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Abstract 
 

In this paper we introduce a new approach to the 

consolidation strategy of a data center that allows an 

important reduction in the amount of active nodes required 

to process a heterogeneous workload without degrading 

the offered service level. This article reflects and 

demonstrates that consolidation of dynamic workloads 

does not end with virtualization. If energy-efficiency is 

pursued, the workloads can be consolidated even more 

using two techniques, memory compression and request 

discrimination, which were separately studied and 

validated in previous work and are now to be combined in 

a joint effort. We evaluate the approach using a 

representative workload scenario composed of numerical 

applications and a real workload obtained from a top 

national travel website. Our results indicate that an 

important improvement can be achieved using 20% less 

servers to do the same work. We believe that this serves as 

an illustrative example of a new way of management: 

tailoring the resources to meet high level energy efficiency 

goals. 

 

1. Introduction 
 

Companies are now focusing more attention than ever on 

the need to improve energy efficiency. Up to now, the 

notion of "performance" has been much related with 

"speed". This requires data and supercomputing centers to 

consume huge amounts of electrical power and produces a 

large amount of heat that requires expensive cooling 

facilities. Besides the cost of energy, a new challenge is the 

increasing pressure to reduce the carbon footprint. Due to 

many UK and EU regulations and campaigns demanding 

greener businesses, a cap-and-trade system for carbon 

credits is to be introduced in 2010. Since current energy 

costs are rising, and Data Center equipment is stressing the 

power and cooling infrastructure[15], nowadays there is a 

big interest in “Green” data and supercomputer centers 

[9,28]. In this area, the research community is being 

challenged to rethink data center strategies, adding energy 

efficiency to a list of critical operating parameters that 

already includes service ability, reliability and performance. 

A large variety of power-saving proposals have been 

presented in the literature such as dynamic voltage scaling 

and frequency scaling [14, 23]. However, some authors [12, 

7] have argued that workload consolidation and powering 

off spare servers is a good effective way to save power and 

cooling energy.  The low average utilization of servers is a 

well known cost concern in data center management.  It has 

only been a short while since “One application – one 

server” was the dominant paradigm. This situation clearly 

implies server sprawl where the servers are underutilized.  

Data centers started to solve this by packing through 

consolidation to reduce the number of machines required. 

Server consolidation implies combining workloads from 

separate machines and different applications into a smaller 

number of systems and has become very popular following 

the advances in virtualization technologies [16].  This 

solves some interesting challenges; less hardware is 

required, less electrical consumption is needed for server 

power and cooling and less physical space is required.   

This is a widely adopted strategy used by companies [27] to 

increase the efficiency in managing their server 

environment and is assumed to maximize the utilization of 

their existing resources. As we will discuss further in this 

paper, we should consider new techniques complementary 

to consolidation to dramatically reduce the energy 

consumption and further reduce the resources required. 

Request discrimination is introduced to identify and reject 

those requests that consume system resources but have no 

value for an application (e.g. requests coming from web 

crawlers created by competitor businesses for spying 

purposes). We will also consider another technique, 

memory compression, which converts CPU power into 

extra memory capacity to overcome system underutilization 

scenarios caused by memory constraints. We study the use 

of these techniques by describing a representative scenario 

composed of a realistic heterogeneous workload. The 

techniques described here reduce the number of nodes 

necessary to meet a certain service level criteria. The main 

contribution of this article is to reflect and demonstrate that 

the consolidation through virtualization of heterogeneous 
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workloads, on its own, does not go far enough in saving 

energy, and we will present ways of rescuing resources by 

reducing the wastage. The rest of the paper is organized as 

follows. Section 2 describes the basics of dynamic resource 

management and the techniques that we applied in our 

work. Section 3 discusses our studies and obtained results. 

In Section 4 we study the related work found in the 

literature. Finally, some conclusions and future work are 

discussed in sections 5 and 6. 

