
Compiling Regular Patterns to Sequential Machines

Burak Emir
EPFL, 1015 Lausanne, Switzerland

Burak.Emir@epfl.ch

ABSTRACT
Pattern matching combined with regular expressions has many ap-
plications including semistructured data matching and lexical anal-
ysis in compilers. Variables in patterns allow one to refer to parts of
the matching input. But some regular patterns suffer from inherent
ambiguity, yielding more than one valid result. A match policy like
shortest or longest match can disambiguate such patterns.

In this paper, we show that regular pattern matching corresponds
to sequential transduction. We derive straightforward ways to opti-
mally compile regular patterns to sequential machines and to decide
when regular patterns are unambiguous. Unambiguous patterns can
be matched in a single traversal of the input. Ambiguities in pat-
terns correspond to nondeterminism in sequential machines. Ap-
plying the match policy optimally yields two deterministic sequen-
tial machines, which produce the shortest match in two consecutive
runs.

Categories and Subject Descriptors
D.3.1 [Formal Definitions and Theory]: Semantics; D.3.3 [Lan-
guage Constructs and Features]: Patterns

Keywords
Regular patterns, matching, sequential machines

1. INTRODUCTION
Many programming languages have a pattern matching construct

that can be generalized to deal with regular expressions. This is es-
pecially useful for decomposing semistructured data in languages
like XDUCE [12] and CDUCE [1]. For general-purpose program-
ming, regular pattern matching is used in XTATIC [10, 9], HARP [4]
(an extension of HASKELL) and SCALA [16]. XEN filters [15] and
XPATH expressions are related constructs. Regular pattern match-
ing in various forms is also being applied to DNA sequences or TCP
network packets, and for lexical analysis in parsers. Language sup-
port for regular patterns can be highly desirable in such domains.

Regular patterns are a natural generalization of pattern matching
as known from ML and HASKELL. Here is an example on how to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05 March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

succinctly query an email for its sender:

email.match {
case (’F’,’r’,’o’,’m’,’:’,x@ �,’\n’, �) => x

}

We use the convention that is a wildcard pattern and that a
binding pattern v@p matches everything p matches, binding the
result to the variable v. The pattern should bind everything between
”From : ” and the first newline character to the variable x. But
the iterated wildcard pattern � matches arbitrarily many arbitrary
characters, so the binding pattern x@ � might possibly stretch far
beyond the first newline. The pattern is ambiguous; several values
for x are possible.

Ambiguity can be removed by imposing a match policy. We
are interested in the shortest match here because we want binding
to stop at the first newline character. Ambiguities appear also in
absence of wildcards, as can be seen from the minimal example
(x@‘a‘�, y@‘a‘�).

In this paper, we give a formal model of shortest match and
derive decision procedures and algorithms from it. The essen-
tial idea is that binding to a variable can be seen as tagging
parts of the input with the variable. Let us agree on writing
xa for appending input element a to variable x. Then matching
”From : jj@foo.net N

L To : . . . ” against the email pattern above
is conceptually the same as transforming the input string to

” F r o m : xjxjx@xfxoxox.xnxext
N
L To : . . .”.

The desired substitution {x �→ ”jj@foo.net”} can be read off
the output (do not confuse the character @ with the binding opera-
tor @). The shortest match and the semantics of pattern matching
can be concisely specified by reasoning on such annotated strings.
We obtain a natural formulation of pattern matching as length-
preserving rational transduction.

Contributions. The contributions of this paper are (1) the (ap-
parently first) sequential machine formulation of regular pattern
matching, (2) algorithms based on this model that generate code
with linear runtime complexity, (3) a decision procedure for un-
ambiguous patterns, (4) an intuitive account on match policies and
position automata. The accompanying report [7] discusses vari-
ous generalizations and applications and should be consulted for
details.

The technique discussed in this paper is implemented in the
reference SCALA compiler [6] and used in practice. The results
should help implement regular pattern matching, relate different
approaches and proof techniques, and prevent implementors from
reinventing the wheel.

Related work. Ambiguities are first mentioned by Hosoya,
Vouillon and Pierce [12]. Disambiguation of patterns is specified
rigorously by Tabuchi et al [17].

