

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Reducing Wasted Resources to Help Achieve Green Data Centers

Jordi Torres, David Carrera, Kevin Hogan, Ricard Gavaldà, Vicenç Beltran, Nicolás Poggi

Barcelona Supercomputing Center (BSC) - Technical University of Catalonia (UPC)

torres@ac.upc.edu

Abstract

In this paper we introduce a new approach to the

consolidation strategy of a data center that allows an

important reduction in the amount of active nodes required

to process a heterogeneous workload without degrading

the offered service level. This article reflects and

demonstrates that consolidation of dynamic workloads

does not end with virtualization. If energy-efficiency is

pursued, the workloads can be consolidated even more

using two techniques, memory compression and request

discrimination, which were separately studied and

validated in previous work and are now to be combined in

a joint effort. We evaluate the approach using a

representative workload scenario composed of numerical

applications and a real workload obtained from a top

national travel website. Our results indicate that an

important improvement can be achieved using 20% less

servers to do the same work. We believe that this serves as

an illustrative example of a new way of management:

tailoring the resources to meet high level energy efficiency

goals.

1. Introduction

Companies are now focusing more attention than ever on

the need to improve energy efficiency. Up to now, the

notion of "performance" has been much related with

"speed". This requires data and supercomputing centers to

consume huge amounts of electrical power and produces a

large amount of heat that requires expensive cooling

facilities. Besides the cost of energy, a new challenge is the

increasing pressure to reduce the carbon footprint. Due to

many UK and EU regulations and campaigns demanding

greener businesses, a cap-and-trade system for carbon

credits is to be introduced in 2010. Since current energy

costs are rising, and Data Center equipment is stressing the

power and cooling infrastructure[15], nowadays there is a

big interest in “Green” data and supercomputer centers

[9,28]. In this area, the research community is being

challenged to rethink data center strategies, adding energy

efficiency to a list of critical operating parameters that

already includes service ability, reliability and performance.

A large variety of power-saving proposals have been

presented in the literature such as dynamic voltage scaling

and frequency scaling [14, 23]. However, some authors [12,

7] have argued that workload consolidation and powering

off spare servers is a good effective way to save power and

cooling energy. The low average utilization of servers is a

well known cost concern in data center management. It has

only been a short while since “One application – one

server” was the dominant paradigm. This situation clearly

implies server sprawl where the servers are underutilized.

Data centers started to solve this by packing through

consolidation to reduce the number of machines required.

Server consolidation implies combining workloads from

separate machines and different applications into a smaller

number of systems and has become very popular following

the advances in virtualization technologies [16]. This

solves some interesting challenges; less hardware is

required, less electrical consumption is needed for server

power and cooling and less physical space is required.

This is a widely adopted strategy used by companies [27] to

increase the efficiency in managing their server

environment and is assumed to maximize the utilization of

their existing resources. As we will discuss further in this

paper, we should consider new techniques complementary

to consolidation to dramatically reduce the energy

consumption and further reduce the resources required.

Request discrimination is introduced to identify and reject

those requests that consume system resources but have no

value for an application (e.g. requests coming from web

crawlers created by competitor businesses for spying

purposes). We will also consider another technique,

memory compression, which converts CPU power into

extra memory capacity to overcome system underutilization

scenarios caused by memory constraints. We study the use

of these techniques by describing a representative scenario

composed of a realistic heterogeneous workload. The

techniques described here reduce the number of nodes

necessary to meet a certain service level criteria. The main

contribution of this article is to reflect and demonstrate that

the consolidation through virtualization of heterogeneous

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

workloads, on its own, does not go far enough in saving

energy, and we will present ways of rescuing resources by

reducing the wastage. The rest of the paper is organized as

follows. Section 2 describes the basics of dynamic resource

management and the techniques that we applied in our

work. Section 3 discusses our studies and obtained results.

In Section 4 we study the related work found in the

literature. Finally, some conclusions and future work are

discussed in sections 5 and 6.

