
Multi-Level Unified Caches for Probabilistically
Time Analysable Real-Time Systems

Leonidas Kosmidis∗,†, Jaume Abella†, Eduardo Quiñones†, Francisco J. Cazorla†,‡
∗ Universitat Politècnica de Catalunya † Barcelona Supercomputing Center

‡ Spanish National Research Council (IIIA-CSIC)

Abstract—Caches are key resources in high-end processor
architectures to increase performance. In fact, most high-
performance processors come equipped with a multi-level cache
hierarchy. In terms of guaranteed performance, however, cache
hierarchies severely challenge the computation of tight worst-
case execution time (WCET) estimates. On the one hand, the
analysis of the timing behaviour of a single level of cache is
already challenging, particularly for data accesses. On the other
hand, unifying data and instructions in each level, makes the
problem of cache analysis significantly more complex requiring
tracking simultaneously data and instruction accesses to cache.

In this paper we prove that multi-level cache hierarchies
can be used in the context of Probabilistic Timing Analysis
and tight WCET estimates can be obtained. Our detailed
analysis (1) covers unified data and instruction caches, (2) covers
different cache-write policies (write-through and write back),
write allocation policies (write-allocate and non-write-allocate)
and several inclusion mechanisms (inclusive, non-inclusive and
exclusive caches), and (3) scales to an arbitrary number of cache
levels. Our results show that the probabilistic WCET (pWCET)
estimates provided by our analysis technique effectively benefit
from having multi-level caches. For a two-level cache configura-
tion and for EEMBC benchmarks, pWCET reductions are 55%
on average (and up to 90%) with respect to a processor with a
single level of cache.

I. INTRODUCTION

Caches are undoubtedly one of the resources with the

highest performance impact in a processor system. Most high

performance processors come equipped with two of levels of

cache, like the ORACLE UltraSPARC T2, or even three such

as the IBM POWER7 or the Intel Core i7. This is also the

case of some processors used in the real-time domain such as

the ARM Cortex A9 and A15 [4], the Freescale P4080 [13]

and the Aeroflex Gaisler NGMP [3].

Cache memories also impact noticeably worst-case exe-

cution time (WCET) and have been object of intense study

during the last decades by the real-time community. This has

motivated researchers to develop models that allow to derive

the behaviour of the cache [22], [12], [23], [11], [20], [15] to

determine whether cache accesses hit or miss. Those models

have been particularly successful for the instruction cache,

however, data cache remains a major challenge for static

WCET analysis methods due to the difficulty of statically

determining the address of each data memory access. The

difficulties to determine the addresses of data accesses at

run-time compel analysis techniques to make pessimistic

assumptions, which in turn result in pessimistic WCET

estimates. Multi-level caches aggravate these problems; in fact,

to our knowledge, few works deal with multi-level caches

and only particular setups of multi-level instruction [15] and

data caches [20] have been considered so far, evidencing the

dimension of the challenge.

While static timing analysis techniques demand caches that

are deterministic in their temporal behaviour, the introduction

of Probabilistic Timing Analysis (PTA) techniques [9], [14],

[7], [8] changes the requirements to be accomplished by caches.

In particular, PTA requires caches to have a time-randomised
behaviour that allows computing the probability of hit or miss
of every cache access. In the case of multi-level caches, this

imposes that the events affecting the timing behaviour of an

access, such as the outcome of other accesses or inclusivity

requests coming from the upper cache levels, must have a

probabilistic nature.

In this paper we analyse for the first time the worst-case

timing behaviour of multi-level time-randomised caches. Our

analysis, which scales to an arbitrary number of cache levels,

covers unified data and instruction caches, different write,

write-allocation and inclusion policies among the different

levels. Our analysis builds upon some of the properties of

time randomised caches. First, the particular memory address

of an access does not determine the cache set in which it is

mapped since the placement in cache is time randomised [16].

And second, the hit/miss probability of a given access to

an address @x only depends on probabilistic events such as

whether the accesses between the current and the last access

to @x miss in cache. Based on these properties, our analysis

focuses on identifying those events that cause accesses to the

different cache levels and their probability of occurrence.

We evaluate 2-level time-randomised cache setups with a

unified second level cache (shared among data and instruc-

tions). We consider inclusive and non-inclusive caches, as well

as write-through and write-back first level caches. Our results

prove that (1) multi-level time-randomised caches fulfil the

requirements of measurement-based PTA (MBPTA) [8]. We

also show how multi-level time-randomised caches decrease

execution time by 30% on average. Reduction in terms of

WCET estimates is even higher (55% on average) since multi-

level caches also reduce the probability of pathological cache

behaviour resulting in large execution times, hence execution

time variability, with respect to single-level cache setups.

The rest of the paper is organised as follows. Section II

provides background on PTA and time-randomised caches.

Section III reviews time-randomised single-level caches. Sec-

tion IV provides models proving the suitability of multi-level

time-randomised caches in the context of PTA. Results are

presented in Section V. Section VI reviews some related work.

Finally, Section VII presents the conclusions of this work.

2013 IEEE 34th Real-Time Systems Symposium

1052-8725/13 $26.00 © 2013 IEEE

DOI 10.1109/RTSS.2013.43

360

II. BACKGROUND

This section provides some background on PTA as well

as the cache characteristics and assumptions in this paper.

A. Probabilistic Timing Analysis (PTA) Approaches

Probabilistic Timing Analysis (PTA) [14][9][7][8] provides

WCET estimates with an associated probability of occurrence,

called probabilistic WCET (pWCET) estimates. A pWCET

estimate can be exceeded with a given probability, thus leading

to a timing failure. This is analogous to the behaviour of

hardware, for instance, which may fail with a given probability.

In that sense, PTA extends the notion of probability of failure

to timing correctness. PTA aims at obtaining pWCET estimates

for arbitrarily low probabilities, so that even if that pWCET

estimate can be exceeded, it would be exceeded with low

probability (e.g. in the region of 10−15 per hour of operation,

largely below the probability of hardware failures).

PTA can be implemented either in a static (SPTA) [7]

or measurement-based (MBPTA) [8] manner. In this paper

we focus on MBPTA as it is closer to industrial practice

to compute WCET. MBPTA derives pWCET estimates for

a program based on a collection of end-to-end observed

execution times on a time-randomised architecture for which

an ETP can be derived for each instruction. MBPTA applies

Extreme Value Theory (EVT) [19], a well-known statistical

method that, based on the inverse cumulative distribution

function (ICDF) of the observed execution times, provides the

probability that the execution time of a given instance of a

program exceeds a threshold pWCET estimate.

Under both PTA approaches, the probabilistic timing

behaviour of an execution component can be represented with

an Execution Time Profile (ETP). At the smallest granularity,

an execution component represents an access to a resource

and at the highest, the entire program. In between, we

can find instructions (which may access several resources),

basic blocks, functions, etc. An ETP defines the discrete

probability distribution function of execution times. Thus,

an ETP defines, for the different execution times of a program

(or latencies of an instruction), their corresponding probabili-

ties. Hence, the timing behaviour of a program/instruction

is described by the probability mass function: (
→
l ,

→
p) =

({l1, l2, ..., lk}, {p1, p2, ..., pk}), where pi is the probability

the program/instruction taking latency li, accomplishing that∑i=1
k pi = 1. For instance, in the case of cache read accesses

in a simple single-level cache hierarchy, the ETP is as follows:

ETPmemop = ({lhit, lmiss}, {phit, pmiss}), where lhit and

lmiss are the hit and miss latencies respectively and phit and

pmiss are the probabilities of occurrence of a hit and a miss

respectively.