1385

2005 ACM Symposium on Applied Computing

Frisch and Cardelli [8] implement disambiguated pattern match-
ing. Their goals and assumptions differ though: (1) They consider
“greedy matching”, a local approximation of the longest match. We
show how the longest match can be obtained without approxima-
tion with the same runtime complexity. (2) Their approach is pre-
sented in a framework that prohibits the rewriting of regular expres-
sions. In our approach however, we show that rewriting turns out
to be indispensable for longest/shortest match. Moreover, the cor-
respondence with sequential machines presented here seems rather
more intuitive than the sets of structured values they employ.

Broberg, Farre and Svenningsson [4] add regular patterns to
HASKELL. They handle ambiguities with greedy and non-greedy
operators, and by returning a list of all matches in other cases. This
poses challenges to efficient implementation, however.

Disambiguated operators are also present in PERL and JAVA. We
sketch how our approach can be extended to disambiguated opera-
tors without sacrificing efficiency.

Organization of the paper The accompanying technical re-
port [7] contains the complete definitions, proofs and a larger ex-
ample. We introduce patterns and bindings in Section 2. We then
recall position automata and put them in correspondence to short-
est match in Section 3. In Section 4, we introduce sequential ma-
chines. In Section 5, we turn to efficient compilation to these se-
quential machines, followed by conclusion, acknowledgment and
references.

2. REGULAR PATTERNS

2.1 Patterns and Bindings
Patterns and their denotation are defined as follows. The defini-

tions use a mapping vp which is explained below.

r ::= ε [[ε]] = {ε}
a [[a]] = {a} (a ∈ Σ)
r1 · r2 [[r1 · r2]] = [[r1]] · [[r2]]
r1 | r2 [[r1 | r2]] = [[r1]] ∪ [[rn]]
r� [[r�]] =

⋃
{i≥0}[[r]]

i

p ::= v@r [[v@r]] = [[vp(v, r)]]
p · p [[p1 · p2]] = [[p1]] · [[p2]]

We write RegExp(Σ) for the set of regular expressions over
Σ, and RegPat(Σ, V) for the set for regular patterns over al-
phabet Σ and variables V . A pattern is a non-empty sequence
x1@r1 · · ·xk@rk of binding patterns xi@ri, where x1, . . . , xk are
distinct variables from V , and r1, . . . , rk ∈ RegExp(Σ). The or-
dered set {x1, . . . , xk} is denoted var(p). If not otherwise men-
tioned, we always talk about a fixed pattern p = x1@r1 · · ·xk@rk.

The function vp pushes variables down to the leaves. A pattern
over Σ and V becomes an expression over var(p)×Σ. For instance,
writing xa instead of 〈x, a〉,

vp(x@(ab|b�)y@(c|ε)z@a�) = (xaxb|xb�) · (yc|ε) · za

Patterns are thus regular expressions over var(p) × Σ. Sequences
s ∈ (V × Σ)� can be seen as substitutions built incrementally. We
call such sequences bindings, and an element xa a binding action.
The projection proj : V ×Σ → Σ can be extended to sequences and
regular expressions. A mapping bind maps sequences of binding
actions to substitutions. For instance,

bind(xaxbycza) = {x �→ ab, y �→ c, z �→ a}
It is easy to see that s ∈ [[p]] implies that we can decompose s

into s1 · · · sk with si ∈ ({xi} × Σ)�, and that for each of these

pieces it holds that proj(si) = bind(s)(xi). The subsequence si

is called “binding for variable xi”.

2.2 Semantics of Matching
Pattern matching with variable binding consists of recognizing

whether a word w ∈ Σ� matches, and if it does, in providing a
suitable binding s ∈ (V ×Σ)� for the variables. A word w matches
x1@r1 · · ·xk@rk if w ∈ [[r1 · · · rk]] and we can find a binding s
with bind(s)(xi) ∈ [[ri]] for each i. Since bindings are annotated
input words, we can view the problem as transforming input w ∈
Σ� into output s ∈ (V × Σ)�.

To specify the longest and shortest match, it is enough to focus
on the outputs, using transitions of the form xa. These automata
are considered to generate bindings; in practice, they will modify
the environment at runtime (e.g. by modifying a pointer-structure
on the heap).

A word w, a pattern p and a binding s are in the ternary match-
ing relation w � p ⇒ s (pronounced “w matches p yielding s”) if
proj(s) = w and s ∈ [[p]].