2. Consolidated environment

2.1 Managing a consolidated and virtualized

environment

Consolidation and virtualization can be combined to

reduce the management complexity of large data centers as

well as to increase the energy efficiency of such a system.

But even in a scenario where the resources are consolidated

and virtualized, utilizing all the capacity of the components

that are switched on (and consuming power) is not always

easy. Deciding a collocation of a set of applications in a

node to perfectly fit and exploit all the resources of the

system is a hard problem to solve, especially when tenths or

even hundreds of nodes and applications can be found in a

data center. Furthermore, the fact that the demand

associated with each resource from a given application may

not be related in any way to its demand for other resources

(i.e. an application with a large memory footprint may not

be very demanding in terms of CPU power) makes it a

structural problem that requires some constraints to be

relaxed if we want to overcome it.

The techniques proposed in this paper are studied in the

context of a shared data center running a set of applications

which are operated by an automatic service management

middleware such as that described in [21,25] but other

approaches could be considered. The management

middleware monitors the actual service level offered to

each running application and dynamically changes the

configuration of the system to make the applications meet

their goals. In particular, the system has to decide in what

nodes these instances are going to be placed: this is what is

known as the placement problem.

The placement problem is to find a placement for

applications on servers, known to be NP-hard [11,6] and

heuristics must be used to solve it. Given a certain

workload, changing the allocated CPU power for an

application makes a significant difference in the service

level offered. Changing the amount of memory allocated to

an application results in an even higher impact, because the

application can either be placed or it can’t, depending on

whether the amount of memory reserved to run it is enough

or not. This leads to a scenario where the placement

problem can be represented as two different problems:

placing applications following memory constraints and

spreading CPU resources amongst the placed instances. The

objective of our work is not to try and solve the placement

problem but to introduce a new degree of freedom to allow

the system find a new set of application placements that

offer the same service level to each application but require

different resource allocations. This objective is achieved by

relaxing the allocation constraints, and by relaxing the

hardest constraint in the system: the available physical

resources in each node of the data center.

For the purpose of our work, we assume the data center

controls the resources allocated to each application using

virtualization technology [2], and runs each instance inside

a virtual machine container. In the scope of this paper we

use a simple instance placement algorithm to illustrate the

benefits of our techniques, but it doesn’t have to be limited

to this. In order to better define the placement scenario, it

can be assumed that the system is able to derive the relation

between resource allocation and obtained service level for

each application in the system, as is reported in [21].

2.2 Recycling through resource transformation

After virtualizing a system, some resources may still be

unused by the applications. The demand associated with

each resource in the system for a given application may not

be related in any way to the demand for other resources (i.e.

an application with a large memory footprint might have a

small CPU power footprint), which can potentially lead to

an underutilization of some resources in the system. To

illustrate this situation we will show a typical placement

problem: some applications could all be placed on a node in

terms of CPU power (they would meet their performance

goals), but the memory capacity of the system makes it

impossible to place all the applications together. As a result,

an extra node must be used to place one of the applications,

and both nodes end up being underutilized in terms of CPU.

Memory compression is a widely studied topic that can

be helpful in the placement problem. It allows the system to

increase the density of the placement (i.e. the number of

applications on a node) and better exploit the resources of

the system. This process can be understood as a resource

transformation: CPU cycles are converted into extra

memory. The amount of extra memory produced using this

technique can potentially go beyond consolidation through

virtualization in two aspects: firstly, allowing the placement

of an extra application that did not fit in a node before,

therefore reducing node underutilization; and secondly,

increasing the performance of a placed application that,

with a given amount of memory, can still run but at a

fraction of the maximum achievable performance (i.e.

producing a big volume of swapping activity).

Some of our recent work is focused on revisiting the

memory compression topic by targeting advanced hardware

architectures (current multiprocessor and multi-core

technologies such as CELL and Niagara [3]). Our study

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

concludes that memory compression can be carried out

without observing a significant performance impact in many

commercial applications (the study is performed using the

SPECWeb2005 [26] application). The relation between the

CPU power dedicated to compress memory and the

memory gain obtained for three different levels of memory

compressibility is represented in [3]. Obviously, this

relation is always defined by the level of memory

compression achievable given a set of applications. From

the point of view of the applications, the overhead produced

by memory compression techniques is negligible because

although accessing compressed data is slower than

accessing regular memory, it is still faster than accessing a

standard SCSI disk. This means that the reduction in

swapping as well as being able to cache more data can still

result in a performance improvement for most applications.