Unlike SPTA, which needs to know the exact ETP of

each instruction, MBPTA, which has been proven suitable
for industrial practice [26], only requires the ETP for
each instruction to exist. The fact the ETPs exist ensures

that the execution components contributing to the execution

time of a program, i.e. instructions, behave as independent

and identically distributed (i.i.d.) random variables1. Since

instruction latencies occur with a given probability (described

in their ETPs), all feasible program execution times also occur

with a given probability, so an ETP for the whole program

also exists. Thus, program execution time can be modelled

with an i.i.d. random variable (described by its ETP) and EVT

requirements are hence fulfilled [8].

Dependences among instructions. MBPTA works in the

presence of dependences among instructions. For instance, the

probability of hit/miss of a given access to @A may depend,

for instance, on the number accesses to the cache between

@A’s current and previous access. MBPTA only requires those

causal dependences to be either (i) fully systematic, meaning

that they appear every time those instructions are executed,

or (ii) probabilistic, meaning that there is a probability that

the dependence manifests and hence, the execution time of

dependent instructions is affected in a probabilistic manner.

In both cases a valid ETP can be still derived to describe the

timing behaviour of the instructions with the dependences. If

each instruction has an ETP, measurements (execution times)

obtained by running the program capture probabilistically

the effect of any dependence among them. MBPTA imposes

the execution time observations obtained by running the

program on the target platform to be modelled with i.i.d.

random variables. The existence of an ETP per processor

instruction ensures that the i.i.d. properties for the execution

time observations are fulfilled [7]. Further details can be found

in the Annex in [18].

Input-data-dependent memory accesses. MBPTA han-

dles data-dependent memory accesses by making the compiler

flagging them so that they are forced to miss in cache,

preventing the cache behaviour from being affected by the

particular data provided by the user. By means of some ‘hint’

bits for memory operations already present in most current

Instruction Set Architectures (ISA), the processor can be

notified of whether a memory operation is input data dependent,

preventing cache or other performance improving features from

shortening the latency for these instructions [8].

Both PTA methods demand for a new type of cache designs,

i.e. time-randomised (TR) caches [16], that guarantee that

ETPs exist for all memory accesses since hits/misses occur

with a given probability. In this paper we analyse, for the

first time, different time-randomised multi-level cache designs,

with and without inclusion under different write miss policies

as well as unified data and instruction caches.

B. Cache Characteristics and Assumptions

In a multi-level cache design, inclusivity of the lower cache

levels (those closer to the cores) into the upper cache levels

(those closer to memory), imposes that all contents in the

1Two random variables are said to be independent if they describe two
events such that the occurrence of one event does not have any impact on
the occurrence of the other event [10]. Two random variables are said to be
identically distributed if they have the same probability distribution [10].

361

lower level cache are also included in the upper level cache2.

This implies that, whenever a cache line is evicted from the

upper level cache, all cache lines in the lower level cache

holding some or all contents of the cache line evicted in

the upper level cache, are also evicted. When exclusivity is

applied3, cache lines can be stored only in one of the two levels

involved. When a new cache line is fetched by the processor,

it is typically fetched into the lower level and removed from

the upper level. When a cache line is evicted from the lower

level it is moved up to the next level. Non-inclusive caches are

those where no constraint is imposed on whether cache lines

are stored in upper or lower cache levels. This is a common

choice for instruction caches since they are typically read-only

and, thus, cache lines can be simply removed on an eviction.

Upper cache levels can be either shared among data or

instructions or kept private. While private caches have been

regarded as easier to analyse, unified (shared) ones are the most

common choice due to their lower overheads. Thus, unlike

previous works, we enable for the first time the analysis of

unified upper cache levels storing data and instructions.

Write operations introduce complexities in the behaviour

of the cache that are handled with a cache-write policy and

a write allocation policy. There are two main write policies,

namely, write-through (WT) and write back (WB). In the

former, write operations occur in the current cache and are

forwarded to the next cache level so that both caches hold

consistent data. In WB caches, write operations occur only

in the lower level cache, and the update of the next level

is postponed until the cache lines containing the dirty data

are evicted from the lower level cache. There are two write

allocation policies. With write allocate (WA), on a write miss,

data are fetched into cache, as it is the case for read misses,

and, once fetched, the write operation occurs. With no-write
allocate (nWA), on a write miss, the write operation is simply

forwarded to the next cache level (or memory). Both WT

and WB can use either of these write-allocation policies, but

we only consider WB-WA and WT-nWA caches, since they

are the most common choices. Though, nothing prevents our

analysis to be extended to other combinations.

III. TIME RANDOMISED SINGLE-LEVEL CACHES

There are two sources of determinism in a cache that

are randomised for MBPTA to work: the placement and

replacement policies. Placement is relevant for direct-mapped

and set-associative caches, whereas replacement is relevant

for set-associative and fully-associative ones. In [16] authors

propose random placement and random replacement policies

that are PTA-compliant. The random replacement (RR) policy

must ensure that every time a memory request misses in cache,

a way in its corresponding cache set is randomly selected and

2Note that contents may not be up-to-date in both caches if write operations
are not propagated immediately as explained later, but at least an older version
of the data is in place in both caches.

3We use the term exclusive cache rather than non-inclusive, because the
latter just implies that inclusivity is not controlled, which is different than
requiring exclusivity.

evicted to make room for the new cache line. The random

placement policy in [16] proposes a new parametric hash

function that makes use of a random number as an input.

Such random number can be generated either by hardware or

software. The hash function, given a memory address and a

random number called random index identifier (RII), provides

a unique and constant cache set (mapping) for the address

along the execution. If the RII changes, the cache set in which

the address is mapped changes as well, so cache contents must

be flushed for consistency purposes. Authors in [16] propose

changing the RII only across program execution boundaries so

that programs can be analysed with end-to-end runs without

any further consideration than assuming that the cache is

initially empty. The hash function proposed in [16] ensures

that, given a memory address and a set of RIIs, the probability

of mapping such address to any given cache set is the same.

For each access to a first level cache we can derive a

probability of hit [16]. In general, for a cache with S sets and

W ways, given the sequence < Ai, B1, ..., Bk, Aj >, where

Ai and Aj correspond to accesses to the same cache line and

no Bl (where 1 ≤ l ≤ k) accesses the same cache line as Aj ,

the probability of Aj to miss in cache can be approximated

as:

PmissAj
(S,W)=

⎛
⎜⎝1−(W − 1

W

)l=k∑

l=1

PmissBl

⎞
⎟⎠·
(
1−
(
S − 1

S

)k
)

(1)

In Equation 1, the first element is due to the random

replacement, while the second is the element due to placement.

In fact, the first element is the probability of miss in a fully-

associative cache with W ways deploying random replacement

(Prob1). The second part of the equation corresponds to

the probability of miss in a direct-mapped cache with S
sets (Prob2). Given that placement and replacement work

independently, the probability of miss in a set-associative cache

with S sets and W ways deploying both random placement

and replacement can be computed as the product of the

probabilities Prob1 and Prob2.

Note, that PmissAj
is an approximation to the actual

miss probability of Aj . Annex I, explains how the actual

PmissAj
can be derived for a simple example and shows that

deriving the actual miss probability requires a more complex

formulation than the one we use in this paper and which we

leave as future work. For the purpose of proving that MBPTA

can be applied, the use of our approximations is enough, since

MBPTA only requires hit/miss events to have a probability of

occurrence. Note that this is not the case for SPTA, which

would require the actual miss probability, or a least a safe

upper-bound to it, to be computed.