PROPOSITION 1
If w � p ⇒ s1 · · · sk then w ∈ [[proj(p)]] and proj(si) ∈ ri for all
xi ∈ var(p).

We write Env(p, w) = { s | w � p ⇒ s } for the set of possible
bindings for pattern p and word w. This set can have more than one
element. For instance, for the word am, the pattern x@a�y@a�

yields m + 1 possible bindings.
Patterns which for a matching word yield more than one binding

are ambiguous. In such a case, a match policy picks the one that
should be used.

2.3 Shortest Match
The shortest (or right-longest) match means starting from right-

most binding pattern and assigns the longest possible subsequence
to its variable. The longest (or left-longest) match policy is defined
symmetrically from the left. In the example x@a�y@a�, short-
est match will assign the whole input to y. Consider for instance
matching aaabbb against x@a�y@a(ab)�z@b�:

a · a · a · b · b · b

a� a(ab)�
b�

Intuitively, matching requires backtracking. In this particular ex-
ample left-longest and right-longest match coincide, but obtaining
the left-longest match naively requires backtracking. For symme-
try reasons, we focus on shortest (or right-longest) match from now
on.

A total order s >right s′ on Env(p, w) tells us whether a binding
is right-longer. We can formally define it as the reversed lexico-
graphical order on the lengths of the si, with the rightmost position
being most significant. The right-longest match is the maximal el-
ement w.r.t. >right. It is easy to see that it exists and is unique,
because the order is total. We write >right also for the reversed
lexicographical order on N

n.
In addition to these definitions, we need a technical prop-

erty to sort the branches of an alternation. The minimal length
minlen(r) describes the minimal length of a sequence that matches
r. For right-longest match, we can rewrite a regular expression
such that for every alternation r1| . . . |rm we have minlen(ri) ≤
minlen(ri+1). We will call regular expressions “branch-sorted”, if
they have their alternation branches sorted in this way. Branch-
sortedness is necessary, but not yet sufficient to obtain shortest
match.

1386

3. POSITION AUTOMATA

3.1 Synthesis Algorithm
We briefly recall the position automata construction (commonly

attributed to Berry and Sethi [2]) which does without ε-transitions
and maintains a correspondence between positions of leaves in the
syntax tree of a regular expression and automaton states. All re-
sults depend on the properties of the automata resulting from this
particular construction. It is open whether they can be adapted to
further improved constructions like e.g. [13, 11]. For details on im-
plementing it, we refer the reader to the report [7] or the manual of
the AMoRE automata library [14] .

The basic idea is to traverse the syntax tree of the regular expres-
sion in preorder, assigning numbers to the leaves (see Figure 1). A
mapping γ : Γ → Σ maps numbers back to letters. Then first, last
and follow sets are computed simultaneously for all subexpressions
of r in time quadratic in n. The position automaton Nr of a regular
expression r has exactly n + 1 states, one for each position plus
one initial state 0. It can have up to O(n2) transitions [13].

DEFINITION 1
For r ∈ RegExp(Σ), the position automaton Nr is defined as
〈Q, Σ, {0}, δ, lst(r0)〉 where Q = {0} ∪ Γ and

δ(0, a) 	 j iff a = γ(j) ∧ j ∈ fst(r0)
δ(i, a) 	 j iff a = γ(j) ∧ j ∈ fol(r0, j) for all i ∈ Γ

By definition, all transitions that enter a particular state have the
same label. The reversed position automaton N rev can be obtained
by swapping fst and lst in the above construction and furthermore
redefining follow. It recognizes wrev iff N recognizes w. Note
that a letter occurring more to the right corresponds to a state with
a greater index. For branch-sorted regular expressions, this corre-
spondence can be used to get the shortest match.

3.2 Maximal Run for Shortest Match
This section states one of the main results, on which disambigua-

tion of regular patterns for shortest match is based. We can asso-
ciate bindings with runs, and the maximal one with the binding for
shortest match.

DEFINITION 2
For w ∈ [[r]], and Nr the position automaton of r, a maximal run
maxN (w) is the sequence q0 · · · qn which is maximal with respect
to ≥right.