2.3 Reduction through discrimination

A fraction of the resources are wasted on work that

yields no added value for the application or the company

running it: consider a webserver for an e-commerce site,

and the amount of work performed for customers that will

not buy. An even greater problem is clients that request

work that can be harmful to the system: consider requests to

the webserver during denial-of-service attacks, or the traffic

generated by malicious bots or web crawlers created by

competitor businesses for spying purposes. Any potentially

harmful requests that can be detected should be banned.

Let us comment on the work in [19], which addresses the

problem of detecting malicious bots for the purpose of

banning them. The case study in this work is a national

online travel agency working as an electronic intermediary

between customers and service providers (such as airline

companies). More precisely, in [19,20] and later

experiments we have used web traffic logs from different

periods of the year, ranging from one day to a week of

traffic, with up to 3,7 million transactions. Each transaction

is a particular request to the web site (e.g. a page download,

possibly including many database searches). Transactions

are grouped into user sessions, with an average length of

about 8 transactions per session for non-buying sessions,

and 18 transactions per session for sessions that end in a

purchase. Around 6.7% of transactions belong to sessions

which will end in purchase. The problem tackled in [19] is

that of detecting stealing bots in e-commerce applications.

Content stealing on the web is becoming a serious concern

for information and e-commerce websites. In the practices

known as web fetching or web scraping [10], a stealer Bot

simulates a human web user to extract desired content off

the victim’s website. Not only that, but in a B2B scenario,

the victim incurs the costs of searching the provider’s web

for a supposed “customer” that will never buy, and loses the

real customers who will instead buy via the stealer’s site.

The work in [19] investigated whether it was possible to

identify with reasonable certainty bots accessing a web site

for automated banning so that the system could stop the

corresponding session and free the allocated resources. In

the online travel agent website, [19] concluded that around

15% to 20% of the traffic corresponds to bots other than

simple crawlers. Note that a feature of stealer bots is the

large amount of search requests, hence this large traffic

figure. Applying machine learning techniques, the authors

were able to detect around 10%-12% of the total traffic as

bots with a low % of “false alarms” and negligible overhead

at runtime. This percentage of traffic could be banned in the

real scenario, even when the system is not overloaded, since

it is actually harmful to the company’s interests to serve

them. While the interest of the authors in [19] is leveraging

revenue loss from the spurious transactions, it is easy to see

this technique as a way to reduce the allocated resources: If

we expect that we could ban 10%-12% of the incoming

traffic, we could reduce the resources assigned to the

application by a similar percentage when deploying it.

In any case, a key point is finding the relation between

load reduction and resource reduction. The experiments in

some of our EU-funded projects [5], where we have

researched the dynamic management of resources, let us

conclude that there is essentially a linear relation among

load volume and CPU usage. That is, if we reduce the

number of requests by 10% or 15%, the CPU requirements

will be reduced by at least 10% or 15%. The reduction will

probably be larger if the transactions we discard are

especially heavy ones (which is the case for stealing bots).

We cannot at this moment, make similar claims for other

resources, such as memory, which we are still investigating.

For this reason we center our work only on CPU even

though we believe that we will be able to extend the

conclusions to other resources soon.

3. Experiments

In this section we evaluate our proposal. First we will

demonstrate the waste of resources using the state-of-the-art

automatic management middleware, considering only a

small set of web applications in order to facilitate the

explanation of the idea. Later we will demonstrate the

impact of the proposal using a simulation that reproduces a

heterogeneous workload scenario.

3.1 Waste of resources

In order to demonstrate that the current state of

virtualization is wasting resources, we will consider a set of

4 different web applications. The characteristics of each

application are described in table 1. Neither allocation

restrictions nor collocation restrictions are defined, but

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

placement is still subject to resource constraints, such as the

node memory and CPU capacity.

