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Abstract
Heterogeneous programming complicates software development.
We present CLOP, a platform that embeds code targeting hetero-
geneous compute devices in a convenient and clean way, allowing
unobstructed data flow between the host code and the devices, re-
ducing the amount of source code by an order of magnitude. The
CLOP compiler uses the standard facilities of the D programming
language to generate code strictly at compile-time. In this paper we
describe the CLOP language and the CLOP compiler implementa-
tion.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – compilers, code generation

General Terms Languages, Generative Programming

Keywords Heterogeneous Programming, Embedded Languages,
Staging

1. Introduction
Most modern computer systems are heterogeneous: they combine
general purpose host processors with various special purpose com-
pute devices. Languages such as OpenCL [5] and CUDA [9] enable
the development of programs for such systems, but they explicitly
separate host and device code, require extensive glue code, com-
plicate program understanding and testing, and make it difficult to
tune performance without extensive refactoring.

In this paper we introduce CLOP, a platform that aims to address
the above issues. CLOP allows the seamless embedding of compute
kernels in heterogeneous applications. CLOP is implemented in the
D programming language. It uses a multi-stage approach to compi-
lation, based on D’s support for string mixins, compile-time func-
tion execution, and compile-time reflection. CLOP is an embedding
of an external language (OpenCL) based only on the standard facil-
ities of a host language (D). CLOP provides high-level abstractions
that it expands into low-level code of the host and embedded lan-
guages.

CLOP lifts the abstraction level by eliminating the considerable
amount of boilerplate code usually necessary in OpenCL by seam-
lessly connecting embedded and host code. CLOP allows the use

of host variables in embedded code, and it automatically generates
the appropriate data transfers between host and device. It provides
synchonization patterns that determine the correct generation of
efficient parallel computations. CLOP seamlessly integrates error
messages across embedded and host language. To improve main-
tainability of the CLOP platform, CLOP exploits D’s unit-testing
support to allow efficient debugging of CLOP components.

2. Background on D and OpenCL
D is a modern general-purpose systems programming language
with C-like syntax and static type system. It combines features of
imperative, object-oriented, and functional programming. Some of
the features that D has had from the ground up, find their way
into current and future versions of C++. Although there is no
industry backing for D at the moment, several companies have
started using D for their production code. There exist several open-
source compilers for D that produce optimized native machine
code. D programs can be linked with libraries of compiled C or
C++ code. We chose D as a host language because of its support
for embedded language development.

String mixins generate executable code from a string. The
construct mixin (<D code>) takes as an argument a valid D
code fragment that must evaluate at compile-time to a constant
string. The text contents of the string must be compilable as a valid
expression, a declaration, or a statement list also in D. The text
is inserted in place of the mixin construct and the compilation
is resumed from the beginning of the inserted code. The inserted
code can contain other mixin constructs that will be evaluated at
compile time as well. For example, the program
1 void main() {
2 import std.format, std.stdio;
3 const s = "auto x = ", v = ‘mixin (format("%d", 3 + 7));‘;
4 mixin (s ~ v);
5 writeln("x = ", x);
6 }

generates the output “x = 10” and is equivalent to the program
1 void main() {
2 import std.format, std.stdio;
3 const s = "auto x = ", v = ‘mixin (format("%d", 3 + 7));‘;
4 auto x = 10;
5 writeln("x = ", x);
6 }

In line 4 of the first version of the program we concatenate two
strings, represented by the variables s and v. The concatenation
is done by the D compiler at compile time and its result is a
valid declaration auto x = mixin (format("%d", 3 + 7));
The declaration replaces the mixin construct at line 4. It contains
another mixin construct, which in turn is replaced by the result
of calling the function format("%d", 3 + 7), i.e. a string "10",
which when mixed in becomes an integer literal 10. The function’s
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arguments are evaluated and the function call is executed at compile
time. The mixin construct allows to invoke the CLOP compiler
when an application, that embeds CLOP code, is being compiled.