PROPOSITION 2
Let w be a word, p be a branch-sorted pattern, and N = Nvp(p).
For all s, s′ ∈ Env(p, w), it holds that

maxN (s) >right maxN (s′) implies s >right s′.

a b

SEQ

OR

b

c STAR

a

SEQ

1 2

SEQ

OR

3

4 STAR

5

SEQ

Figure 1: Syntax tree of (ab|b)ca� and linearized form

0

1 2

a : xa
a : ya

a : ya

a : xa a : ya

Figure 2: The nsm N obtained from x@a�y@a�

A naive strategy to find the right-longest s is to find the maximal
states that lead to a final state using backtracking. In the next sec-
tion, we show how to do without backtracking using two traversals
of the input.

4. SEQUENTIAL MACHINES

4.1 Basic Definitions
Sequential machines represent length-preserving subsequential

rational relations [3]. A nondeterministic sequential machine (nsm)
on Σ and Θ is a tuple N = 〈Q, Σ, Θ, I, δ, F 〉 similar to an nfa, but
with a transition mapping δ : Q × Σ → 2Θ×Q. The transition
relation is extended to δ� as before, ignoring the output, and an
extended output mapping λ� : 2Q ×Σ� → 2Θ�

can be formulated.
The output is discarded if the nsm does not reach a final state.

We have reused N to denote nsms in addition to nfas. An nsm
can in fact be seen as an nfa on the alphabet Σ × Θ, if one identi-
fies translation of a word a1 · · · ak into b1 · · · bk and recognition of
the word (a1 : b1) · · · (ak : bk). This means we can use the con-
struction from above to build sequential machines from any regular
expression over an alphabet of pairs. To keep notation light, we
will also use a : b to denote a pair of elements a ∈ Σ and b ∈ Θ,
and write δ(q, a : b) 	 q′ instead of δ(q, a) 	 〈b, q′〉.

From an nsm one can retrieve all possible outputs (bindings) that
a regular expression (pattern) yields given a fixed, accepted input.
Instead, a deterministic sequential machine (dsm) has a transition
mapping δ : Q × Σ → Θ × Q. These correspond to the well
known Mealy, Moore machine models. A dsm computes exactly
one output for any given, accepted word.

4.2 Translating Patterns
To obtain nsms from patterns, we extend a mapping h that du-

plicates input letters, i.e. sends xa to a : xa. If h is applied after
vp, a pattern p ∈ RegPat(Σ, V) is turned into a regular expression
vp◦h(p) ∈ RegExp(Σ×(V ×Σ)) on an alphabet of pairs a : xa.
As explained before, applying the position automata construction
yields an nsm.

For instance, translating p = x@a�y@a� yields the sequential
machine Nvp◦h(p) shown in Figure 2. This pattern will be used
from now on as a running example.

PROPOSITION 3
Let p ∈ RegPat(Σ, V) and N = Nvp◦h(p) its translation. Then
w � p ⇒ s iff N can accept w producing output s.

Unlike recognizers, nsms cannot be “made deterministic” because
they can produce several outputs for an input word. But we can
recover the set of possible runs as an intermediary result and then
choose one among the possible outputs with a second run. This
scheme follows a long-standing result by Elgot and Mezei [5]. Any
disambiguated form of regular pattern matching (i.e. sequential
rational function) can be implemented in this way, in particular also
PERL greedy and ungreedy operators.

1387

0

1 2

a : 0
a : 0

a : 1

a : 1 a : 2

0

1 2

0 : xa

0 : ya

1 : xa

1 : xa 2 : ya

Figure 3: Nsm L and nsm R for x@a�y@a�

4.3 Ambiguities and Decision Procedures
Having established a connection between patterns and nsms, we

can now derive definitions of ambiguities and decision procedures.

DEFINITION 3 (PROPERTIES OF PATTERNS)
Let p be a pattern, and Nvp◦h(p) its translation. An ambiguity of
p is a state q of Nvp◦h(p) with at least two outgoing transitions
a : xia, a : xj a where xi
= xj . Thus, p is called

• ambiguous if it has at least one ambiguity,

• unambiguous if it has none.

• deterministic if N is deterministic, i.e. the range of δ con-
sists only of singleton or empty sets. This implies that p is
unambiguous.