Table 1. Memory and CPU required by the Applications

 App 1 App 2 App 3 App 4

Minimum

Memory
2300 MB 1300 MB 1100 MB 1000 MB

Maximum

CPU required
2200Mhz 2000 Mhz 2000 Mhz 1900 Mhz

We consider that each server has four 2.2GHz CPUs and

4GB of memory (based on an IBM JS21 blade). We assume

that the virtualization overhead is 1GB of memory and 1

CPU. This assumption is based on our previous experience

[5]. Table 2 summarizes the specifications of each node.

Notice that application 1 can not be placed together with

any other application because of the memory constraints.

Applications 2, 3 and 4 can be collocated, but only two of

them can be placed together in each node. Table 1 only

indicates the maximum CPU required (spike) for each

application over time to meet its service level goals. That

is, the maximum value for the minimum amount of CPU

power that must be allocated to each application if its

service level goal is to be met. There is no overloading at

any point during the experiment (the aggregated CPU

power can satisfy the requirement of all applications over

the time). This placement leads to a situation where the

three nodes are clearly underutilized in terms of CPU since

the maximum amount of CPU required at any point during

the execution is 8100 Mhz while we have a total of 19800

Mhz at our disposal from the 3 servers.

Table 2. Memory and CPU capacity of each node before and

after considering the virtualization overhead

No virtualization Virtualization overhead

CPU

capacity

Memory

capacity

Effective CPU

capacity

Effective mem.

capacity

4x 2.2Ghz 4096MB
3x 2.2Ghz

(6.6 Ghz)
3072 MB

3.2 Tailoring of resources

3.2.1 Baseline placement. In this section we describe
what a modern management middleware would be expected

to do in the scenario described above. As we said before,

application 1 can not be placed together with any other of

the other applications because of its memory requirements.

Given that the CPU demand of application 1 can be

satisfied by one single node, we assume that this application

would be placed in one node for the whole length of the

experiment. The other applications must be placed in the

two remaining nodes. Given that all three applications don’t

fit in one single node due to the memory constraint, two of

them will have to be placed together while the other

application will be alone on one node. Thus, the placement

algorithm should decide at this point what two applications

are going to be placed together. For this experiment we

decide to pick application 2 and 3 to be deployed on node

2, and application 4 to be placed in node 1. Notice that

other choices are possible but that the result would be

analogous to that presented here.

3.2.2 Adding Tailoring Resources. At this point, we

introduce the use of memory compression to increase the

memory capacity of a node on demand. The memory, as

discussed in Section 2.2, is produced at a cost in terms of

CPU power. Notice that in the scenario described in section

3.1, memory constraints lead to a situation where the three

nodes are clearly underutilized in terms of CPU power.

Looking at the data provided in Section 3.1 (which is based

on real experiments conducted with realistic applications on

top of an IBM JS21 blade server) one can observe how,

depending on the compression rate achievable for a given

set of applications placed in a node, a relation can be

established between the CPU power required to compress

memory and the increase in available memory observed. In

the scope of this example, we assume an achievable

compression factor of 47%, and will use an increased

memory capacity for each active node of 6GB at a cost of

1320MHz of CPU power. With the new constraints, a new

range of possible placements is opened up, including the

option of having all four applications placed together on

one single node if the amount of CPU power required can

be satisfied by that single node. When the aggregated CPU

demand exceeds the capacity of a single node an

application is migrated to a second node which is switched

on for this purpose. If at a given point the aggregated CPU

demand for a set of applications can be satisfied again with

one single node, all these applications are placed in the

same node again. More details on this can be found in the

report [32].

Regarding the CPU, we make use of the request

discrimination technique described earlier in section 2.3.

With the help of machine learning it is possible to

determine the characteristics of requests that are of no

benefit to the company running the service; for example

Bots. These have been estimated to account for 15% to

20% of all web traffic so the filtering out of these can

reduce the load by a significant amount. We assume that we

can filter out 10% of all the web traffic, based on the

figures that the authors of [19] achieved in their work.

