OR of the receiver’s 1-bit states. In
other words, we consider scenarios where the server’s state
should be in the default state (state “0”) when and only
when all receiver’s states reside in the default state. For in-
stance, such a soft state mechanism is used within the IGMP
protocol to identify which multicast group’s transmissions
should be transmitted to the LAN. Multicast traffic for a par-
ticular group is transmitted by the router onto the LAN
when there is at least one receiver on the LAN that wishes
to receive this traffic.

When multiple clients are interested in receiving the
transmissions from a particular group, rather than having
each client individually contact the router with its request,
the router continuously listens for requests during consecu-
tive time intervals of length . If any client should contact
the router during a particular interval, the router forwards
traffic from onto the LAN for the remainder of that in-
terval, as well as for the subsequent interval. If no requests
are received during a given interval, then the router ceases
to forward traffic from onto the LAN until it again re-
ceives a request. Receiver requests are broadcast on the
LAN, and receivers randomly choose a time within the in-
terval to transmit to the router. A receiver that wishes to
receive transmissions from can suppress its broadcast re-
quest if it hears a similar request previously broadcast by a
neighboring receiver. Hence, the expected number of trans-
missions to the router is reduced.

Because of propagation delays, the suppression mecha-
nism described above limits, but does not completely pre-
vent redundant transmissions. If the time for communica-
tions to cross the LAN is , the size of the router’s listening
intervals is , and there are clients who choose their trans-
mission time uniformly within the interval , then
the expected number of messages that reach the server is

(8)

Note that the growth is effectively linear in the number of
clients. The same holds true if the client selects its waiting
time from a distribution other than uniform [10].

5.1 Simple Polling Protocols

We begin by looking at a straightforward implementation
of hard and soft state join/leave protocols used to perform
a polling process. We consider a server that offers a single
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stream for broadcast. The server performs the broadcast
as long as there exists a client interested in receiving the
data. When the server is broadcasting, all clients receive
a copy of the broadcast, regardless of whether or not they
are interested in it at that time. Clients communicate to the
server via unicast; these messages are queued at the server
for processing. To prevent implosion, the aggregate rate of
client messages to the server must be controlled.

We assume that the process by which clients interested in
the broadcast arrive to the system is Poisson with rate and
that their interest lasts for a time exponentially distributed
with rate . This arrival process is described by the tradi-
tional queueing system. We define to be the
steady-state probability that there are clients that wish to
receive the broadcast, where

In out initial hard state protocol, each client explicitly con-
tacts the server upon arrival and departure to respectively
register and revoke its interest in the broadcast. The server
tracks the individual status of each attached client, and
therefore knows precisely when there exist clients that de-
sire the service. By doing so, it knows when clients are
attached and hence knows when to broadcast. Note that
each arriving client sends two control messages: a join and
a leave. Hence, control messages arrive at rate , and the
server is actively transmitting on the channel to some client
a fraction of the time.

In our initial soft state protocol, the server uses the timer-
based polling mechanism described above. In each interval
of seconds, some client interested in receiving the broad-
cast must contact the server to continue the broadcast in the
next interval. We assume that the time taken for a client to
send a transmission to a server and for the server to trans-
mit messages to clients in response to the received trans-
mission takes time . Each interested client selects a point
in time chosen uniformly within each interval for which it
remains interested in the broadcast. The transmission from
the client can be unicast, and the server can inform other
clients interested in the broadcast that it has been contacted
by a client in the current interval by piggybacking the in-
formation within its broadcast. Upon receiving the piggy-
backed information, other interested clients can suppress
their transmissions until the next interval, where the pro-
cess is repeated. Clients that wish to join at a time when the
server is not broadcasting send an immediate join request.

Client messages arrive at the server at rate
(where is defined in Equation

(8)). We assume that the server always broadcasts when
there exists a client in the system interested in receiving
the broadcast. Hence, the fraction of time the server is

broadcasting is bounded below by . We compute an
upper bound by noting that the server will only broadcast
for the entire duration of the th interval if some client
desired transmission at the start of the st interval, or
some client arrived during the st interval. Otherwise,
the server will broadcast for at most time if
no client is interested in receiving the transmission during
the st interval and an interested client arrives at
time during interval . This gives an upper bound of

5.2 Robustness in the presence of many receivers

The control messaging overhead of both the hard state
and soft state protocols described above grows quickly with
increasing . Before comparing these simple polling pro-
tocols, we also introduce modified versions that reduce the
number of control messages as the number of clients in the
system grows large.

For the hard state protocol, rather than have all clients
connect to the server, a leader is chosen and the server main-
tains the state of the leader. Only when the leader leaves is a
message sent to the server, which then initiates a process to
identify another leader. The server must perform a polling
operation to identify a new leader. The polling operation,
which we describe below, is a method for scalably identify-
ing a new leader, and is also used by the soft state version
to scalably determine if any clients are currently interested
in receiving the broadcast. This mechanism is an extension
of the mechanism described in [1] which was used to im-
plement a scalable multicast feedback mechanism.