 

2. Consolidated environment 

2.1 Managing a consolidated and virtualized 

environment 
 

Consolidation and virtualization can be combined to 

reduce the management complexity of large data centers as 

well as to increase the energy efficiency of such a system. 

But even in a scenario where the resources are consolidated 

and virtualized, utilizing all the capacity of the components 

that are switched on (and consuming power) is not always 

easy. Deciding a collocation of a set of applications in a 

node to perfectly fit and exploit all the resources of the 

system is a hard problem to solve, especially when tenths or 

even hundreds of nodes and applications can be found in a 

data center. Furthermore, the fact that the demand 

associated with each resource from a given application may 

not be related in any way to its demand for other resources 

(i.e. an application with a large memory footprint may not 

be very demanding in terms of CPU power) makes it a 

structural problem that requires some constraints to be 

relaxed if we want to overcome it. 

The techniques proposed in this paper are studied in the 

context of a shared data center running a set of applications 

which are operated by an automatic service management 

middleware such as that described in [21,25] but other 

approaches could be considered. The management 

middleware monitors the actual service level offered to 

each running application and dynamically changes the 

configuration of the system to make the applications meet 

their goals. In particular, the system has to decide in what 

nodes these instances are going to be placed: this is what is 

known as the placement problem.  

The placement problem is to find a placement for 

applications on servers, known to be NP-hard [11,6] and 

heuristics must be used to solve it. Given a certain 

workload, changing the allocated CPU power for an 

application makes a significant difference in the service 

level offered. Changing the amount of memory allocated to 

an application results in an even higher impact, because the 

application can either be placed or it can’t, depending on 

whether the amount of memory reserved to run it is enough 

or not. This leads to a scenario where the placement 

problem can be represented as two different problems: 

placing applications following memory constraints and 

spreading CPU resources amongst the placed instances. The 

objective of our work is not to try and solve the placement 

problem but to introduce a new degree of freedom to allow 

the system find a new set of application placements that 

offer the same service level to each application but require 

different resource allocations. This objective is achieved by 

relaxing the allocation constraints, and by relaxing the 

hardest constraint in the system: the available physical 

resources in each node of the data center. 

For the purpose of our work, we assume the data center 

controls the resources allocated to each application using 

virtualization technology [2], and runs each instance inside 

a virtual machine container. In the scope of this paper we 

use a simple instance placement algorithm to illustrate the 

benefits of our techniques, but it doesn’t have to be limited 

to this. In order to better define the placement scenario, it 

can be assumed that the system is able to derive the relation 

between resource allocation and obtained service level for 

each application in the system, as is reported in [21]. 

 

2.2 Recycling through resource transformation 
 

After virtualizing a system, some resources may still be 

unused by the applications. The demand associated with 

each resource in the system for a given application may not 

be related in any way to the demand for other resources (i.e. 

an application with a large memory footprint might have a 

small CPU power footprint), which can potentially lead to 

an underutilization of some resources in the system. To 

illustrate this situation we will show a typical placement 

problem: some applications could all be placed on a node in 

terms of CPU power (they would meet their performance 

goals), but the memory capacity of the system makes it 

impossible to place all the applications together. As a result, 

an extra node must be used to place one of the applications, 

and both nodes end up being underutilized in terms of CPU. 

Memory compression is a widely studied topic that can 

be helpful in the placement problem. It allows the system to 

increase the density of the placement (i.e. the number of 

applications on a node) and better exploit the resources of 

the system. This process can be understood as a resource 

transformation: CPU cycles are converted into extra 

memory. The amount of extra memory produced using this 

technique can potentially go beyond consolidation through 

virtualization in two aspects: firstly, allowing the placement 

of an extra application that did not fit in a node before, 

therefore reducing node underutilization; and secondly, 

increasing the performance of a placed application that, 

with a given amount of memory, can still run but at a 

fraction of the maximum achievable performance (i.e. 

producing a big volume of swapping activity). 