There is a direct linear correlation between the amounts of

CPU required to process requests, so if we reduce the

number of requests by 10%, we are effectively reducing the

amount of CPU needed by the same amount [5].

3.3 Heterogeneous workload

3.3.1 Workload Description. To generate the

heterogeneous workload we modify and extend the previous

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

workload, described in table 1, by creating a scenario in

which we consider a total of 12 applications. The first set of

4 are designated as "Web" applications, and have the same

memory and CPU requirements as defined in table 1, but

are scheduled to run at times that conform to the workload

of a travel agency website during the high-season. There are

clearly visible patterns in the load over the day and week,

containing spikes during the day, troughs at night and

generally lower loads at the weekend. The next set of 4

applications are also "Web" applications but are scheduled

to run throughout the whole simulation. They use the same

memory as before but have a variable CPU demand that is

roughly in accordance with the demand on the travel agency

website. Only the CPU is varied since it has been

discovered through other work [5] that there is a highly

linear correlation between the CPU and the workload level,

whereas the same does not hold true for the memory.

Figure 1. The amount of CPU used over time in default setup

The last set of 4 applications are numerical applications

which do not display the same workload characteristics as

the previous ones. We have taken two specific, but

representative, numerical applications for this simulation;

BLAST[29] is a bioinformatics application which generally

has short job running times (in the order of 15 to 30

minutes), and ImageMagick [30] is an image rendering

application which has longer job running times (in the order

of 120 minutes). The numerical applications are considered

to have static CPU and memory demands when they are

running and we have scheduled them so that the short

running jobs arrive every hour or two and the long running

jobs only arrive once or twice a day. The exact needs of

each numerical application can be seen in Table 3.

Table 3. Requirements of the Numerical Applications

Application Memory CPU

(Mhz)

Running

Time

of runs

per day

BLAST1 550 MB 4400 15 min 24

BLAST2 550 MB 4400 30 min 12

ImageMagick1 750 MB 2200 127 min 1

ImageMagick2 750 MB 2200 100 min 2

3.3.2 Baseline Placement. After generating the

heterogeneous workload above, we first ran the simulation

with the default baseline placement algorithm. The

workload pattern of the travel website is easy to see in

figure 1, where we show the amount of CPU used over a

simulated time of one week.

Figure 2. The % of the allocated (a) memory capacity, and (b)

CPU, being used under the baseline placement

While we are benefiting from consolidation and

virtualization, reducing the number of servers we need to

run the applications when compared with the “one

application – one server” paradigm, there is still

considerable wastage in the system. We can measure the

exact amount of resources being wasted at each moment in

time by subtracting the total load from the sum of the

capacities of each server allocated to us during that moment

in time. For example, if we have 2 servers allocated to us

and they both have 1GB of memory free, this means that we

are wasting 2GB of memory in total. For 2 servers this

means that we are only using 66% of the memory available

to us since the effective memory capacity available to each

server after virtualization is 3072 MB. Conversely, it also

means that we are wasting 33% of that resource. Figures 2

show the percentage of the allocated resources that are

being used/wasted over time using the default baseline

placement, when considering memory and CPU

respectively. The graphics show that there is very little

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

memory being wasted, but the CPU appears to be highly

underutilized. It suggests that the memory is acting as the

largest constraint when we are placing applications on the

servers.

3.3.3 Tailored Placement. In the next stage of our

experiment we used the same workload with a simple

demand based placement algorithm which can make use of

the compression and request discrimination techniques.

Note that during this simulation the numerical applications

do not take advantage of any tailoring. The advantages that

numerical applications can gain from the techniques used in

tailoring are currently being investigated, and while it looks

promising that they can benefit from it also, the exact

figures are not yet known so have been left out of the

current work.

