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Abstract 

Domain structures in ferroelectric nanotubes (FNTs) under different electrical boundary 

conditions are predicted through a phase field model. Simulation results show that domain 

structures are highly dependent on the compensation of polarization-induced surface charges. 

In order to reduce the depolarization energy, polarizations in FNTs form a vortex structure 

under an open-circuit boundary condition. When surface charges are compensated on the 

inner and outer surfaces, a multi-domain structure is formed in FNTs as a result of 

competition between the long-range electrostatic and elastic interactions. However, a single-

domain structure is energically favourable in FNTs if the upper and lower surfaces are short-

circuited.   
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Nanoscale ferroelectric materials have received considerable attention from the academia 

and the industry due to the potential integration of nanoferroelectrics into microelectronics. 

The properties of ferroelectric materials in nanometer scale are substantially different from 

those of their bulk counterparts.
1-3
 There are numerous theoretical and experimental 

investigations on ferroelectric nanostructures. However, most of the investigations focus on 

ferroelectric dots
4,5
, wires

6,7
 and thin films.

8,9
 Ferroelectric nanotubes (FNTs), which have a 

variety of potential applications that can not be filled by other nanotubes,
10
 have not received 

much attention. Recently, individual FNTs and ferroelectric nanotube arrays have been 

successfully fabricated by different deposition techniques.
11-13

 This opens opportunities to use 

FNTs in the fields such as photonics devices, MEMS devices, and data storage devices. 

      

The physical properties of FNTs, such as the piezoelectric and photonic properties, are 

highly dependent on the polarization distribution or domain structures. However, the 

equilibrium domain structures in FNTs are still not well-understood due to their complex 

geometry, which increases difficulties in the experimental characterization and theoretical 

prediction of domain structures. The complex geometry may also generate a toroidal order in 

ferroelectric crystals in nanoscale.
14
 On the other hand, different electrodes are needed for 

FNTs in different applications. Different electrodes provide different electrical boundary 

conditions for FNTs. Electrical boundary conditions can be used to control surface charge 

compensation in the formation of polarizations of FNTs. The charge compensation on the 

surfaces will affect equilibrium domain structures and thus change the physical properties of 

FNTs. Therefore, the prediction of equilibrium domain structures in FNTs is not only 

important in physics but also technically useful.  
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In this letter, we predict the equilibrium polarization distribution in FNTs with different 

electrical boundary conditions using a phase field model. The phase field model is based on 

the time-dependent Ginzburg-Laudau equation, mechanical equilibrium equation and Gauss' 

law. It provides a powerful method to predict the polarization distribution in ferroelectric 

materials without any priori assumption. Similar phase field models have been employed to 

predict the equilibrium polarization distribution in ferroelectric nanodots
15
 and thin films.

16
 In 

the present phase field model, the total free energy of the ferroelectric system is obtained by 

integrating an electrical enthalpy over the whole volume. The electrical enthalpy is a function 

of polarization iP , strain ijε  and electric field iE , which can be expressed as 
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in which the repeated indices imply summing over 1, 2 and 3. The first three terms in Eq. (1) 

represent the Landau-Devonshire free energy, where 
000 2/)( CTTi εα −=  is the dielectric 

stiffness, ijα  and ijkα  are higher order dielectric stiffnesses, T and T0 denote the temperature 

and the Curie-Weiss temperature, respectively, C0 is the Curie constant. The fourth term 

denotes the elastic energy of the system, in which ijklc  is the elastic constant. The fifth term is 

the coupling energy between polarizations and strains, where ijklq  is the electrostrictive 

coefficient. The term of )/)(/(
2
1

lkjiijkl xPxPg ∂∂∂  is the gradient energy, in which ijklg  is the 

gradient coefficient. The gradient energy gives the energy penalty for spatially 

inhomogeneous polarization.  Except for the last two terms, all the other terms in Eq. (1) are 

the same as those in Refs. [17] and [18]. The last two terms are introduced through Legendre 