Some of our recent work is focused on revisiting the 

memory compression topic by targeting advanced hardware 

architectures (current multiprocessor and multi-core 

technologies such as CELL and Niagara [3]). Our study 
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concludes that memory compression can be carried out 

without observing a significant performance impact in many 

commercial applications (the study is performed using the 

SPECWeb2005 [26] application).  The relation between the 

CPU power dedicated to compress memory and the 

memory gain obtained for three different levels of memory 

compressibility is represented in [3]. Obviously, this 

relation is always defined by the level of memory 

compression achievable given a set of applications.  From 

the point of view of the applications, the overhead produced 

by memory compression techniques is negligible because 

although accessing compressed data is slower than 

accessing regular memory, it is still faster than accessing a 

standard SCSI disk. This means that the reduction in 

swapping as well as being able to cache more data can still 

result in a performance improvement for most applications. 

 

2.3 Reduction through discrimination 
 

A fraction of the resources are wasted on work that 

yields no added value for the application or the company 

running it: consider a webserver for an e-commerce site, 

and the amount of work performed for customers that will 

not buy. An even greater problem is clients that request 

work that can be harmful to the system: consider requests to 

the webserver during denial-of-service attacks, or the traffic 

generated by malicious bots or web crawlers created by 

competitor businesses for spying purposes. Any potentially 

harmful requests that can be detected should be banned. 

Let us comment on the work in [19], which addresses the 

problem of detecting malicious bots for the purpose of 

banning them. The case study in this work is a national 

online travel agency working as an electronic intermediary 

between customers and service providers (such as airline 

companies). More precisely, in [19,20] and later 

experiments we have used web traffic logs from different 

periods of the year, ranging from one day to a week of 

traffic, with up to 3,7 million transactions. Each transaction 

is a particular request to the web site (e.g. a page download, 

possibly including many database searches). Transactions 

are grouped into user sessions, with an average length of 

about 8 transactions per session for non-buying sessions, 

and 18 transactions per session for sessions that end in a 

purchase. Around 6.7% of transactions belong to sessions 

which will end in purchase. The problem tackled in [19] is 

that of detecting stealing bots in e-commerce applications. 

Content stealing on the web is becoming a serious concern 

for information and e-commerce websites. In the practices 

known as web fetching or web scraping [10], a stealer Bot 

simulates a human web user to extract desired content off 

the victim’s website. Not only that, but in a B2B scenario, 

the victim incurs the costs of searching the provider’s web 

for a supposed “customer” that will never buy, and loses the 

real customers who will instead buy via the stealer’s site.  

The work in [19] investigated whether it was possible to 

identify with reasonable certainty bots accessing a web site 

for automated banning so that the system could stop the 

corresponding session and free the allocated resources. In 

the online travel agent website, [19] concluded that around 

15% to 20% of the traffic corresponds to bots other than 

simple crawlers. Note that a feature of stealer bots is the 

large amount of search requests, hence this large traffic 

figure. Applying machine learning techniques, the authors 

were able to detect around 10%-12% of the total traffic as 

bots with a low % of “false alarms” and negligible overhead 

at runtime. This percentage of traffic could be banned in the 

real scenario, even when the system is not overloaded, since 

it is actually harmful to the company’s interests to serve 

them. While the interest of the authors in [19] is leveraging 

revenue loss from the spurious transactions, it is easy to see 

this technique as a way to reduce the allocated resources: If 

we expect that we could ban 10%-12% of the incoming 

traffic, we could reduce the resources assigned to the 

application by a similar percentage when deploying it. 

In any case, a key point is finding the relation between 

load reduction and resource reduction. The experiments in 

some of our EU-funded projects [5], where we have 

researched the dynamic management of resources, let us 

conclude that there is essentially a linear relation among 

load volume and CPU usage. That is, if we reduce the 

number of requests by 10% or 15%, the CPU requirements 

will be reduced by at least 10% or 15%. The reduction will 

probably be larger if the transactions we discard are 

especially heavy ones (which is the case for stealing bots). 