For instance, state 0 and 1 the nsm shown in Figure 2 constitute
ambiguities. Any correct implementation of regular pattern match-
ing has to simulate runs of Nvp◦h(p) at runtime and choose (e.g.
according to a match policy) which transition to take and conse-
quently which xi to bind to.

PROPOSITION 4 (DECISION PROCEDURES)
We derive decision procedures with time complexity quadratic in
|Γ| (they are effected during automata construction).

• is p ambiguous? For all i ∈ Γ, check if fol(i, p) contains
j, l with γ(j) = a : xa and γ(l) = a : ya where x
= y.
Check the same for fst(p). p is ambiguous iff such a pair j, l
is found.

• is p deterministic? For all i ∈ Γ, check that |fol(i, p)| < 1,
and check that |fst(p)| < 1.

We can also check inclusion for p1, p2 with var(p1) = var(p2)
using the standard product construction on the Nvp(pi), with
worst case complexity |Γ|2 ∗ |Γ′|2 for deterministic patterns, and

2|Γ|2+|Γ′|2 in the general case (the nfas have to be made deter-
ministic before). The position automaton construction turns a de-
terministic pattern directly into a dsm which for every matching w
constructs the unique binding s of p in a single traversal. For unam-
biguous patterns, a subset construction yields a dsm that achieves
the same; in these patterns nondeterminism does not lead to ambi-
guities, hence can be removed.

5. EFFICIENT SHORTEST MATCH
For the remaining patterns, we have to apply the shortest match

policy. To this end, the nsm N obtained from a pattern is split into
two nsms L and R (see Figure 3). L reads the input from left to
right and writes the state it is in before making a transition, yielding
a word q0 . . . qn−1 and the final state qn. Based on qn ∈ F , an
initial state of its counterpart R is chosen that reads z from right to
left and writes the intended output s from right to left. Thus, only
L is nondeterministic. It is easy to see that these two nsms accept
the same inputs yielding the same outputs as the original nsm.

input: L = 〈Q, q0, δ, F 〉 output:det(L) = 〈Q, q0, δ, F 〉

initialize Q, F , δ, stack
q0 := {q0}
push q0 on stack
while(stack not empty)

pop A from stack

add A to Q

if(A ∩ F not empty) then add A to F
for each a ∈ Σ do

B =
⋃

q∈A δ(q, a :) // ignore output

δ(A, a : A) := B
if(B not in Q) then push B on stack

Figure 4: Constructing det(L)

input: dsm det(L) = 〈Qdet(L), q
det(L)
0 , δdet(L), F det(L)〉

nsm R = 〈QR, IR, δR, FR〉
output:dsm det(R) = 〈Q, I, δ, F 〉

initialize Q, I, stack

for each A ∈ F det(L)

choose maximal q from A with q ∈ IR

if 〈q, A〉 /∈ Q then

add 〈q, A〉 to Q

add 〈q, A〉 to I
push 〈q, A〉 on stack

while(stack not empty)
pop 〈q, A〉 from stack
for each B ∈ Qdet(L) with δdet(L)(B, a : B) = A

choose maximal q′ from B such

that δR(q′, q′ : xa) 	 q for some x

δ(q, B : xa) := 〈q′, B〉
if 〈q′, B〉 /∈ Q then

add 〈q′, B〉 to Q
push 〈q′, B〉 on stack

F := {qdet(L)
0 }

Figure 5: Constructing det(R)

1388

{0} {1,2}
a : {0}

a : {1, 2}

{ 0 } {1, 2 }
{0} : ya

{1, 2} : ya

Figure 6: det(L) and det(R) for x@a�y@a�

pattern

L R

det(L) det(R)

code

pos. automaton pos. automaton

determinize determinize

generate

Figure 7: Compiling patterns to sequential machines

Nondeterminism in L is removed by a slightly modified subset
construction given in Figure 4. It constructs a sequential machine
det(L) that prints sets of states as outputs.

Then the algorithm in Figure 5 constructs a dsm det(R) from R
and det(L). Its states are pointed sets of states 〈q, A〉 which recon-
struct the maximal run and output of det(L). By the propositions
from above, this yields the shortest match. Figure 6 contains the
output for the running example x@a�y@a�. More examples can
be found in the technical report, and in the SCALA documentation.
The latter shows how to apply this versatile construct in practice.