To perform this more scalable polling operation, each
client is assigned a unique -bit sequence (e.g., its IP ad-
dress). The server segments its -second polling interval
into a series of rounds, numbered 0 through . It
specifies an -bit quantity where for
some integer . In the th round, a client whose unique bit-
sequence (e.g., IP address) matches along the first
bits of the sender’s specified quantity transmits a message.
If any client transmits a message in round , then no fur-
ther rounds are needed - the sender has identified an ac-
tive client, or, in the case of the hard state protocol, has a
sampling of clients from which it can choose a leader. If
no messages are transmitted by the completion of the th
round, then no clients currently desire the transmission.

The probability that an arbitrarily chosen receiver
transmits on the th round when there are receivers is

if
if .

This is the probability that a receiver transmits times prob-

9

!"#$%%&'()*+#,+-.%+/0-.+1222+1(-%"(3-'#(34+5#(,%"%($%+#(+6%-7#"8+!"#-#$#4*+9156!:;<=+
/;>0?/@<AB;<+C+0;D;;+1222+



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000 10000

G
ro

up
 A

ct
iv

ity

λ

H
S

(a) Fraction of time the server actively
broadcasts.

0.01

0.1

1

10

100

1000

10000

100000

0.1 1 10 100 1000 10000

Im
pl

os
io

n 
Lo

ad

λ

H
H*
S

S*

(b)

0.1

1

10

100

1000

0.1 1 10

Im
pl

os
io

n 
Lo

ad

µ

H
H*
S

S*

(c)

Figure 6.

ability that it did not transmit in previous rounds, given that
it transmits in this round times the probability that no other
receiver transmitted in the previous round.

Computing the expectation by summing over all re-
ceivers over all rounds, we get

Substitut-
ing , we get that this quantity is smaller than

as grows large. The second
term has no dependency on , and the first term shrinks as

grows.
The control traffic rate for the soft state protocol becomes

For hard state, it becomes

When there are no clients, a new leader is selected at rate ,
and when there are clients, a new leader is selected at rate

, where traffic overhead is .

5.3 Analysis

Our analysis of the performance of the various client
polling mechanisms assumes that the normal operating en-
vironment is one where both and are small. We fix
and at 4 and 8 respectively. Even when the number of
clients is extremely large, the expected number of transmis-
sions received within an interval of size is below 7. The
only remaining tunable parameter is , which we set to 10
seconds.

Figure 6(a) shows the fraction of time for which the
server is actively transmitting as a function of when

, , and for both hard and soft state
versions of the protocols. We see that for low values of ,

the hard state version spends significantly less time broad-
casting traffic than the soft state version. However, as
increases, the system quickly converges to a state where the
transmission is broadcast all the time. These results show
that the increased robustness gained from using soft state
comes with a tradeoff when client join rates are low. In
particular, when loads are low, the additional inconsistency
in the soft state version causes the broadcast mechanism to
be turned on a larger portion of the time. From a robustness
standpoint, however, this is not a concern: the system is less
efficient when loads are light.

In Figures 6(b) and 6(c), we plot the rate at which control
messages arrive at the server from the collection of clients.
Curves labeled ’H’ and ’S’ respectively plot the initial ver-
sions of client hard and soft state feedback mechanisms.
The curves labeled ’H*’ and ’S*’ plot the respective ver-
sions with the bit-vector feedback approach. In both figures,

and . In Figure 6(b), is fixed at 1 and is
increased along the -axis. We see that, for the protocol to
remain robust under high join rates, it is necessary to imple-
ment the bit-vector mechanism to reduce feedback. In Fig-
ure 6(c), is fixed at 100 and is varied along the -axis.
We see that as is increased, increasing the rates at which
sessions leave the system, the feedback rate in the hard state
protocol that implements the bit-vector mechanism grows
quickly. In contrast, the soft state version maintains a low
feedback rate, even for large values of .

We see that in extreme settings, where join and leave
rates are high, a soft state protocol is needed to prevent the
server from becoming overwhelmed with high rates of feed-
back from the rapidly joining and leaving clients. The cost
of using soft state is an increased utilization of the broadcast
channel under non-extreme conditions where join and leave
rates are low. However, appropriately configured networks
should have sufficient bandwidth available to support the
additional broadcast demands imposed by using soft state
protocols when the broadcast is under light demand.
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6 Conclusion

In this paper we have compared the robustness of soft
and hard state protocols. Rather than comparing the per-
formance of the protocols in a known set of network con-
ditions, we compare the performance of the protocols as
we vary the network conditions from the normal operat-
ing points. Using three different scenarios, we are able to
demonstrate that soft state maintain an acceptable level of
performance across a much wider range of network con-
ditions than is maintained by their hard state counterparts.
This study supports and explains the Internet Designer’s
intuition that one should apply soft state design principles
when designing protocols for the Internet.
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