We cannot at this moment, make similar claims for other 

resources, such as memory, which we are still investigating. 

For this reason we center our work only on CPU even 

though we believe that we will be able to extend the 

conclusions to other resources soon.  

 

3. Experiments 
 

In this section we evaluate our proposal. First we will 

demonstrate the waste of resources using the state-of-the-art 

automatic management middleware, considering only a 

small set of web applications in order to facilitate the 

explanation of the idea. Later we will demonstrate the 

impact of the proposal using a simulation that reproduces a 

heterogeneous workload scenario. 

 

3.1 Waste of resources 
 

In order to demonstrate that the current state of 

virtualization is wasting resources, we will consider a set of 

4 different web applications. The characteristics of each 

application are described in table 1. Neither allocation 

restrictions nor collocation restrictions are defined, but 
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placement is still subject to resource constraints, such as the 

node memory and CPU capacity.   

 
Table 1. Memory and CPU required by the Applications 

 

 App 1 App 2 App 3 App 4 

Minimum 

Memory  
2300 MB 1300 MB 1100 MB 1000 MB 

Maximum 

CPU required  
2200Mhz 2000 Mhz 2000 Mhz 1900 Mhz 

 

We consider that each server has four 2.2GHz CPUs and 

4GB of memory (based on an IBM JS21 blade). We assume 

that the virtualization overhead is 1GB of memory and 1 

CPU. This assumption is based on our previous experience 

[5]. Table 2 summarizes the specifications of each node. 

Notice that application 1 can not be placed together with 

any other application because of the memory constraints. 

Applications 2, 3 and 4 can be collocated, but only two of 

them can be placed together in each node. Table 1 only 

indicates the maximum CPU required (spike) for each 

application over time to meet its service level goals.  That 

is, the maximum value for the minimum amount of CPU 

power that must be allocated to each application if its 

service level goal is to be met. There is no overloading at 

any point during the experiment (the aggregated CPU 

power can satisfy the requirement of all applications over 

the time). This placement leads to a situation where the 

three nodes are clearly underutilized in terms of CPU since 

the maximum amount of CPU required at any point during 

the execution is 8100 Mhz while we have a total of 19800 

Mhz at our disposal from the 3 servers.  

 
Table 2. Memory and CPU capacity of each node before and 

after considering the virtualization overhead 
 

No virtualization Virtualization overhead 

CPU 

capacity 

Memory 

capacity 

Effective CPU 

capacity 

Effective mem. 

capacity 

4x  2.2Ghz 4096MB 
3x  2.2Ghz 

(6.6 Ghz) 
3072 MB 

 

3.2 Tailoring of resources 

3.2.1 Baseline placement. In this section we describe 
what a modern management middleware would be expected 

to do in the scenario described above. As we said before, 

application 1 can not be placed together with any other of 

the other applications because of its memory requirements. 

Given that the CPU demand of application 1 can be 

satisfied by one single node, we assume that this application 

would be placed in one node for the whole length of the 

experiment. The other applications must be placed in the 

two remaining nodes. Given that all three applications don’t 

fit in one single node due to the memory constraint, two of 

them will have to be placed together while the other 

application will be alone on one node. Thus, the placement 

algorithm should decide at this point what two applications 

are going to be placed together. For this experiment we 

decide to pick application 2 and 3 to be deployed on node 

2, and application 4 to be placed in node 1. Notice that 

other choices are possible but that the result would be 

analogous to that presented here.  
 

3.2.2 Adding Tailoring Resources. At this point, we 

introduce the use of memory compression to increase the 

memory capacity of a node on demand. The memory, as 

discussed in Section 2.2, is produced at a cost in terms of 

CPU power. Notice that in the scenario described in section 

3.1, memory constraints lead to a situation where the three 

nodes are clearly underutilized in terms of CPU power. 