The subset construction for det(L) might lead to state space ex-
plosion, but we assume that runtime performance is more important
than code size and compilation time. Since the size of patterns is
usually small, these algorithms work well in the SCALA compiler.
Figure 7 shows the full compilation scheme.

6. CONCLUSION
We showed how to compile regular patterns with a match policy

to sequential machines. Rewriting regular expressions is crucial in
our approach. The longest/shortest match of ambiguous patterns is
obtained in two runs, which is optimal in the general case.

The accompanying report discusses straightforward generaliza-
tions, and sketches changes necessary for longest (left-longest)
match, which is derived from the minimal run.

Further research has to be done on whether sequential machines
can be used in compiler optimizations.

Acknowledgements. Thanks to all reviewers for helpful com-
ments. I thank Vladimir Gapeyev, Alain Frisch and Sebastian
Maneth for discussions on regular pattern matching. Finally, I am
indebted to Martin Odersky for having provided the opportunity to
test these ideas in the SCALA compiler, and to the Hasler founda-
tion for supporting this research with a grant.

7. REFERENCES
[1] V. Benzaken, G. Castagna, and A. Frisch. Cduce: An

XML-centric general-purpose language. In Proc. 8th ICFP,
pages 51–63, Aug. 2003.

[2] G. Berry and R. Sethi. From regular expression to
deterministic automata. Theoretical Computer Science,
48(1):117–126, 1986.

[3] J. Berstel. Transductions and Context-Free Languages.
Teubner Verlag, Stuttgart, 1979.

[4] N. Broberg, A. Farre, and J. Svenningsson. Regular
expression patterns. In Proc. 10th ICFP, 2001.

[5] C. Elgot and G. Mezei. On relations defined by generalized
finite automata. IBM Journal of Research and Development,
9:47–65, 1965.

[6] B. Emir. Extending pattern matching with regular tree
expressions for XML processing in Scala. Master’s thesis,
RWTH Aachen, 2003.

[7] B. Emir. Compiling regular patterns to sequential machines.
Technical Report IC/2004/72, EPF Lausanne, 2004.

[8] A. Frisch and L. Cardelli. Greedy regular expression
matching. In Proc. 31st ICALP, 2004.

[9] V. Gapeyev, M. Levin, B. C. Pierce, and A. Schmitt. XML
goes native: Run-time representations for Xtatic. Manuscript.

[10] V. Gapeyev and B. C. Pierce. Regular object types. In Proc.
ECOOP, volume 2743 of LNCS. Springer, 2003.

[11] C. Hagenah and A. Muscholl. Computing ε-Free NFA from
Regular Expressions in O(n log2(n)) Time. R.A.I.R.O.
Theoretical Informatics and Applications, 34:257–277, 2000.

[12] H. Hosoya and B. Pierce. Regular expression pattern
matching for XML. ACM SIGPLAN Notices, 36(3):67–80,
Mar. 2001.

[13] J. Hromkovič, S. Seibert, and T. Wilke. Translating regular
expression into small ε-free nondeterministic finite automata.
In STACS, volume 1200 of LNCS. Springer Verlag, 1997.

[14] O. Matz, A.Miller, A. Potthoff, W. Thomas, and E. Valkema.
Report on the program AMoRE. Technical report,
Universität Kiel, 1995.

[15] E. Meijer, W. Schulte, and G. Bierman. Programming with
circles, triangles and rectangles. Manuscript, 2003.

[16] M. Odersky et al. An overview of the Scala programming
language. Technical Report IC/2004/64, EPF Lausanne,
2004.

[17] N. Tabuchi, E. Sumii, and A. Yonezawa. Regular expression
types for strings in a text processing language (extended
abstract). In Proc. TIP’02 Workshop on Types in
Programming, pages 1–18, July 2002.

About the Author
Burak Emir is a student author who graduated in 2003 from the
Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen,
Germany. He wrote his master thesis under supervision of Martin
Odersky at the Ecole Polytéchnique Fédérale in Lausanne (EPFL),
Switzerland. He joined his group immediately afterwards and
started pursueing a PhD. His reseach interest lies in programming
language abstractions for semistructured data. He maintains and
refines the pattern matching facilities and the XML library func-
tions of the Scala reference implementation, and recently started
developing a programming language for statically typed XML pro-
cessing based on regular pattern matching.

1389