Token strings are string literals that open with characters q{,
close with }, and must contain only valid D tokens. In the previous
code example instead of writing
const v = ‘mixin (format("%d", 3 + 7));‘;
we could have written
const v = q{mixin (format("%d", 3 + 7));};
Both declarations are semantically equivalent, but the former ini-
tializer string is parsed as a single token and the latter is tokenized.
Token strings allow to embed smoothly foreign syntax code in D
program source, as long as the code’s lexical tokens are consis-
tent with the D language lexical rules. CLOP programmers can
use token strings to make it more convenient to work with exter-
nal (CLOP) code embedded in an application’s source.

Compile-time function execution. Every D compiler must
have a built-in interpreter that can evaluate D expressions and
almost arbitrary functions at compile-time. To be eligible for
compile-time execution a function must be side-effect free, its
source code must be available to the compiler at the time it eval-
uates a call to the function, and the function cannot reference any
global or local static variables. A function is executed at compile
time if a call to the function appears in the context where its return
value must be known at compile time, e.g. when it is a parameter of
a mixin construct. The semantics of a function must be the same
whether it is executed at compile-time or at run-time. CLOP ex-
ploits compile-time function execution to implement compile-time
staging by parsing embedded CLOP code, and then evaluating the
corresponding abstract syntax tree to generate the target code.

Compile-time reflection is realized through traits, special ex-
tensions to the language that allow to get information internal to the
compiler. The syntax of traits is similar to pragma syntax available
in other languages such as C and C++, as well as D. Thus, new
traits can be added and implemented easily in future compiler ver-
sions if needed. The traits are effectively a set of entry-points into
the D compiler internals.

The following code demonstrates how string mixins, compile-
time function execution, and compile-time reflection allow to gen-
erate code, choosing a requested method of a struct at compile-
time.

1 import std.stdio, std.traits;
2 struct Pattern {
3 const string method;
4 string generate() {
5 foreach (m; __traits(allMembers, Pattern))
6 if (method == m &&
7 isCallable!(typeof(__traits(getMember, this, m))))
8 return ‘writeln("applied ‘~mixin ("this."~m)~‘.");‘;
9 return ‘writeln("‘~method~‘ pattern is not available.");‘;

10 }
11 auto diagonal() { return "diagonal pattern"; }
12 auto horizontal() { return "horizontal pattern"; }
13 }
14 void main() {
15 mixin (Pattern("vertical").generate());
16 mixin (Pattern("horizontal").generate());
17 mixin (Pattern("method").generate());
18 }

When the above program has been compiled, its main function is
equivalent to the following code

1 void main() {
2 writeln("vertical pattern is not available.");
3 writeln("applied horizontal pattern.");
4 writeln("method pattern is not available.");
5 }

In the main function each mixin statement forces the D compiler
to create an object of the struct Pattern at compile-time (lines

15–17). Each Pattern object is initialized with a string that is
assigned to the only data member method of the struct (line 3).
Immediately after constructing each Pattern object, the compiler
executes on it the member function generate. The function finds
a Pattern member with the same name as the string stored in the
method field (line 6). If the found member is a function (line 7), the
D compiler executes the member function after mixing in a method
invocation expression (line 8). Of the three objects constructed in
lines 15–17, the compile-time function execution on line 8 happens
only for the object Pattern("horizontal"). The return value of
generate is a string that represents a valid D statement generated
at compile-time. The CLOP compiler uses the same mechanism to
apply code rewriting patterns that we describe in Section 3.1. Also,
it uses reflection to query the D compiler for information about the
elements of the host application, e.g. the type of the elements of an
array given the symbolic name bound to that array.

OpenCL. A typical OpenCL application consists of the host
code, that usually runs on the CPU, and the compute kernels. The
host code of an application invokes the OpenCL API functions to
query the available devices, to create an OpenCL run-time context
and one or more command queues in that context. The host uses
a command queue to submit asynchronously commands to the
device associated with the queue. The commands are either data
transfers between the host and the device, or kernel invocation
requests. An OpenCL API implementation comprises a vendor
provided library and C header files that declare the API functions
and data structures. The D package registry includes a package of
bindings to the OpenCL API. With these bindings, heterogeneous
programming with OpenCL in D is the same as in C or C++.