PmissAj
is used to compute the ETP of each cache access

as follows, where lhit and lmiss are the cache hit and miss

latencies respectively:

ETPcache = {{lhit, lmiss},
{1− PmissAj

(S,W), PmissAj
(S,W)}} (2)

362

TABLE I. EVENTS IN A NIC CACHE HIERARCHY WITH WT-NWA L1 AND WB-WA L2

Event id latency L1 L2 L2 dirty? actions probabilities

1) Latld1 L1 ld hit (a) Send data from DL1 to the core P@A
L1,hit

2) Latld2 L1 ld miss L2 ld hit (b) Send data from UL2 to DL1 and the core P@A
L2,hit × P@A

L1,miss

3.1) Latld3 L2 ld miss L2 dirty (c) Write dirty line to mem, (d) load new line into L2 and (b) P@A
L2,miss × P@A

L1,miss × P vctm
L2,dirty

3.2) Latld4 L2 clean (d) and (b) P@A
L2,miss × P vctm

L1,miss × P vctm
L2,clean

1) Latst1 L1 st hit L2 st hit (e) write data into L1, (f) write data into L2 P@A
L2,hit × P@A

L1,hit

2.1) Latst2 L2 st miss L2 dirty (c), (d), (e) and (f) P@A
L2,miss × P@A

L1,hit × P vctm
L2,dirty

2.2) Latst3 L2 clean (d), (e) and (f) P@A
L2,miss × P@A

L1,hit × P vctm
L2,clean

3) Latst4 L1 st miss L2 st hit (f) P@A
L2,hit × P@A

L1,miss

4.1) Latst5 L2 st miss L2 dirty (c), (d) and (f) P@A
L2,miss × P@A

L1,miss × P vctm
L2,dirty

4.2) Latst6 L2 clean (d) and (f) P@A
L2,miss × P@A

L1,miss × P vctm
L2,clean

IV. TIME RANDOMISED MULTI-LEVEL CACHES

In this section we focus first on random-replacement

fully-associative multi-level caches for the sake of clarity.

In Section IV-C we extend our analysis to random placement

featured in set-associative and direct-mapped caches. With

the same aim and without loss of generality we focus on a

2-level cache hierarchy. In the first level we find an instruction

(IL1) and a data cache (DL1). In the second level we have a

unified L2 cache (UL2). We generalise our analysis for more

than 2 levels also in section IV-C. We consider a WT-nWA

DL1 and a WB-WA UL2 caches, as this is a very common

organisation and allows us reasoning about both types of cache-

write and write allocation policies. Note that cache-write and

write allocation policies are irrelevant for IL1, as its contents

are read-only. We provide the analysis for both non-inclusive

and inclusive caches, as they are the common case. Later

in Annex II we also describe the case of exclusive caches.

Considerations related to the hardware implementation are

described in section IV-D.

In the remaining of this section we refer to the probability

of an < event >, such as a hit or a miss, in each cache

level as: P<op>
<L>,<event>, where L is the cache level, i.e. IL1,

DL1 or UL2, < op > is the type of access, i.e. load (ld) 4

and store (st), or the address of the access when the type

of operation does not affect its probability. Each probability

is provided under a cache configuration that determines the

write, allocation and inclusivity policies.

For computing the probabilities in the probability

vector of the ETP of every memory operation,

we consider the following sequence of accesses:

<Imop@A
0 I ld11 Ist12 I ld23 ... Ir... Istms ... I ldnt Imop@A

t+1 >,

where the subindex is the instruction id, the superindex

indicates the number of load and store operation, and where

Imop@A
t+1 is the memory operation whose hit/miss probability

we want to derive for each cache organisation. Note that mop
stands for any memory operation (either ld or st). We use it

in those cases where the particular type of memory operation

being considered is irrelevant. The load and store operations

between the accesses to @A access different cache lines in

DL1, IL1 and UL2 to those where @A and the instruction

loading @A are stored.

4A load can be an instruction load sent by the instruction cache or a data
load sent by the data cache.

A. No Inclusivity Control (NIC)

When no inclusivity control is used among the different

cache levels, the hit accesses and the evictions carried out in

one level have no impact on previous or next cache levels.

Table I shows the different events in each level of the cache,

the actions taken in the cache on that event and the associated

probability.

When a load access hits in DL1 (1), which happens with

a probability P@A
DL1,hit, data are sent to the core. In case of

miss in DL1 and hit in UL2 (2), data are sent from UL2 to

DL1 and the core. Given that the RIIs used for each cache

are different as explained later, their placement functions are

different and thus, the events ‘hit in DL1’ and ‘hit in UL2’ are

independent. Hence, the probability of both events to occur

can be obtained by multiplying their respective probabilities.

In case of a miss in both DL1 and UL2 (3), data are loaded

from memory to UL2 and DL1, and sent to the core. If the

line evicted is dirty5 (3.1), it is written back to memory before

the new line is loaded from memory to UL2. If it is clean

(3.2) no line is written back. Note that the instruction cache

(IL1) events are the same as the load events for the DL1.

Stores update DL1 when they hit and are always forwarded

to UL2. If they hit in UL2, UL2 is updated (1). In case of miss

in UL2 (2), first a cache line (victim) is selected for eviction

and, if it is dirty (2.1), which happens with a probability

PL2,dirty(vctm), it is written back to memory. Then, the new

line is fetched from memory into UL2 and it is updated with

the data carried out by the store operation. If the line was clean

(2.2), the same actions, but writing the victim to memory, are

carried out.

In case of miss in both DL1 and UL2 (3), the line is

written into UL2, but not brought to DL1. In case of miss in

both (4.1 and 4.2), the evicted line is written to memory in

case it is dirty, the new line is brought into UL2 and updated

with the new data.

The most important appreciation from Table I is that all
the events that may potentially happen in all caches have an
associated probability (PUL2,hit/miss(@), PIL1,hit/miss(@),
PDL1,hit/miss(@) and PUL2,dirty(@)). Next, we derive how

5Write operations in a WB cache make cache lines to be inconsistent with
upper levels in the memory hierarchy, so on an eviction their contents must
be updated in upper levels. Those lines are referred to as dirty lines.

363

TABLE II. EVENTS IN AN INCLUSIVE CACHE HIERARCHY WITH WT-NWA L1 AND WB-WA L2 AND THEIR ASSOCIATED PROBABILITIES

Event id latency L1 L2 L2 dirty? actions probabilities

1) Latld1 L1 ld hit (a) Send data from L1 to the core P@A
L1,hit

2) Latld2 L1 ld miss L2 ld hit (b) Send data from UL2 to L1 and (a) P@A
L2,hit × P@A

L1,miss

3) L2 ld miss (c) Check inclusivity of evicted line P@A
L2,miss × P@A

L1,miss

3.1) Latld3 L2 dirty (d) write dirty line (victim) to mem, (e) load new line into L2, (b) and (a) P@A
L2,miss × P@A

L1,miss × P vctm
L2,dirty

3.2) Latld4 L2 clean (e), (b) and (a) P@A
L2,miss × P@A

L1,miss × P vctm
L2,clean

1) Latst1 L1 st hit (f) write data into L1, (g) write data into L2 P@A
L1,hit

2) Latst2 L1 st miss L2 st hit (g) P@A
L2,hit × P@A

L1,miss

3) L2 st miss (c) P@A
L2,miss × P@A

L1,miss

3.1) Latst3 L2 dirty (d), (e) and (g) P@A
L2,miss × P@A

L1,miss × P vctm
L2,dirty

3.2) Latst4 L2 clean (e) and (g) P@A
L2,miss × P@A

L1,miss × P vctm
L2,clean

those probabilities can be approximated. Note, however, that,

assuming that core operations can be analysed probabilistically,

the fact that cache events are probabilistic makes the applica-

tion of MBPTA correct, since EVT makes no assumption on

the particular probability distribution function of the events

under consideration or on whether they depend on each other.