transformation in order to obtain the electrical enthalpy, in which 0κ  is the dielectric constant 

of vacuum. With the electrical enthalpy, the stresses and electric displacements can be derived 

as ijij h εσ ∂∂= / and ii EhD ∂−∂= / .  
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The temporal evolution of the polarization formation in ferroelectrics can be obtained 

from the following time-dependent Ginzburg-Landau equation 
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where L is the kinetic coefficient, ∫= V
dvhF  is the total free energy of the simulated system, 

t),(δPδF i x/  represents the thermodynamic driving force for the spatial and temporal 

evolution of the simulated system, x denotes the spatial vector, )x,x,(x= 321x , and t is time. 

In addition to Eq. (2), the following mechanical equilibrium equation  
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and Maxwell’s (or Gauss' ) equation 
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must be simultaneously satisfied for charge-free and body-force-free ferroelectric materials. A 

nonlinear multi-field coupling finite element formulation is developed to solve the governing 

equations (2), (3) and (4). In the space discretization, an eight-node brick element is employed 

with seven degrees of freedom at each node. The seven degrees of freedom include three 

displacements, one electrical potential and three polarizations. The detailed derivation of the 

developed three-dimensional finite element formulation of ferroelectrics will be published 

somewhere else. Compared with the three-dimensional phase field simulations of 

ferroelectrics in the literature,
16,19

 the present finite-element phase field model does not 

employ periodic boundary conditions. It is able to simulate ferroelectrics with complex 

boundary conditions and geometrical shapes, such as FNTs with different mechanical and 

electrical boundary conditions.  
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We take PbTiO3 FNTs as an example to study how the electrical boundary condition 

affects the equilibrium polarization distribution. All the materials constants used in the 

simulation are the same as those of Refs. [20, 21]. In the simulations, we employ 8000 

discrete brick elements to model the FNTs with 20 elements in the longitudinal direction (in 

the 3x axis direction), 40 elements in the annular direction and 10 elements in the radial 

direction. The longitudinal length of the simulated FNTs is 6nm, and the inner and outer radii 

are 4 nm and 8 nm, respectively. The FNTs are assumed to be free-standing, which means 

that the surfaces of the tubes are mechanically traction free, i.e. 0=jijnσ , where jn denote the 

components of the normal unit vector of the surfaces. For the surfaces with open-circuit 

electrical boundary conditions, the charge density is taken to be zero. It implies the normal 

component of the electric displacement is zero, i.e. 0=iinD , on the surfaces. For the surfaces 

with short-circuit electrical boundary conditions, the electrical potential is taken as zero in the 

simulation. The free boundary condition of 0/ =∂∂ nP  is used for the polarizations on the 

surfaces,
22
 which means that there is no surface effect on the polarization. We take this 

boundary condition because there is still a debate on whether the polarizations on surfaces are 

smaller or larger than those inside the ferroelectrics. The backward Euler scheme is adopted 

for the time integration in Equation (2). At the beginning of the evolution, a random 

fluctuation of polarization field is introduced to initiate the polarization evolution process.
16,21

 

At the end of the evolution, the simulated system reaches a steady state. In the present letter, 

only the results at the steady state and at room temperature are presented. 

 

Fig.1 (a) shows the three-dimensional polarization vectors in a ferroelectric nanotube 

with all surfaces are open-circuited. One can find that the polarizations form a vortex 

structure, in which the vortex axis coincides with the symmetry axis of the nanotube, i.e. the 

3x  axis. The contour legend shows different magnitudes of polarizations in different colors. 
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Fig.1 (b) gives the two-dimensional projection of the three-dimensional polarization vectors 

in the middle plane of the nanotube with 33 =x  nm. The zero point of the 3x  axis is located at 

the center of the lower surface. The 3x  axis is outward and perpendicular to the 21xx plane. It 

is found that the polarizations form into closed loops in the annular direction of the nanotube. 

The polarizations have a head-to-tail arrangement, which greatly reduces the depolarization 

energy. The polarization components normal to the outer and inner surfaces approach zero. 