Looking at the data provided in Section 3.1 (which is based 

on real experiments conducted with realistic applications on 

top of an IBM JS21 blade server) one can observe how, 

depending on the compression rate achievable for a given 

set of applications placed in a node, a relation can be 

established between the CPU power required to compress 

memory and the increase in available memory observed. In 

the scope of this example, we assume an achievable 

compression factor of 47%, and will use an increased 

memory capacity for each active node of 6GB at a cost of 

1320MHz of CPU power. With the new constraints, a new 

range of possible placements is opened up, including the 

option of having all four applications placed together on 

one single node if the amount of CPU power required can 

be satisfied by that single node.  When the aggregated CPU 

demand exceeds the capacity of a single node an 

application is migrated to a second node which is switched 

on for this purpose. If at a given point the aggregated CPU 

demand for a set of applications can be satisfied again with 

one single node, all these applications are placed in the 

same node again. More details on this can be found in the 

report [32]. 

Regarding the CPU, we make use of the request 

discrimination technique described earlier in section 2.3. 

With the help of machine learning it is possible to 

determine the characteristics of requests that are of no 

benefit to the company running the service; for example 

Bots. These have been estimated to account for 15% to 

20% of all web traffic so the filtering out of these can 

reduce the load by a significant amount. We assume that we 

can filter out 10% of all the web traffic, based on the 

figures that the authors of [19] achieved in their work. 

There is a direct linear correlation between the amounts of 

CPU required to process requests, so if we reduce the 

number of requests by 10%, we are effectively reducing the 

amount of CPU needed by the same amount [5]. 

 

3.3 Heterogeneous workload 

3.3.1 Workload Description. To generate the 

heterogeneous workload we modify and extend the previous 
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workload, described in table 1, by creating a scenario in 

which we consider a total of 12 applications. The first set of 

4 are designated as "Web" applications, and have the same 

memory and CPU requirements as defined in table 1, but 

are scheduled to run at times that conform to the workload 

of a travel agency website during the high-season. There are 

clearly visible patterns in the load over the day and week, 

containing spikes during the day, troughs at night and 

generally lower loads at the weekend. The next set of 4 

applications are also "Web" applications but are scheduled 

to run throughout the whole simulation. They use the same 

memory as before but have a variable CPU demand that is 

roughly in accordance with the demand on the travel agency 

website. Only the CPU is varied since it has been 

discovered through other work [5] that there is a highly 

linear correlation between the CPU and the workload level, 

whereas the same does not hold true for the memory.  

 

 
Figure 1. The amount of CPU used over time in default setup 

 

The last set of 4 applications are numerical applications 

which do not display the same workload characteristics as 

the previous ones. We have taken two specific, but 

representative, numerical applications for this simulation; 

BLAST[29] is a bioinformatics application which generally 

has short job running times (in the order of 15 to 30 

minutes), and ImageMagick [30] is an image rendering 

application which has longer job running times (in the order 

of 120 minutes). The numerical applications are considered 

to have static CPU and memory demands when they are 

running and we have scheduled them so that the short 

running jobs arrive every hour or two and the long running 

jobs only arrive once or twice a day. The exact needs of 

each numerical application can be seen in Table 3. 

 
Table 3. Requirements of the Numerical Applications 

 

Application Memory CPU 

(Mhz) 

Running 

Time 

# of runs 

per day 

BLAST1 550 MB 4400 15 min 24 

BLAST2 550 MB 4400 30 min 12 

ImageMagick1 750 MB 2200 127 min 1 

ImageMagick2 750 MB 2200 100 min 2 

 

3.3.2 Baseline Placement. After generating the 

heterogeneous workload above, we first ran the simulation 

with the default baseline placement algorithm. The 

workload pattern of the travel website is easy to see in 

figure 1, where we show the amount of CPU used over a 

simulated time of one week. 