A.1. PDL1,miss(@). The miss probability of an access to @A

in a WT-nWA DL1, PDL1,miss(@A), with a WB-WA UL2

with no inclusivity control is affected by the intermediate

accesses carried out in between that access to @A and the

previous access to @A. In particular, PDL1,miss(@A) is given

by the number of memory operations between both accesses

to @A, and the probability of miss of each access. The higher

the number of accesses and their respective miss probabilities,

the higher the probability of mis of the second access to @A,

which can be approximated as:

PDL1,miss(@A) = 1−
(
WDL1 − 1

WDL1

)n+m∑

i=1
PDL1,miss(DL1acci)

where WDL1 is the number of ways in DL16, n +
m is the number of intermediate loads and stores, and

PDL1,miss(DL1acci) their associated miss probabilities.

A.2. PUL2,miss(@). The probability of missing in UL2 for a

given access to address @A (regardless of whether it is a data

or instruction address) is given by the number of accesses

performed to UL2 between the current access and the previous

access to @A. This includes both, UL2 instruction accesses

coming from the IL1 and UL2 data accesses coming from DL1

as shown in the formula below, where WUL2 is the number

of lines in the UL2.

PUL2,miss(@A)=1−

⎛
⎜⎝(WUL2−1

WUL2

) t∑

i=1
Pmiss,IL1(Ii)×Pmiss,UL2(Ii)

×

(
WUL2−1

WUL2

)n+m∑

i=1
Pmiss,DL1(mopi)×Pmiss,UL2(mopi)

⎞
⎟⎠

6Recall that in this section we focus on fully-associative caches, so the
number of cache ways of the cache is also the number of cache lines.

The exponent in the first element in the formula above

accounts for the effect of instruction misses (between both

accesses to @A) in the IL1 (and hence accesses to the UL2)

that also miss in UL2. The exponent in the second element is

the probability of a memory operation to miss in the DL1 and

UL2. We can simplify the above formula as PUL2,miss(@A) =

1−
(

WUL2−1
WUL2

) k∑

i=1
PUL2,miss(L2acci)

, where the exponent is the

accumulated miss probability of all UL2 accesses between the

current and the previous access to @A.

A.3. PUL2,dirty . When @A misses in UL2, a random line in the

corresponding set is selected for eviction. There is a probability

that the selected line is dirty. While hit and miss probabilities

only depend on the accesses in between the current and the

previous accesses to a particular address, PUL2,dirty depends

on all past accesses since the beginning of the execution of the

program (assuming an initial empty cache state). Therefore,

and only for approximating PUL2,dirty we consider the follow-

ing sequence: <Imop@0

0 , Imop@1

1 , ..., I
mop@i−1

i−1 , Imop@A

i >, in

which we assume that Imop@A

i misses in cache, resulting in a

cache line being randomly evicted. We obtain PUL2,dirty(Ii),
that is, the probability of a dirty line to be evicted when Ii is

executed, as the fraction of dirty lines in the cache set where

@A is when the second access to @A occurs. In other words,

the accumulated probability that each line in that set has not

been evicted from cache since it was last accessed by a store

operation.

PUL2,dirty(Ii) =
i−1∑
j=0

P dirty
surv (@j , i)

In the equation above, P dirty
surv (@j , i) is the probability of

instruction Ij to leave a dirty line in cache and this line to

be still present when instruction Ii (the one accessing @A) is

executed. It is defined as follows:

P dirty
surv (@j , i) =

⎧⎨
⎩

0 if isload(Ij)(
WL2−1
WL2

) i−1∑

k=j+1

Pmiss(@k)

if isstore(Ij)

In the equation above, isload(Ik) is true when Ik is a load

instruction, similarly isstore(Ik) is true when Ik is a store.

Lines dirtied by stores survive with a given probability that

depends on the number of misses between them and the access

to @A.

364

B. Inclusive Caches

The main difference between inclusive caches with respect

to caches without inclusivity control (NIC) is that UL2

evictions may require evicting some cache lines in DL1. If

a line being evicted from UL2 is present in DL1, it is also

evicted from DL1. Note that inclusivity is typically deployed

only for data caches since this simplifies hardware design

to deal with either write operations in write-through caches

or dirty lines evicted in write-back ones. Instruction caches

typically do not support any type of write operation (other

than filling cache lines when fetched), so there is no need for

making them inclusive.

Table II shows the different events that may happen to a

cache access and their associated probability. On an UL2 miss,

a victim is selected to be evicted. In addition to checking

whether it was dirty, in which case it is written back to

memory, it must be checked whether that line is present in

DL1 (in fact in all L1 inclusive caches), in which case it is

invalidated from the corresponding L1 cache. As DL1 is WT,

the invalidation consists simply in setting an ‘invalid’ bit (no

further transaction is initiated). Therefore, we consider that

the latency of checking for invalidations is the same regardless

of whether a line is finally invalidated. How to deal with WB

caches and dirty lines is later described in Section IV-C. We

also observe that in inclusive caches the event ‘DL1 hit and

UL2 miss’ is not possible, since all DL1 contents are also

present in the UL2.

As for NIC caches, the events that may potentially

happen in the different caches have an associated probability

(PUL2,hit/miss(@), PIL1,hit/miss(@), PDL1,hit/miss(@) and

PUL2,dirty(@)). The value of some of those probabilities

change with respect to the NIC case as detailed next.

B.1. PDL1,miss(@). The probability of miss in DL1 of an

access to @A, PDL1,miss(@A), with an inclusive UL2 is

affected by the accesses carried out in between that access

to @A and its previous access, and the probability of miss of

those intermediate accesses. There are two types of accesses

to the DL1 that can happen. First, memory accesses (MA)
between the two accesses to @A sent from the core to the

DL1. And second, Data Inclusivity Requests (DIR) sent from

the UL2 to DL1 due to the UL2 accesses between the two

accesses to @A that evict lines from UL2, thus causing a

subsequent eviction in DL1 of the line evicted from UL2.

The number of data memory accesses sent to UL2 from the

core are given by PMAmiss =
k∑

i=1

PDL1,miss(mopi), where

mopi are the loads and stores in between the two accesses to

@A and PDL1,miss(mopi) is the miss probability of each

access computed as for single-level caches. Analogously,

instruction accesses sent to UL2 are given by PImiss =
k∑

i=1

PIL1,miss(Ii), where Ii stands for any instruction in

between the two accesses to @A and PIL1,miss(Ii) is the

miss probability of each such instruction computed as for

single-level caches.

When a data or instruction access between two accesses to

@A causes a UL2 miss, this generates a UL2 eviction which

can evict @A from UL2, which would imply removing @A

from DL1 to keep inclusivity. The number of DIRs is given

by number load and store operations between two accesses to

@A that miss in DL1 plus the number of instructions fetched

between those two accesses to @A that miss in IL1. Note that

though the UL2 is inclusive of DL1, hits to DL1 are ensured

to also hit in UL2, hence not generating any eviction that

could evict the line in UL2 where @A is. This is particularly

important for store operations that access UL2 regardless

of whether they hit DL1. We approximate the accumulated

probability due to inclusivity evictions as follows:

PDIRev=
n+m∑
i=1

(
PDL1,miss(mopi)×PUL2,miss(mopi)× 1

WUL2

)
+

t∑
i=1

(
PIL1,miss(Ii)×PUL2,miss(Ii)× 1

WUL2

)

where n+m is the number of loads and stores and t the

number of instructions between both accesses to @A. The first

element in the first row of the equation is the probability that

any data access in between two accesses to @A misses in the

data cache. The second element is the probability that those

DL1-missing accesses, that access the UL2, miss in the UL2.

The last element is the probability that each evicted L2 cache

line contains @A. The second row of the formula is analogous

for IL1.