Therefore, there is no polarization-induced charge on the two surfaces. The polarizations 

between the outer and inner surfaces have no radial components. So there is also no charge 

generated inside the tubes and the depolarization field in the radial direction is zero. These 

results are reasonable for an open-circuit electrical boundary condition. Under such a 

condition, surface charges can not be compensated by external free charges. If the 

polarization components in the radial direction are not zero, uncompensated charges will exist 

on the outer and inner surfaces. The uncompensated charges will generate a depolarization 

field. To reduce the depolarization energy, all the polarizations must be perpendicular to the 

radial direction of the tube.  

 

It is interesting that the polarizations change their magnitudes in both the radial and the 

annular directions. Fig.1 (c) gives the magnitude of polarization changes along the annular 

direction in the middle plane with different radii R shown in Fig.1 (b). The horizontal axis in 

Fig.1 (c) is the angular coordinate θ  shown in Fig.1 (b), which changes from 0 to π2 .  The 

fluctuation of the magnitudes of polarizations in Fig.1 (c) is similar to a sine function. 

Furthermore, the fluctuation on the outer surface with R=8 nm is different from that of the 

inner surface with R=4 nm. The fluctuations on the two surfaces are “out of phase”, in which 

one reaches a maximal value while the other takes a minimal value. However, the fluctuation 

becomes smaller at the middle of the tube wall when R=6 nm, indicated by the solid line with 

triangles in Fig.1 (c). A pure vortical distribution of polarization without components in the 



 7 

3x  direction is energically favorable for the electrostatic interaction, but not for the elastic 

interaction. To reduce the elastic energy, some polarizations have a component in the 3x  

direction. Fig. 1 (d) shows the changes of polarization component 3P  along the annular 

direction on the outer surface for different heights 3x . One can find that 3P  changes its sign 

with different values of θ . In the middle plane of the tube, the polarization component 3P  has 

maximum magnitude. The magnitudes of 3P  gradually decrease from the middle plane to the 

lower surface of the tube, as shown in Fig. 1 (d). 3P  approaches zero on the lower surface 

with 03 =x . The vanishing of the normal component 3P  on the lower surface is consistent 

with the open-circuit boundary condition of 0=iinD .            

    

  In order to investigate the influence of different electrical boundary conditions on the 

polarization distribution in FNTs, we study two kinds of short-circuit electrical boundary 

conditions. One is the outer and inner surfaces are short-circuited. Fig.2 (a) shows the three-

dimensional polarization vectors on the surfaces of the tube with such a boundary condition. 

We can find that most of the polarizations are perpendicular to the longitudinal direction. The 

polarizations do not form a vortex structure along the annular direction any more. Instead, 

some of the polarizations align along the radial direction of the tube. Fig.2 (b) shows the two-

dimensional projection of the three-dimensional polarization vectors in the middle plane of 

the tube. Under the short-circuit boundary condition, the polarization components normal to 

the inner and outer surfaces are nonzero, and the surface charges induced by the polarizations 

in the radial direction are compensated completely by external free charges. So the radial 

polarization components will not generate a depolarization field. On the other hand, there is 

still an internal depolarization field induced by inhomogeneous polarizations inside the tube. 

The charges induced by inhomogeneous polarizations inside the tube can not be compensated 

by external free charges due to the nonconductive nature of ferroelectrics. In Fig.2 (b), the 
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polarizations in the red region have the same orientation, while the polarizations in the blue 

region have another orientation. 90
o
 domain walls are formed in the ferroelectric nanotube. 

Even though the tube is freestanding, there are internal stresses induced by the spatially 

inhomogeneous polarizations through the electromechanical coupling. The formation of 90
o
 

domain walls is to reduce the total elastic energy in the tube. Although a homogeneous 

polarization distribution has the minimum depolarization energy, it makes larger elastic 

energy than the inhomogeneous one in the tube. Therefore the multi-domain structure of the 

polarizations in Fig. 2 (b) is the result of the competition between the elastic energy and the 

depolarization energy.   