 

 

 
Figure 2. The % of the allocated (a) memory capacity,  and (b) 

CPU, being used under the baseline placement 
 

While we are benefiting from consolidation and 

virtualization, reducing the number of servers we need to 

run the applications when compared with the “one 

application – one server” paradigm, there is still 

considerable wastage in the system. We can measure the 

exact amount of resources being wasted at each moment in 

time by subtracting the total load from the sum of the 

capacities of each server allocated to us during that moment 

in time. For example, if we have 2 servers allocated to us 

and they both have 1GB of memory free, this means that we 

are wasting 2GB of memory in total. For 2 servers this 

means that we are only using 66% of the memory available 

to us since the effective memory capacity available to each 

server after virtualization is 3072 MB. Conversely, it also 

means that we are wasting 33% of that resource. Figures 2 

show the percentage of the allocated resources that are 

being used/wasted over time using the default baseline 

placement, when considering memory and CPU 

respectively. The graphics show that there is very little 
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memory being wasted, but the CPU appears to be highly 

underutilized. It suggests that the memory is acting as the 

largest constraint when we are placing applications on the 

servers. 

3.3.3 Tailored Placement. In the next stage of our 

experiment we used the same workload with a simple 

demand based placement algorithm which can make use of 

the compression and request discrimination techniques. 

Note that during this simulation the numerical applications 

do not take advantage of any tailoring. The advantages that 

numerical applications can gain from the techniques used in 

tailoring are currently being investigated, and while it looks 

promising that they can benefit from it also, the exact 

figures are not yet known so have been left out of the 

current work.  

From figure 3 it can be seen that the CPU needed in the 

tailored scenario is slightly higher than the CPU needed in 

the default baseline scenario. By using request 

discrimination we are reducing the demand of the Web 

applications by 10%, but we experience a hit on the CPU 

due to the compression technique.  In the worst case for our 

workload it amounts to an extra 2068 Mhz, which is 

equivalent to 31% of a single server’s CPU capacity.  

 

 
Figure 3. The extra amount of CPU used in the tailored setup 

compared to that used in the default 

 

 
Figure 4. The amount of memory used in the default setup 

versus that used with tailoring 

 

The next graphic in figure 4 shows us the other side of 

the coin as we can see the large difference between the 

memory requirements of the tailored environment and the 

default one over the time of the simulation. For the 

memory, the tailored environment requires a considerable 

amount less since it is able to squeeze more out of the 

memory available to it when it uses compression. We have 

essentially traded some of our excess CPU power for extra 

memory when we used the tailoring. 

The big advantage that we gain by using tailoring can be 

summed up in figure 5, where we show the difference in the 

amount of servers required to satisfy the workload over 

time. Over the whole simulation time the tailored setup 

never requires more servers than the default setup.  At the 

lowest points of demand our tailored environment is able to 

get by with a single server, whereas at those points the 

standard environment needs three. This could be used to 

achieve a saving in the cost of running the website, and a 

reduction to its carbon footprint, especially if the resources 

are being contracted dynamically based on demand. 

 

 
Figure 5. The difference in the amount of nodes needed for the 

default setup versus those needed with tailoring 

 

Even if the website is not dynamically obtaining servers 

to deal with the load and has a static set of servers in-house, 

the tailored setup would allow them to use 20% less 

servers, since the maximum amount of servers needed by 

the tailored setup to satisfy the workload is 4 whereas the 

corresponding value for that of the default setup is 5. This 

represents a significant saving in the hardware needs, and 

when put in this context, the default setup appears to be 

suffering from over-provisioning. There is a huge 

environmental impact by being able to turn off unneeded 

servers so this is an important step in making Data centers 

“greener”. 

During the simulation we also recorded the amount of 

migrations that were needed to achieve the placements. The 

figures for the default baseline scenario and the tailored one 

were 27 and 192 respectively. While the difference in these 

two figures appears large, since the experiment had a 

simulated time of one week, it should not pose much 
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problems. It works out that there would be just over one 

migration per hour using the tailored set up. We are 

currently doing work in our group to research ways of 

having transparent migrations for users using the techniques 

in [1] which may be of help in this process. 