In OpenCL a kernel is a function written in the OpenCL C pro-
gramming language. The host calls OpenCL API functions at run
time to translate the kernel code to the machine code of a spe-
cific device. The kernel can call other non-kernel functions, but
not the functions of the host application. In the OpenCL execution
model a kernel is executed over a domain of points in an indexed
N-dimensional space, called ND-range. There is one instance of
the kernel running for every point of the domain. Such an instance
is called a work-item. The work-items of a single kernel invocation
can be thought of as running simultaneously. The entire domain of
work-items is subdivided into work-groups. A work-group repre-
sents a subset of work-items that can share local memory and can
synchronize on the barrier constructs provided by the OpenCL pro-
gramming language.

3. CLOP Language and Compiler
3.1 Syntax and Semantics
CLOP follows the OpenCL programming model specifying an
N-dimensional index space and the computations performed for
each point in the space. CLOP augments the OpenCL language
with additional constructs to specify the global synchronization
patterns. Kernel code is designated by the NDRange construct, that
defines the index space on which the kernel will be executed,
and a compound statement that represents the computations to be
performed on the index space. A CLOP fragment can contain any
number of internal function declarations, but currently only one
NDRange construct.

Listing 1 shows an implementation of the Needleman-Wunsch
algorithm [8] embedded in the body of the D method clop_nw.
Lines 11–19 are the CLOP code wrapped in a compile-time func-
tion call compile that returns a string of valid D source code. The
string is mixed in place of the mixin statement at lines 10–20. The
mixed-in code includes a constant string representing the generated
OpenCL program and the D statements that invoke the OpenCL
API to run the kernel on a computing device.
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1 class Needleman_Wunsch {
2 NDArray!int F, S; // matrices of computed cost and scores
3 int rows, cols, penalty;
4 this(string[] args) {
5 ... // code to initialize rows, cols and penalty
6 S = new NDArray!int(rows, cols);
7 F = new NDArray!int(rows, cols);
8 }
9 void clop_nw() {

10 mixin (compile(q{
11 int max3(int a, int b, int c) {
12 int k = a > b ? a : b;
13 return k > c ? k : c;
14 }
15 Antidiagonal NDRange(r : 1 .. rows, c : 1 .. cols) {
16 F[r, c] = max3(F[r - 1, c - 1] + S[r, c],
17 F[r, c - 1] - penalty,
18 F[r - 1, c] - penalty);
19 }
20 }));
21 }
22 }

Listing 1: A fragment of a D program with embedded CLOP
code. The function clop nw is a complete implementation of the
Needleman-Wunsch algorithm, that computes the cost matrix F
of all possible alignments of two sequences. The matrix S con-
tains the alignment scores for every pair of symbols. The vari-
ables F, S, penalty, rows, and cols are data members of the class
Needleman Wunsch and used transparently inside the CLOP code.

Line 15 specifies that the computations are to be performed over
a 2-dimensional box [1, rows) × [1, cols), with variables r and
c used to index the corresponding dimensions. The ND-range of
CLOP is not always the same as the ND-range used to invoke the
generated OpenCL kernel. CLOP provides global synchronization
patterns, which define how the kernel will be invoked on the ND-
range space. On line 15 we request the compiler to generate the
Antidiagonal global synchronization pattern. The kernel will be
invoked on each anti-diagonal of the box [1, rows)× [1, cols) with
synchronization after each invocation. The first invocation will be
for indices {1, 1}, the second—for indices {2, 1} and {1, 2}, the
third—for indices {3, 1}, {2, 2}, {1, 3}, and so on until the last
invocation will be for indices {rows − 1, cols − 1}. The global
synchronization pattern specifier is optional. If it is omitted, the
CLOP compiler will generate the host code that invokes the kernel
on the entire ND-range index space at once. Figure 1 shows the
syntax of CLOP’s NDRange block.

In addition to global synchronization patterns CLOP can gen-
erate code for frequently recurring patterns that require synchro-
nization between threads executing the same kernel. For example,
the statement s = reduce!"a + b"(0, t); adds the elements
in the array t and stores the result in the variable s. The CLOP com-
piler generates OpenCL code in which threads cooperatively per-
form the reduction applying a function of two arguments (a + b)
to the elements of the array t. Such operations require in-kernel
synchronization. In OpenCL this is limited to threads belonging to
the same work group. However, the operation is so common, that
CLOP automates the generation of code for it.