From figure 3 it can be seen that the CPU needed in the

tailored scenario is slightly higher than the CPU needed in

the default baseline scenario. By using request

discrimination we are reducing the demand of the Web

applications by 10%, but we experience a hit on the CPU

due to the compression technique. In the worst case for our

workload it amounts to an extra 2068 Mhz, which is

equivalent to 31% of a single server’s CPU capacity.

Figure 3. The extra amount of CPU used in the tailored setup

compared to that used in the default

Figure 4. The amount of memory used in the default setup

versus that used with tailoring

The next graphic in figure 4 shows us the other side of

the coin as we can see the large difference between the

memory requirements of the tailored environment and the

default one over the time of the simulation. For the

memory, the tailored environment requires a considerable

amount less since it is able to squeeze more out of the

memory available to it when it uses compression. We have

essentially traded some of our excess CPU power for extra

memory when we used the tailoring.

The big advantage that we gain by using tailoring can be

summed up in figure 5, where we show the difference in the

amount of servers required to satisfy the workload over

time. Over the whole simulation time the tailored setup

never requires more servers than the default setup. At the

lowest points of demand our tailored environment is able to

get by with a single server, whereas at those points the

standard environment needs three. This could be used to

achieve a saving in the cost of running the website, and a

reduction to its carbon footprint, especially if the resources

are being contracted dynamically based on demand.

Figure 5. The difference in the amount of nodes needed for the

default setup versus those needed with tailoring

Even if the website is not dynamically obtaining servers

to deal with the load and has a static set of servers in-house,

the tailored setup would allow them to use 20% less

servers, since the maximum amount of servers needed by

the tailored setup to satisfy the workload is 4 whereas the

corresponding value for that of the default setup is 5. This

represents a significant saving in the hardware needs, and

when put in this context, the default setup appears to be

suffering from over-provisioning. There is a huge

environmental impact by being able to turn off unneeded

servers so this is an important step in making Data centers

“greener”.

During the simulation we also recorded the amount of

migrations that were needed to achieve the placements. The

figures for the default baseline scenario and the tailored one

were 27 and 192 respectively. While the difference in these

two figures appears large, since the experiment had a

simulated time of one week, it should not pose much

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

problems. It works out that there would be just over one

migration per hour using the tailored set up. We are

currently doing work in our group to research ways of

having transparent migrations for users using the techniques

in [1] which may be of help in this process.

3.3.4 Bigger Workloads. To establish how the tailored
and default scenarios cope with larger workloads, we

multiplied our previous load by a factor of four and reran

the simulation. Under this load, which has a set of 48

applications looking for resources in the same way as the

previous simulation, the differences between the default

setup and the tailored one become even more pronounced.

Figure 6 shows that the tailored environment requires fewer

servers throughout the entire simulated time of this heavier

load. The maximum amount of servers required by the

default and tailored setup are 18 and 14 respectively, which

would allow a saving of just over 20%. The number of

migrations in both cases increased by a factor just greater

than 4.

Figure 6. The amount of nodes needed for the default setup

versus those needed with tailoring

4. Related Work

The placement problem itself is out of the scope of our

work but the techniques described in this paper can be

helpful to any placement algorithm, by relaxing one of the

hardest constraints they have to deal with: the system

capacity. Existing dynamic application placement proposals

provide automation mechanisms by which resource

allocations may be continuously adjusted to the changing

workload. Previous work focuses on different goals, such

as maximizing resource utilization [11] and allocating

resources to applications according to their service level

goals [21, 6]. Our proposal could apply to and improve any

of those. Space does not permit a full discussion of the

various types of virtualization and their relative merits here;

the reader is referred instead to [16,8,2]. The dynamic

allocation of server resources to applications has been

extensively studied [4,6,11,13,22], however any of these

proposals can go beyond virtualization and could be

beneficiaries of the proposals presented in this paper.

Another important issue is the problematic consolidation of

multi-tier applications considered in [18] that can be

complementary to our proposal. Also of great importance is

the topic considered in [17], regarding the power-efficient

management of enterprise workloads which exploits the

heterogeneity of the platforms. Our proposals could be

included in the analytical prediction layer proposed by the

authors. Finally let us remark that our proposals could be

combined with power-saving techniques at the lowest level

such as dynamic voltage scaling and frequency scaling

[7,14,24]. In a recent work [12], the authors use frequency

scaling in a scheme that trades off web application

performance and power usage while coordinating multiple

autonomic managers. In this case the proposals of this

article could be included in the utility function that they are

using.