Overall, the miss probability of @A in DL1 can be approxi-

mated as PDL1,miss(@A) = 1−
(

WDL1−1
WDL1

)PMAmiss+PDIRev

.

B.2. PUL2,miss(@). There is a probability that an access to

@A in the UL2 (regardless of whether it is a data or an

instruction access), and so its PUL2,miss(@A), is affected by

the inclusivity policy. An instruction with instruction address

(i.e. Program Counter) @A accesses UL2 if it misses in IL1.

Since DL1 contents are included in UL2, the access @A cannot

hit in those WDL1 lines of the UL2 keeping the contents of

the DL1. Similarly, a DL1 miss cannot hit in the UL2 lines

keeping the contents of DL1. Hence, @A can only hit in

WUL2 −WDL1 lines, which we call WUL2nonDL1 being its

miss probability approximated by:

PUL2,miss(@A)=1−
(
WUL2nonDL1−1

WUL2nonDL1

) k∑

i=1
PUL2,miss(L2acci)

where the exponent is the miss probability of the accesses

between @A and its last access.

B.3. PUL2,dirty. It is not affected by the inclusivity control,

so it remains as described for the NIC case.

C. Generalisation of the Latency/Probability Cache Model

For the sake of simplicity, we have assumed that

all accesses in the different sequences we have used

to describe the hit/miss probability of each event, i.e.

365

<Imop@A
0 I ld11 Ist12 I ld23 ... Ir... Istms ... I ldnt Imop@A

t+1 >

and < Imop@0

0 , Imop@1

1 , ..., I
mop@i−1

i−1 , Imop@A

i >, go to a

different cache line each, but the first and last access to @A

that access the same line. Considering the case in which inter-

mediate accesses may access the same cache line addresses

just makes the computation of probability approximations

more complex, since events are probabilistically dependent;

however, the events affecting the timing behaviour of the cache
are still probabilistic as required for the application of MBPTA
(see Annex I). Recall, that MBPTA makes no assumption on

the probability distribution function of any random event. Note

also, that the probabilities computed assuming that accesses are

assumed to go to different addresses represent an upperbound

of the actual probabilities when they may go to the same

address line. This is so, because when two accesses go to the

same address, their reuse distance reduces and so do their

miss probabilities.

Besides that, there are several dimensions in which our

model can be generalised. First, random placement since in

our analysis above we consider only random replacement.

Second, different cache line sizes between different levels.

Third, considering more than 2 cache levels. And fourth,

different inclusivity arrangements between different cache

levels.

Random Placement. Random placement requires taking

into account the probability that any of the k different (unique)

accesses between the two accesses to @A access the set where

@A is placed. This is given by the formula
(
S−1
S

)k
, where

S is the number of sets. As we have done for the random

replacement in previous sections, for each cache level we can

compute the number of those potential accesses. For the IL1

these are the number of unique instruction requests between

the two accesses to @A. For the DL1 we have the number of

unique memory operations plus the number of unique data

inclusivity requests. The UL2 is accessed as many times as the

number of DL1 and IL1 misses are experienced. The effect

of the placement on the probability of hit of accesses can be

multiplied by the effect of replacement computed in previous

sections as both are independent [16].

Different cache line sizes. So far we have considered the

case where all caches use the same cache line size. However,

it may be the case that cache lines in the upper level are larger

than those in the lower levels. Let us assume that UL2 lines

are q times larger than those of the DL1 and IL1. There are

two main ways in which different cache line sizes in each

level affect the probability of hit/miss of each access. First, the

distribution of accesses on the different cache lines changes.

For instance, while accesses @B and @C in the sequence

<@A@B@C@A> access different cache lines under a line

size setup, they can access the same line if the cache line

size is increased. In the latter case, the probability of evicting

@A is smaller since @C will always hit and hence, will never

produce an eviction. This simply reduces the miss probability

of @A. Note, however, that if the cache size remains constant,

increasing the line size implies reducing the number of sets or

ways, which will increase the probability of miss of @A. In

any case, hit/miss events remain probabilistic regardless of the

cache line sizes and hence, analysable with MBPTA. Second,

for some inclusivity control policies, when a dirty line is

evicted from UL2, the contents of that line have to be evicted

from DL1. If UL2 lines are larger than DL1 ones and hence,

contain several DL1 lines, this would produce a potentially

larger number of invalidations, reducing the probability of hit

of DL1 accesses.

Several cache levels. For setups with several (more than

2) cache levels, the only difference in our analysis consists in

taking into account, when analysing a given cache level Li,

the accesses that any other cache level can introduce on Li.

This depends on the inclusivity arrangement selected and the

write-miss and allocation policies of each level. This would

make the number of events to consider higher, but each event

would be still fully probabilistic. As a result, an ETP for each

cache access still exists, and hence, MBPTA can be applied.

Inclusivity Arrangements. Similarly, to the previous case,

inclusivity policies affect the number of accesses that a given

program does to the different cache levels. It also affects, the

actual size available in a given level. For instance, when the

DL1 is inclusive of the UL2, every miss in DL1 that becomes

an access to the UL2, can only hit in the UL2 lines not devoted

to keep DL1 information. As we have seen, this can easily be

taken into account in the analysis. Analogously, if DL1 is WB

and inclusive, dirty lines may be evicted. This may have an

impact in latency. To consider this, one should split the case

of DL1 evictions into 2 subcases considering whether a dirty

line from DL1 is evicted or not. Deriving such probability of

dirtiness in DL1 is analogous to the case of UL2.

Overall, the effect of all these variations is purely proba-

bilistic and therefore, analysable with MBPTA. MBPTA does

not need to compute ETPs and hence, it is enough those

events to be probabilistic to ensure ETPs exist, which is in

turn enough to apply MBPTA.

D. Hardware Considerations

In random placement multi-level caches it is important

guaranteeing that placement choices in every cache are

independent to prevent any correlation between the random

events in the different caches. This is achieved by simply

using different RII values for each cache. Therefore, those

addresses conflicting in a particular cache set in a first level

cache, thus producing some misses, are very unlikely to be

placed in the same set in the second level cache so that the

same conflicts do not repeat.

Regarding the overhead of the random placement and

replacement caches, it has been shown to be low with respect

to modulo-placement LRU-replacement: as shown in [16] the

overhead in area and access time is very small and its relative

impact further decreases for large caches such as UL2 ones.

366

V. EVALUATION

A. Experimental Framework

We focus on a single-core pipelined processor architecture

in which instructions are fetched from the time-randomised

instruction cache and sent to the decode stage. Once decoded,

instructions are executed in a fixed latency and finally

sent to the write-back stage. Our pipeline, similar to the

LEON4 [1], incorporates bypasses to remove pipeline stalls

due to dependences across instructions. During the execution

stage, the time-randomised data cache is accessed. We model

4KB, 32-byte line, 4-way set-associative instruction (IL1) and

data caches (DL1), both deploying random replacement and

random placement [16]. The UL2 is a unified cache keeping

data and instructions. It is 128KB with 32-byle lines and 8-

way set associativity. The UL2 access latency is 10 cycles and

the latency to access memory 100. The DL1 deploys WT-nWA

policies and the UL2 is WB-WA.

We use several inclusivity arrangements: a first setup where

we make DL1 inclusive of the UL2 (L1-L2inc) and a second

setup in which we do not exercise any inclusivity policy

(L1-L2nic). We also evaluate the effect of making the DL1

write-back when inclusivity is exercised (L1-L2wb). DL1 and

IL1 caches are connected to the UL2 through fully-dedicated

bidirectional buses, whose access latency can be bounded

using the technique presented in [24].