 

3.3.4 Bigger Workloads. To establish how the tailored 
and default scenarios cope with larger workloads, we 

multiplied our previous load by a factor of four and reran 

the simulation. Under this load, which has a set of 48 

applications looking for resources in the same way as the 

previous simulation, the differences between the default 

setup and the tailored one become even more pronounced. 

Figure 6 shows that the tailored environment requires fewer 

servers throughout the entire simulated time of this heavier 

load. The maximum amount of servers required by the 

default and tailored setup are 18 and 14 respectively, which 

would allow a saving of just over 20%. The number of 

migrations in both cases increased by a factor just greater 

than 4. 

 

 
Figure 6. The amount of nodes needed for the default setup 

versus those needed with tailoring 

 

4. Related Work 
 

The placement problem itself is out of the scope of our 

work but the techniques described in this paper can be 

helpful to any placement algorithm, by relaxing one of the 

hardest constraints they have to deal with: the system 

capacity. Existing dynamic application placement proposals 

provide automation mechanisms by which resource 

allocations may be continuously adjusted to the changing 

workload.  Previous work focuses on different goals, such 

as maximizing resource utilization [11] and allocating 

resources to applications according to their service level 

goals [21, 6]. Our proposal could apply to and improve any 

of those.  Space does not permit a full discussion of the 

various types of virtualization and their relative merits here; 

the reader is referred instead to [16,8,2]. The dynamic 

allocation of server resources to applications has been 

extensively studied [4,6,11,13,22], however any of these 

proposals can go beyond virtualization and could be 

beneficiaries of the proposals presented in this paper. 

Another important issue is the problematic consolidation of 

multi-tier applications considered in [18] that can be 

complementary to our proposal. Also of great importance is 

the topic considered in [17], regarding the power-efficient 

management of enterprise workloads which exploits the 

heterogeneity of the platforms. Our proposals could be 

included in the analytical prediction layer proposed by the 

authors. Finally let us remark that our proposals could be 

combined with power-saving techniques at the lowest level 

such as dynamic voltage scaling and frequency scaling 

[7,14,24]. In a recent work [12], the authors use frequency 

scaling in a scheme that trades off web application 

performance and power usage while coordinating multiple 

autonomic managers. In this case the proposals of this 

article could be included in the utility function that they are 

using. 

  

5. Conclusions 
 

In this paper we demonstrate how consolidation with 

energy efficiency goals still has a long way to do beyond 

the use of virtualization. In this work, we identify new 

opportunities to improve the energy efficiency of systems, 

reducing the resources required, without negatively 

impacting the performance or user satisfaction. The 

obtained results show that the combined use of memory 

compression and request discrimination can dramatically 

boost the energy savings in a data center. Our interest as a 

group involves creating power-aware middleware to 

contribute to building energy-efficient data centers. The 

increased awareness of green issues is simply accelerating 

improvements in efficiency that any data center should have 

been implementing in the near future anyway. Somehow, 

the next generation of computing systems must achieve 

significantly lower power needs, higher performance/watt 

ratio, and higher reliability than ever before. 

 

6. Future Work  
 

We would like to extend our work to consider other 

techniques that could be added in terms of availability such 

as self-healing techniques [1] and therefore take better 

advantage of the resources available. We are already 

working on the implementation of a prototype system that 

applies the techniques described in this paper. We will also 

extend the tailoring techniques further than just web 

applications and take numerical applications into account. 

The advantages that numerical applications can gain from 

the technique used to compress memory are currently being 

investigated in our group and it looks promising that they 

can benefit from it. Many systems kill jobs after an 

estimated time by the user (indicated in the user-provided 
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job script) has elapsed and it is a well-documented fact that 

user-provided runtime estimates are very often inaccurate 

[31]. In this case we are working to find a way of using 

discrimination techniques to detect and filter jobs that have 

no chance of completing successfully. 
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