5. Conclusions

In this paper we demonstrate how consolidation with

energy efficiency goals still has a long way to do beyond

the use of virtualization. In this work, we identify new

opportunities to improve the energy efficiency of systems,

reducing the resources required, without negatively

impacting the performance or user satisfaction. The

obtained results show that the combined use of memory

compression and request discrimination can dramatically

boost the energy savings in a data center. Our interest as a

group involves creating power-aware middleware to

contribute to building energy-efficient data centers. The

increased awareness of green issues is simply accelerating

improvements in efficiency that any data center should have

been implementing in the near future anyway. Somehow,

the next generation of computing systems must achieve

significantly lower power needs, higher performance/watt

ratio, and higher reliability than ever before.

6. Future Work

We would like to extend our work to consider other

techniques that could be added in terms of availability such

as self-healing techniques [1] and therefore take better

advantage of the resources available. We are already

working on the implementation of a prototype system that

applies the techniques described in this paper. We will also

extend the tailoring techniques further than just web

applications and take numerical applications into account.

The advantages that numerical applications can gain from

the technique used to compress memory are currently being

investigated in our group and it looks promising that they

can benefit from it. Many systems kill jobs after an

estimated time by the user (indicated in the user-provided

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

job script) has elapsed and it is a well-documented fact that

user-provided runtime estimates are very often inaccurate

[31]. In this case we are working to find a way of using

discrimination techniques to detect and filter jobs that have

no chance of completing successfully.

7. Acknowledgments

This work is supported by the Ministry of Science and

Technology of Spain and the European Union (FEDER

funds) under contracts TIN2004-07739-C02-01 and

TIN2007-60625.

8. References

[1] J. Alonso, L. Silva, A. Andrzejak, P. Silva and J. Torres

“High-Availability Grid Services through the use of Virtualized

Clustering“. The 8th IEEE/ACM Int.l Conf. on Grid Computing

(GRID 2007). September 19-21, 2007, Austin, Texas, USA.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of

virtualization” in Symposium on Operating Systems Principles

(SOSP), Bolton Landing, NY, 2003

[3] V.Beltran, J. Torres and E. Ayguade “Improving Disk

Bandwidth-Bound Applications Through Main Memory

Compression” MEDEA Workshop MEmory performance:

DEaling with Applications, systems and architecture. Brasov,

Romania. In conjunction with PACT 2007 Conf. Sept. 2007.

[4] N. Bobroff, A. Kochut, and K. Beatty, “Dynamic

placement of virtual machines for managing SLA violations,” in

Integrated Network Management, Munich, Germany, May 2007.

[5] BREIN Project. http://www.eu-brein.com/

[6] D. Carrera, M. Steinder, I. Whalley, J. Torres and E.

Ayguadé. Utility-based Placement of Dynamic Web Applications

with Fairness Goals. Submitted to IEEE/IFIP Network Operations

and Management Symposium (NOMS 2008).

[7] J. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,

and R. P. Doyle, “Managing energy and server resources in

hosting centers,” in ACM Symposium on Operating Systems

Principles, 2001.

[8] R. Figueiredo, P. Dinda, and J. Fortes, “A case for grid

computing on virtual machines” in International Conference on

Distributed Computing, Providence, RI, May 2003.

[9] Green Grid Con.sortium , http://www.thegreengrid.org/

[10] Hepp, M., D. Bachlechner, and K. Siorpaes. Harvesting

Wiki Consensus - Using Wikipedia Entries as Ontology Elements.

Proceedings of the ESWC2006, Budva, Montenegro, 2006.

[11] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M.