The objective of our analysis is to effectively reduce the

pWCET estimates that can be obtained for programs when

several levels of cache are used. Of course, only on those

cases in which the average execution time of the program

reduces when several levels of cache are deployed, we can

expect some reduction in the pWCET. As a reference point

we use a setup with a single level of cache in which DL1

and IL1 have the same size they have in the other setups, i.e.

4KB.

We use the EEMBC Autobench benchmark suite [25],

which is a well-known suite reflecting the current real-world

demand of some automotive embedded systems.

B. Compliance with MBPTA requirements

On the one hand, the core architecture presented in previous

section has been shown to be MBPTA compliant [16]. On

the other hand, we can derive a probability of every event

affecting the timing behaviour of a cache access (see Annex

I), or approximate such probabilities (see Section IV) . As a

result, for each instruction an ETP exists, which makes our

multi-level cache processor architecture MBPTA-compliant

by construction. This is so, because (1) the latency of each

instruction can be modelled with i.i.d. random variables, and

(2) the execution of a sequence of instructions leads to another

ETP, i.e. random variable, which at the coarsest granularity

level represents the ETP of the program.

We apply statistical tests to show that the execution times

of the program fulfil i.i.d. requirements. To that end, we made

1,000 runs of each program in our multi-level cache platform,

TABLE III. INDEPENDENCE AND IDENTICAL DISTRIBUTION TESTS

RESULTS (OUTCOME INDEPENDENCE TEST / OUTCOME I.D. TEST).

Benchmarks L1-L2 INC L1-L2 NIC L1-L2 WB L1 (only)
a2time 0.03/0.29 0.83/0.41 0.46/0.44 0.90/0.49

aifftr 0.71/0.74 0.95/0.33 0.82/0.59 1.19/0.33

aifirf 0.40/0.11 1.04/0.20 0.13/0.94 1.04/0.79

aiifft 0.68/0.32 0.50/0.41 0.96/0.17 1.09/0.94

cacheb 0.63/0.93 1.11/0.72 1.20/0.35 0.79/0.66

canrdr 0.79/0.16 0.75/0.54 1.00/0.37 0.32/0.91

iirflt 0.96/0.85 0.68/0.41 0.78/0.50 0.07/0.22

puwmod 1.39/0.67 0.99/0.25 0.94/0.75 0.30/0.71

rspeed 0.47/0.43 1.33/0.51 0.91/0.24 1.35/0.42

tblook 1.33/0.92 0.52/0.86 0.34/0.26 0.76/0.44

ttsprk 0.19/0.43 0.89/0.52 0.21/0.42 0.67/0.63

which proven to be enough runs according to MBPTA [8].

We test independence with the Wald-Wolfowitz test [6] using

a 5% significance level (a typical value for this type of tests).

If the absolute outcome obtained after running this test is

below 1.96 independence hypothesis cannot be rejected. For

identical distribution, we use the two-sample Kolmogorov-

Smirnov identical distribution test [5] as described in [8]. For

5% significance, the outcome provided by the test should be

above the threshold (0.05) to indicate identical distribution,

and non-identical distribution otherwise.

Table III shows the results of both tests for all EEMBC

benchmarks under all multi-level cache configurations. As

expected, both tests are passed in all cases so independence

and identical distribution hypotheses cannot be rejected. This

statistical results reinforce the probabilistic analysis we did in

Section IV on the timing behaviour of multi-level caches.

C. Reduction in pWCET Estimates

We consider an exceedance probability of 10−15 per run.

Our selection of the exceedance probability, i.e. the probability

that an instance of a task misses its deadline, is based on the

observation that for the aerospace commercial industry at the

highest integrity level (DAL-A) the maximum allowed failure

rate in a piece of software is 10−9 per hour of operation [2].

In current implementations, the highest frequency at which

a task can be released is 20 milliseconds (180,000 times per

hour) [2]. Hence, the highest allowed failure rate per task

activation is 5.56 × 10−15, which is above our exceedance

probability.

The objective of our analysis is to effectively enable the

use of multi-level caches such that significant reductions can

be obtained in the pWCET estimates derived by MBPTA. The

reduction that can be obtained depends on each application

and in the particular use of cache that the application does.

Applications requiring little cache space are very unlikely to

benefit from having a UL2 cache in place in terms of average

performance and pWCET estimates.

Figure 1 shows the average performance that each EEMBC

obtains when the different cache setups are deployed. All

results are normalised to the single-level cache setup. We

observe that some benchmarks are quite insensitive to having

367

Fig. 1. Average execution time for different cache configurations normalised
to the single-cache level setup

Fig. 2. pWCET estimates for different cache configurations normalised w.r.t.
to the single-cache level setup

a two-level cache hierarchy achieving a small execution time

reduction. Those benchmarks – aifirf, canrdr, puwmod,

rspeed and ttsprk – achieve an average performance

reduction in the range 5%-15%. This is mainly due to the

fact that those benchmarks have a small code footprint and

data working set that fit in IL1 and DL1 respectively. The

rest of the benchmarks significantly benefit from having a

UL2 cache. a2time, aifftr, aiifft, cacheb, iirflt
and tblook achieve execution time reductions in the range

40%-60%.

It must be also noted that the difference between inclusive

and non-inclusive caches is negligible. However, whenever

the DL1 is WB and WA, execution time increases. This is

particularly noticeable for cacheb, whose execution time

doubles for the WB-WA configuration. The reason is as

follows: when the DL1 is WT-nWA, store instructions can

be served without stalling the pipeline. However, under a

WB-WA configuration, if store operations miss in DL1, the

pipeline is stalled until data are fetched into DL1. In general,

this has a relatively low effect on benchmarks whose most

store operations hit in DL1, thus not causing any stall. Only

few store operations miss in DL1 and increase execution time.

However, the store operations in cacheb often miss in DL1

and UL2, so they stall the pipeline for long periods of time,

thus increasing execution time noticeably.

Figure 2 shows the pWCET estimates obtained for every

EEMBC benchmark under each cache setup, normalised

to the pWCET estimates for the single-level cache setup.

Fig. 3. pWCET distributions (black lines) and actual measurements (red
lines), i.e. ICDF, for a2time.

pWCET reductions obtained with multi-level caches are more

significant than those in terms of average performance. The

average performance reduction is around 30% whereas the

average pWCET reduction is around 55%. The reason for this

behaviour lies on the fact that random placement may map

different cache lines to the same set with a relatively high

probability in L1 caches, thus causing misses and increasing

execution time with non-negligible probability. This effect

basically increases the probabilities of high execution times,

so MBPTA accounts for that deriving Gumbel distributions [8]

with a lower slope, which basically increases pWCET estimates

as the exceedance probability decreases. This effect is detailed

in the next section through particular examples. On the other

hand, whenever a UL2 cache is in place, those conflicts

that may arise in L1 caches in few executions have low

impact in execution time because UL2 latency is much lower

than that of main memory (10 versus 100 cycles). Moreover,

since random placement functions in different caches are

independent, L1 conflicts are extremely unlikely to also occur

in UL2. Overall, whenever a UL2 cache is used, both execution

time and execution time variation decrease, thus leading to

much lower pWCET estimates since the Gumbel distribution

slope is sharper.

D. Detailed pWCET Analysis

This section analyses in detail the effect of UL2 caches in

pWCET estimates by considering exemplary benchmarks. In

particular, we consider a2time and canrdr. The pWCET

estimates we obtain are shown in Figures 3 and 4 respectively.

In those figures we also show inverse cumulative distribution

functions (ICDF)7.

For both benchmarks, the observed execution times (in red

and reaching only probabilities down to 10−3) exhibit little

7The probability distribution function (or PDF) gives the probability of
each execution time to occur. The cumulative distribution function (CDF)
accumulates probabilities and the inverse CDF or ICDF, is computed as
1-CDF.