 

Figure 3 shows the polarization distribution in a ferroelectric nanotube when the upper 

and lower surfaces are short-circuited. Under such a condition, all the polarizations are 

aligned along the longitudinal direction. We can find that the polarizations of the FNTs form a 

single-domain structure without any domain walls. The polarizations are homogeneous in 

both the longitudinal and the radial directions. This polarization distribution does not induce 

any elastic energy and depolarization energy in the tube. The charges induced by the 

polarizations on the upper and lower surfaces are compensated completely by external free 

charges under the short-circuited electrical boundary condition. The macroscopic averaged 

polarization is nonzero in the 3x  direction. Therefore, the whole tube exhibits a piezoelectric 

effect even without poling. This is different from the case in Fig.1, in which there is no 

piezoelectric effect due to the null macroscopic averaged polarization.                                                            

 

In summary, we predict that the polarization distributions of FNTs are highly dependent 

on the electrical boundary conditions. Because there is no charge compensation on the 

surfaces under an open-circuit boundary condition, all the polarization components normal to 

the surfaces vanish, which makes FNTs form a vortex structure with null macroscopic 
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polarization. When charge compensations take place at different surfaces, corresponding to 

different short-circuit boundary conditions, different polarization distributions are found. If 

full charge compensations take place on the inner and outer surfaces of FNTs, the 

polarizations are parallel to the upper and lower surfaces and some of them are aligned along 

the radial direction of the tubes. However, the polarizations form a single-domain structure 

with all polarizations in the longitudinal direction when full charge compensations take place 

on the upper and lower surfaces. The results in the present work suggest that the stable 

polarization distribution in FNTs can be manipulated by different electrical boundary 

conditions.   
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Figure captions 

 

 

Fig.1 Polarization distribution in a ferroelectric nanotube when all surfaces are open-circuited. 

(a) Three-dimensional polarization vectors in the ferroelectric nanotube; (b) Two-dimensional 

projection of the three-dimensional polarization vectors in the middle plane when 33 =x nm; 

(c) Magnitudes of polarizations change along the annular direction of the tube in the middle 

plane with different radii R; (d) Polarization components 3P  change along the annular 

direction on the outer surface of the tube with different heights 3x .   

 

Fig.2 Polarization distribution in a ferroelectric nanotube when the inner and outer surfaces 

are short-circuited. (a) Three-dimensional polarization vectors in the ferroelectric nanotube; 

(b) Two-dimensional projection of the three-dimensional polarization vectors in the middle 

plane of the tube when 33 =x nm. 

 

Fig.3 Polarization distribution in a ferroelectric nanotube when the upper and lower surfaces 

are short-circuited. The polarizations are homogeneous and parallel to the 3x  axis. Only half 

of the tube is shown here, the hidden part has the same polarization distribution.     
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Fig.1 Polarization distribution in a ferroelectric nanotube when all surfaces are open-circuited. 

(a) Three-dimensional polarization vectors in the ferroelectric nanotube; (b) Two-dimensional 

projection of the three-dimensional polarization vectors in the middle plane of the tube when 

33 =x nm; (c) Magnitudes of polarizations change along the annular direction of the tube in 

the middle plane with different radii R; (d) Polarization components 3P  change along the 

annular direction on the outer surface of the tube with different heights 3x .   
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Fig.2 Polarization distribution in a ferroelectric nanotube when the inner and outer surfaces 

are short-circuited. (a) Three-dimensional polarization vectors in the ferroelectric nanotube; 

(b) Two-dimensional projection of the three-dimensional polarization vectors in the middle 

plane of the tube when 33 =x nm. 
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Fig.3 Polarization distribution in a ferroelectric nanotube when the upper and lower surfaces 

are short-circuited. The polarizations are homogeneous and parallel to the 3x  axis. Only half 

of the tube is shown here, the hidden part has the same polarization distribution.     

 