Steinder, M. Sviridenko, A. Tantawi, “Dynamic placement for

clustered web applications” In WWW Conf., Scotland (2006)

[12] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro,

and F. R. an C. Lefurgy, “Coordinating multiple autonomic

managers to achieve specified power-performance tradeoffs,” in

IEEE Fourth Int. Conf. on Autonomic Computing, Jun. 2007.

[13] T. Kimbrel, M. Steinder, M. Sviridenko, A. Tantawi,

”Dynamic application placement under service and memory

constraints”. In International Workshop on Efficient and

Experimental Algorithms, Santorini Island, Greece (2005)

[14] B. Khargharia, S. Hariri, and M. S. Youssif, “Autonomic

power and performance management for computing systems,” in

IEEE Int. Conference on Autonomic Computing, June 2006.

[15] J. Koomey. “Estimating Regional power consumption by

servers: A technical note" Dec 5, 2007. Available at:

http://www.amd.com/us-en/assets/content_type/

DownloadableAssets/Koomey_Study-v7.pdf

[16] S. Nanda and T. Chiueh, “A survey of virtualization

technologies” Stony Brook University, Tech. Rep. 179, 2005.

[17] R. Nathuji, C. Isci, E. Gorbatov. “Exploiting Platform

Heterogeneity for Power Efficient Data Centers”. In IEEE Fourth

International Conference on Autonomic Computing, June. 2007.

[18] P. Padala, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A.

Merchant, K. Salem, and K. Shin. “Adaptive control of virtualized

resources in utility computing environments”. In Proc. European

Conference on Computer Systems (EuroSys'07), 2007.

[19] N. Poggi, J.L. Berral, T. Moreno, R. Gavaldà and J. Torres.

“Automatic Detection and Banning of Content Stealing Bots for

E-commerce”. In Workshop on Machine Learning in Adversarial

Environments for Computer Security (NIPS 2007).British

Columbia, Canada. Dec. 2007

[20] N.Poggi, T. Moreno, J. Berral, R. Gavaldà, J. Torres. “Web

Customer Modelling for Automated Session Prioritization on

High Traffic Sites”. In 11th International Conference on User

Modelling. Corfu, Greece, June, 2007.

[21] M. Steinder, I. Whalley, D. Carrera, I. Gaweda and D.

Chess. “Server virtualization in autonomic management of

heterogeneous workloads”. In 10th IFIP/IEEE International

Symposium on Integrated Management (IM 2007), May 2007.

[22] C.-H. Tsai, K. G. shin, J. Reumann, and S. Singhal,

“Online web cluster capacity estimation and its application to

energy conservation,” IEEE Transactional on Parallel and

distributed Systems, vol. 18, no. 7, 2007.

[23] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, Q.

Wang. ”Appliance-Based Autonomic Provisioning Framework for

Virtualized Outsourcing Data Center”. in IEEE Fourth

International Conference on Autonomic Computing, June 2007.

[24] M. Wang, N. Kandasamy, A. Guea, and M. Kam,

“Adaptive performance control of computing systems via

distributed cooperative control: Application to power

management in computing clusters,” IEEE 3rd International

Conference on Autonomic Computing, June 2006.

[25] “WebSphere eXtended Deployment,” http://www-

306.ibm.com/software/webservers/appserv/extend/

[26] Standard Performance Evaluation Corporation.

SPECweb2005. http://www.spec.org/web2005/

[27] “Usage of Virtualization Technology at Small and Midsize

Businesses”, Computerworld White Paper, October 2007.

[28] The Green500 list. http://www.green500.org/

[29] (BLAST), The National Center for Biotechnology

Information. http://www.ncbi.nlm.nih.gov/blast/

[30] ImageMagick(TM), http://www.imagemagick.org/

[31] C.B. Lee, A. Snavely. On the User–Scheduler Dialogue:

Studies of User-Provided Runtime Estimates and Utility

Functions International Journal of High Performance Computing

Applications, Vol. 20, No. 4, 495-506 (2006).

[32] BCN Placement Simulator. Available: http://

PlacementSimulator.energy-efficient-computing.org/

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on November 10, 2009 at 11:47 from IEEE Xplore. Restrictions apply.