368

Fig. 4. pWCET distributions and actual measurements for canrdr.

variability when the UL2 cache is in place. This leads to sharp

slopes for the Gumbel distributions describing the pWCET

estimates for those benchmarks. In the case of a2time all

setups with a UL2 have very similar average performance and

pWCET distributions are practically identical. In the case of

canrdr, execution time when UL2 is used exhibits somewhat

higher (still low) variation. This creates some pessimism for

pWCET estimates, as shown for the L1-L2 NIC setup, whose

average performance resembles that of the L1-L2 INC setup,

but whose pWCET estimate for an exceedance probability of

10−15 per run resembles that of the L1-L2 WB setup.

Finally, we observe how execution time observations for

the single-level setup for both benchmark are higher and

exhibit much higher variability. This leads to a right-shifted

pWCET distribution with lower slope and thus, significantly

higher pWCET estimates.

VI. RELATED WORK

Timing analysis of systems equipped with cache memories

is abundant [22], [12], [23], [11], [20], [15], [8], [7], [16],

[17]. However, to the best of our knowledge, multi-level cache

hierarchies are deemed as hard to analyse and few works have

considered them [15], [20]. In [15] authors focus on instruction

memory accesses on a 2-level non-unified deterministic cache

architecture, while in [20] authors focus on data memory

accesses on a non-unified cache hierarchy.

One commonality of all the approaches above is that they

work on deterministic caches. One of the main characteristics

of deterministic caches is that the particular addresses in which

objects (i.e. code and data) are located plays a key role in cache

performance. This makes that static cache analysis techniques

have to deal with an increasingly complex challenge, namely,

determining the run time addresses of each access, in addition

to having an accurate model of the underlying hardware, i.e. the

cache in our case [27]. While such information can be obtained

for relatively simple programs, deriving run-time addresses, in

particular for data accesses, can be regarded as unattainable

for industrial-size applications [21]. Furthermore, hardware

efficiency imposes some constraints on cache design, such as

using unified second-level caches for data and instructions,

considering different inclusion policies, and dealing with write-

through and write-back caches as well as write-allocate and

non-write-allocate caches.

PTA [9], [8], [7] responds to the need of enabling complex

hardware in the context of Critical Real-Time Embedded

Systems by obtaining trustworthy WCET estimates at low

cost [8]. However, so far only single-level caches have been

considered [8], [7], [16], [17]. In this paper we go over this

limitation by enabling the use of multi-level caches in the

context of PTA. In particular, we show how this can be

done with arbitrary cache hierarchies including unified caches,

different inclusion, cache-write and allocation policies.

VII. CONCLUSIONS

The increasing demand for performance in Critical Real-

Time Embedded Systems (CRTES) pushes for the adoption

of high-performance features such as multi-level cache hierar-

chies. However, deriving trustworthy and tight execution time

upper-bounds in the presence of such features is deemed as

expensive – if at all doable.– Therefore, there is a need for

low-cost industrial-viable means to determine trustworthy and

tight Worst-Case Execution Time (WCET) estimates in the

presence of multi-level caches.

The advent of Probabilistic Timing Analysis (PTA) together

with time-randomised caches has enabled the use of single-

level cache memories in an industrial context at low cost. In

this paper, we prove that multi-level time-randomised caches

are also PTA-compliant by showing that the probabilities of

the different events exist. In particular, and for the first time,

we enable the use of unified data and instruction second-

level caches, implementing different inclusion, cache-write

and write-allocation policies without impacting the cost of

the WCET estimation. Our results show that 55% average

pWCET reductions can be achieved by enabling the use of

multi-level caches for CRTES, which obviously decreases the

hardware required to schedule critical tasks in CRTES.

ACKNOWLEDGMENTS

The research leading to these results has received fund-

ing from the European Community’s Seventh Framework

Programme [FP7/2007-2013] under the PROARTIS Project

(www.proartis-project.eu), grant agreement no 249100. This

work has also been partially supported by the Spanish Ministry

of Science and Innovation under grant TIN2012-34557 and

the HiPEAC Network of Excellence. Leonidas Kosmidis is

funded by the Spanish Ministry of Education under the FPU

grant AP2010-4208. Eduardo Quiñones is partially funded

by the Spanish Ministry of Science and Innovation under the

Juan de la Cierva grant JCI2009-05455.

REFERENCES

[1] NGMP Preliminary Datasheet Version 1.6, August 2011
http://microelectronics.esa.int/ngmp/LEON4-NGMP-DRAFT-1-6.pdf.

369

[2] Guidelines and methods for conducting the safety assessment process
on civil airborne systems and equipment. ARP4761, 2001.

[3] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-
NGMP-DRAFT - Data Sheet and Users Manual, 2011.

[4] ARM Ltd. Cortex-A series, 2013. http://www.arm.com/products/
processors/cortex-a/index.php.

[5] Sarah Boslaugh and Paul Andrew Watters. Statistics in a nutshell.
O’Reilly Media, Inc., 2008.

[6] J.V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall, 1968.

[7] F.J. Cazorla, E. Qui nones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis,
C. Lo, and D. Maxim. Proartis: Probabilistically analysable real-time
systems. ACM TECS, 2012.

[8] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzeti, E. Quinones, and F.J. Cazorla.
Measurement-based probabilistic timing analysis for multi-path pro-
grams. In ECRTS, 2012.

[9] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling.
In RTSS, 2001.

[10] W. Feller. An introduction to Probability Theory and Its Applications.
John Willer and Sons, 1996.

[11] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt,
H. Theiling, S. Thesing, and R. Wilhelm. Reliable and precise wcet
determination for a real-life processor. EMSOFT, 2001.

[12] C. Ferdinand and R. Wilhelm. Fast and Efficient Cache Behavior
Prediction for Real-Time Systems. Real-Time System, XVII:131–181,
1999.

[13] Freescale Semiconductors. P4 series. P4080 multicore processor (white
paper), 2008. http://www.freescale.com/files/netcomm/doc/fact sheet/
QorIQ P4080.pdf.

[14] J. Hansen, S Hissam, and G. A. Moreno. Statistical-based wcet
estimation and validation. In the 9th International Workshop on Worst-
Case Execution Time (WCET) Analysis, 2009.

[15] Damien Hardy and Isabelle Puaut. Wcet analysis of multi-level non-
inclusive set-associative instruction caches. In Proceedings of the 2008
Real-Time Systems Symposium, RTSS ’08, 2008.

[16] L. Kosmidis, J. Abella, E. Quinones, and F.J. Cazorla. A cache design
for probabilistically analysable real-time systems. In DATE, 2013.

[17] L. Kosmidis, C. Curtsinger, E. Quinones, J. Abella, E. Berger, and F.J.
Cazorla. Probabilistic timing analysis on conventional cache designs.
In DATE, 2013.

[18] L. Kosmidis, T. Vardanega, J. Abella, E. Quinones, and F.J. Cazorla.
Applying measurement-based probabilistic timing analysis to buffer
resources. In WCET workshop, 2013.

[19] S. Kotz and S. Nadarajah. Extreme value distributions: theory and
applications. World Scientific, 2000.

[20] B. Lesage, D. Hardy, and I. Puaut. WCET analysis of multi-level
set-associative data caches. WCET Workshop, 2009.

[21] E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis.
WCET Workshop, 2011.

[22] F. Mueller. Predicting instruction cache behavior. Language, Compilers
and Tools for Real-Time Systems, 1994.

[23] F. Mueller. Timing analysis for instruction caches. Real-Time Systems
- Special issue on worst-case execution-time analysis archive, 2000.