3.2 Run-time Support
The CLOP library provides the runtime object that initializes the
OpenCL context and command queue to interact with a specific
device. The object maintains a list of the OpenCL resources for
allocation and release. In general, within the scope of the CLOP
compiler it is impossible to know when to release a device buffer.
If we release it at the end of every CLOP instance, it is extremely
inefficient when the kernel is invoked multiple times, because the

KernelBlock ← (SynchronizationPattern)?
RangeDecl CompoundStatement

RangeDecl ← “NDRange” “(” RangeList “)”
RangeList ← RangeSpec (“,” RangeSpec)∗
RangeSpec ← Identifier “:”

Expression “..” Expression
(“$” Expression)?

Figure 1. An excerpt from the CLOP grammar. The kernel block
specifies an optional synchronization pattern, an N-dimensional
index space, and the compound statement of computations to be
done on the index space. In addition to the kernel block a CLOP
fragment can include any number of declarations of entities to be
used in the kernel block. The range specification can include an
optional part delimited by ’$’, which allows to specify the desired
OpenCL work-group size in each dimension of the index space.

buffer must be created anew every time the kernel is invoked, and
data must be transferred to the device unnecessarily. The runtime
object keeps a list of allocated resources, and releases them if the
runtime is either initialized for new device or destroyed. The CLOP
compiler generates the code that interacts with the runtime object.

The CLOP compiler recognizes D arrays and generates the code
that creates device buffers and transfers data to and from the device
when 1-dimensional arrays are used in CLOP blocks. In order to
use multidimensional arrays in CLOP we implemented the class
NDArray that can be used to create arrays of up to 3 dimensions,
but internally stores data in one continuous chunk appropriate for
transferring the data to and from an OpenCL device. The CLOP
compiler recognizes variables of NDArray type and rewrites the
multidimensional indices for these variables to properly access the
data in continuous memory pointed to by such variables. Along
with the runtime object NDArray objects help to manage the
OpenCL resources.

3.3 Compiler Implementation
The CLOP compiler generates code in stages. The staging is done
via compile-time function execution. Each stage generates code
for the next stage, until the last stage generates the OpenCL code,
comprising the kernel and any supplemental declarations, and D
code that manages the run-time resources related to the host-device
interaction.

The first thing that the compiler creates is the code that invokes
the CLOP parser. To implement the CLOP parser we use a parser
expressing grammar (PEG) generator. PEGs [3] allow to describe
the lexical and hierarchical syntax of a language in one concise
grammar which is parseable in linear time.

The result of parsing, an abstract syntax tree (AST), is saved
as an enum value, which is used by the subsequent stages. The
next stage takes as parameters the AST for this CLOP program
and the program’s location in the source file. The purpose of this
stage is to analyze the AST and extract the information about
the variables in the enclosing lexical scope which are external
to the CLOP program. The objects referred to by these variables
will be passed as parameters to the generated OpenCL kernel.
For extracting this information the CLOP compiler relies on the
compile-time reflection facilities of the D programming language.

The information about the external variables is packaged in
two lists. One list contains the types of the variables, the other
contains their symbolic names. The list of types is contained
in a special template TypeTuple available in the D standard li-
brary. TypeTuple holds arbitrary types in a single container, e.g.
TypeTuple!(typeof(F),typeof(S),typeof(penalty)) is a
list of types for variables F, S, and penalty from the Listing 1.
This container is passed to the final CLOP compiler stage along
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with the list of strings that represent names of parameters for the
OpenCL kernel that the compiler will generate.

The final stage of the compiler takes the original AST, lowers it
by simplifying the expressions, and applies the required synchro-
nization pattern. While lowering, it replaces high-level constructs
such as reduce by the normal OpenCL code that implements these
constructs. The compiler implementation has a collection of code
snippets and methods that know how to expand these snippets.
When the compiler walks the AST and encounters a construct that
needs to be replaced, it invokes the corresponding method that per-
forms the appropriate snippet expansion so that the construct is re-
placed by semantically equivalent OpenCL code.

Diagnostics. The CLOP compiler generates error messages as
any compiler is expected to do when errors are found in the input
program. The CLOP compiler collects the errors that it has found
in the input program and generates the code that contains the
pragma(msg, errors_string); construct. When this code is
mixed in the application code, after the CLOP compiler returns,
the D compiler outputs the error messages, if any.

Debugging the compiler. Debugging a compiler (CLOP) that
is executed only in another compiler (D) can be a daunting task.
The CLOP compiler runs only when the D compiler compiles an
application that embeds CLOP code. If the CLOP compiler gener-
ates incorrect D code, the D compiler will abort compilation with a
cryptic error message. Fortunately, the compile-time function exe-
cution rules require that the semantics of a function are the same
whether it is executed at compile-time or at run-time. This rule
combined with the support for unit tests in D allows us to debug
the CLOP compiler efficiently by writing unit tests for the CLOP
compiler internal functions and running the tests as executable pro-
grams with full access to the debugging facilities one is used to.

3.4 Results
We implemented several applications to compare heterogeneous
programming in CLOP versus programming directly in OpenCL.
Since the CLOP compiler works at compile-time only there is no
observable difference between the run-time performance of appli-
cations implemented in CLOP and in bare OpenCL. The following
table compares the applications in the number of lines of code.

Application CLOP OpenCL
Needleman-Wunsch 11 169
Back propagation 38 142
Linear algebra 12 134
Stencils 23 226

4. Related Work
Many domain specific languages were created to abstract the gory
details of heterogeneous programming and to generate optimized
code for GPUs and other accelerators, e.g. ViennaCL [11], a DSL
for linear algebra operations, or SafeGPU [7], a contract-based li-
brary for GPGPU. Often such DSLs are implemented as C++ tem-
plate libraries. They hide the low-level details of OpenCL behind
the data types and operations provided by the DSL, but limit the
algorithms that a programmer can express in them.

Steuwer et al. [12] echo our goals, but they raise the level of ab-
straction for heterogeneous programming using a library of skele-
tons which are similar to CLOP synchronization patterns. Their
DSL, SkelCL, provides a collection of algorithmic skeletons, pa-
rameterized by the user’s functions. These functions are passed as
character string parameters to the skeleton objects. This is inconve-
nient since there’s no analysis of the user’s functions until the code
is compiled by the OpenCL compiler at run time. In addition, the
programmers are limited by the existing skeletons.

Accelerate [2] was designed to allow Haskell programs to per-
form operations with multi-dimensional arrays on a GPU. Simi-

larly to Accelerate, CLOP uses quasiquotations to generate code for
higher-level constructs common in heterogeneous programming. In
the realm of JVM languages Delite [1] is a framework for DSLs
embedded in Scala. Delite uses multi-pass staging to generate opti-
mized device-specific code at run-time, whereas CLOP is based on
strictly compile-time metaprogramming. Firepile [10] is an exam-
ple of a library-based approach to GPU programming. It translates
Scala methods to OpenCL kernels relying on functions being first-
class objects. At run-time the Firepile translator locates the byte-
code of a function passed to it as a value. It uses the bytecode to
construct an abstract syntax tree for the function and then translate
it to OpenCL kernel code.

Yin-Yang [4] is a framework for DSL embedding. It allows
programmers to express their algorithms in a directly embedded
DSL, and then translate the code into the corresponding deeply
embedded DSL. This simplifies the development and debugging of
the code written in the DSL, since the development is not hindered
by a level of intermediate code produced when deeply embedded
DSL code is staged. At run-time the generated deeply embedded
DSL code is further staged and optimized to machine code targeting
either the host CPU or any of the available devices. Unlike Firepile
and Yin-Yang, the CLOP compiler is executed by the host language
compiler (the D compiler in our case) and in principle does not
cause any run-time overhead.

Recently Khronos Group released the SYCL [6] specification
that defines an abstraction layer to allow single-source style het-
erogeneous programming with OpenCL. CLOP is our effort in the
same direction taking advantage of compile time code rewriting.

5. Conclusion
Today, all but the simplest programs involve a complex interplay
of various technologies and programming languages, thus making
the programs themselves heterogeneous. One of the goals of pro-
gramming tools is to smooth out the edges between a program’s
heterogeneous parts and make it appear as a single source program.
To that end we develop CLOP, which makes heterogeneous pro-
gramming more efficient. CLOP is open-source and available for
download at http://dmakarov.github.io/clop/.
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