[24] M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, and M. Valero.
Hardware support for WCET analysis of hard real-time multicore
systems. In ISCA, 2009.

[25] J. Poovey. Characterization of the EEMBC Benchmark Suite. North
Carolina State University, 2007.

[26] F. Wartel, L. Kosmidis, C. Lo, B. Triquet, E. Quinones, J. Abella,
A. Gogonel, A. Baldovin, E. Mezzetti, L. Cucu, T. Vardanega, and F.J.
Cazorla. Measurement-based probabilistic timing analysis: Lessons
from an integrated-modular avionics case study. In SIES, 2013.

[27] Wilhelm R. et al. The worst-case execution-time problem overview
of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7:1–53, May 2008.

ANNEX I. ACTUAL HIT/MISS PROBABILITIES IN

TIME-RANDOMISED CACHES

As indicated in Section III, hit/miss probabilities provided

in this paper are an approximation to the actual ones. To

illustrate how actual probabilities can be derived, we use an

example where a sequence of accesses <A1, B1, A2, B2>
access cache lines A and B in a fully-associative cache with

4 cache lines. Figure 5 depicts the sequence of accesses, the

different events that can occur and their probabilities. At the

bottom of the figure probabilities for each sequence of events

are provided.

Fig. 5. Access outcome and cache state for the access sequence
<A1, B1, A2, B2>.

A1 always misses in cache and A is in cache after this

access. Then, B1 misses in cache, but two different cache

states may be reached: with a probability of 0.75 B replaces

any of the empty lines and with a probability of 0.25 (1

out of 4) B replaces A so that B is the only valid line

in cache. A2 accesses cache and hits if the cache contents

were {A,B,−,−}, which occurs in one of the two different

sequences of events at this stage. If A2 hits (leftmost path

in the graph), cache state remains the same ({A,B,−,−}),
otherwise it may happen again that A replaces an empty line

(0.75 probability) or B (0.25 probability). Finally, B2 hits in

cache in two of the three different sequences of outcomes.

Overall, if we compute the actual probabilities from the

graph, we obtain the probability vectors in Table IV. As

shown, the probability vector for B2 differs across the exact

computation and the approximation provided by Equation 1.

This is so because the probabilities of hit and miss across

different sequences of events differ. However, although those

probabilities are not independent, whether a hit or a miss

occurs depends solely on random events, so properties needed

by MBPTA [8] (i.i.d. end-to-end program execution times)

are fulfilled.

Note that, as opposed to SPTA [7], MBPTA does not

370

TABLE IV. PROBABILITY VECTORS FOR THE ACCESSES IN THE

SEQUENCE <A1, B1, A2, B2> FOR A FULLY-ASSOCIATIVE 4-ENTRY

Access Prob. vector real Prob. vector Equation 1
{phit, pmiss} {phit, pmiss}

A1 {0.0, 1.0} {0.0, 1.0}
B1 {0.0, 1.0} {0.0, 1.0}
A2 {0.75, 0.25} {0.75, 0.25}
B2 {0.9375, 0.0625} {0.9306, 0.0694}

TABLE V. PROBABILITIES OF EXPERIENCING 0, 1 AND 2 HITS IN THE

SEQUENCE <A1, B1, A2, B2>.

Real Convolution

P(0 hits) 0.0625 0.0156

P(1 hit) 0.1875 0.2813

P(2 hits) 0.75 0.7031

need to determine the actual probabilities. SPTA, indeed,

needs actual probabilities to be upper-bounded and those

probabilities must be independent so that they can be convolved

to obtain the probability distribution for the whole program.

Obtaining actual probabilities can be done in two main ways:

(i) Performing an ‘infinite’ number of runs and measuring

actual probabilities, or (ii) Computing the probability of each

particular cache state left by the sequence of hits and misses

for previous accesses, and accumulating the probabilities for

those cache states where the current cache access would result

in a hit/miss, as we do in our example. Unfortunately, even if

exact probabilities are obtained, they cannot be convolved, so

if SPTA is to be used, a way is needed to compute probability

vectors that upper-bound those under any sequence of events

for each access, i.e. by making sure that the miss probability

used is equal or higher than the miss probability under any

sequence of events [7].

For the sake of illustration, we provide in Table V the

probabilities of experiencing 0, 1 and 2 hits when executing the

sequence <A1, B1, A2, B2> (i) directly from the probability

graph in Figure 5 and (ii) by convolving the probability vectors

in Table IV. For instance, the actual (real) probability of having

exactly one hit is 0.1875, which occurs when A2 misses and B2

hits. When applying convolutions, such probability of having

exactly one hit is obtained as the addition of the probabilities

of (1) A2 missing and B2 hitting (0.25 ·0.9375 = 0.2344) and

(2) A2 hitting and B2 missing (0.75 ·0.0625 = 0.0469), which

indeed cannot occur. As expected, probabilities obtained with

convolutions neither match nor upper-bound real ones (e.g.,

SPTA would underestimate the probability of having 0 hits,

which is the one leading to the highest execution time).

Overall, deriving actual probabilities would require a more

complex formulation than the one we have used in this paper to

derive approximations. The purpose of deriving the probability

approximations is proving that hit and miss events occur with

a given probability, which is a sufficient condition for enabling

the application of MBPTA in multilevel caches.

ANNEX II. EXCLUSIVE CACHES

In this section we briefly discuss some considerations

for exclusive caches. In exclusive caches, contents cannot be

replicated across multiple caches. Therefore, on a DL1 and

UL2 miss, the new line is fetched from memory to DL1, the

line evicted from DL1 is moved to UL2, and the line evicted

from UL2 is invalidated (if clean) or written back to memory

(if dirty). Analogously, on a DL1 miss and UL2 hit, the line

from UL2 is moved to DL1. One line from DL1 is evicted

and placed in UL2, which can also produce a cascade eviction

since placement functions in DL1 and UL2 are independent

and so, although both lines (the one fetched and the one

evicted) are placed into the same set in DL1, they are very

unlikely to be placed in the same set in UL2. In general,

exclusive caches are not common because of the number of

cache line transfers on a DL1 miss.

Exclusive caches are ill-advised in combination with WT

policy, as it is the case of the DL1 considered in this work. This

is so because on a DL1 store hit, the write operation is sent

to UL2, where it is guaranteed to miss due to the exclusivity

constraint. This would enforce evicting such particular cache

line from DL1 to put it in UL2 (potentially causing a UL2

eviction) or sending the write operation straight to memory,

thus jeopardising performance and power due to the increased

number of memory accesses.

The events that may potentially happen in the different

caches have an associated probability (PUL2,hit/miss(@),
PIL1,hit/miss(@), PDL1,hit/miss(@) and PUL2,dirty(@)).
The values of some of those probabilities change with respect

to the non-inclusive and inclusive cases as detailed next.

C.1. PDL1,miss(@). It is not affected by the inclusivity control,

so it remains as described for the non-inclusive case, since

UL2 cannot produce any eviction in DL1.

C.2. PUL2,miss(@). There is a probability that an access @A

to the UL2, and so its PUL2,miss(@A), is affected by the

exclusivity policy. On a DL1 miss, data can be found in

any UL2 line. Since DL1 and UL2 are exclusive, a miss in

UL2 occurs if and only if data are not in the WUL2 +WDL1

lines of DL1 and UL2 together, being its miss probability

approximation:

PUL2,miss(@A)=1−
(
WUL2 +WDL1−1

WUL2 +WDL1

) k∑

i=1
PUL2,miss(L2acci)

where the exponent is the miss probability of the accesses

between @A and its last access.

C.3. PUL2,dirty. It is not affected by the inclusivity control,

so it remains as described for the other cases.

371

