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Abstract. ILP systems induce first-order clausal theories performing
a search through very large hypotheses spaces containing redundant
hypotheses. The generation of redundant hypotheses may prevent the
systems from finding good models and increases the time to induce
them. In this paper we propose a classification of hypotheses redundancy
and show how expert knowledge can be provided to an ILP system
to avoid it. Experimental results show that the number of hypotheses
generated and execution time are reduced when expert knowledge is
used to avoid redundancy.
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1 Introduction

Inductive Logic Programming (ILP) [1] is a form of supervised learning that aims
at the induction of logic programs, or theories, from a given set of examples and
prior knowledge (background knowledge), also represented as logic programs. Like
other Machine Learning approaches, ILP systems have to traverse a potentially
infinite search space. At each search node an ILP system generates and then
evaluates an hypothesis (represented as a clause). The evaluation of an hypothesis
usually requires computing its coverage, that is, computing how many examples
it explains. ILP systems therefore may have long execution times.

Research in improving the efficiency of ILP systems has thus focused in redu-
cing their sequential execution time, either by reducing the number of generated
hypotheses [2,3]; by efficiently testing candidate hypotheses [4,5,6]; or through
parallelism [7,8]. Arguably, best results can be achieved through a reduction of
the search space. In this work, we start from the well-known observation that
the search space for ILP can be highly redundant. It is known that redundancy
cannot be completely eliminated on finite and complete systems [9]. Instead, we
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identify and classify several common forms of redundancy that are frequently
found in ILP applications, and suggest techniques to address them. To the best
of our knowledge this is the first time that someone presents a classification of
hypotheses redundancy found in ILP systems search spaces.

In order to explain why ILP systems generate redundant hypotheses, we first
observe that ILP systems may be seen as using refinement operators [10] to
generate hypotheses. According to Van der Laag [9], ideal refinement operators
should respect three properties: properness, i.e., a refinement operator should not
generate equivalent (redundant) clauses; local finiteness; and completeness. Van
der Laag showed that ideal operators do not exist for unrestricted θ-subsumption
ordered set of clauses, as used in most ILP systems. Hence, generic refinement
operators for ILP cannot be ideal. Since guaranteeing completeness and local
finiteness is fundamental, properness is usually sacrificed. Thus it is usual the
generation of redundant hypotheses by ILP systems.

The efficiency of an ILP system may therefore be significantly improved if
the number of redundant hypotheses is decreased. A first step to achieve this
goal is to identify and classify the types of redundancy actually found in ILP
systems search spaces. Based on this information one can envisage ways to avoid
the generation of redundant hypotheses. We thus classify several types of redun-
dancy. A second step is to deal with these forms of redundancy. We describe
several strategies through which experts can easily provide relevant knowledge
to help reduce redundancy. The exploitation of the human expertise is not novel
in ILP. Recently, Srinivasan et al. [11] obtained good results by using human
expertise to provide a partial ordering on the sets of background predicates.

The remainder of this paper is organized as follows. Section 2 presents a
classification of hypotheses redundancy and in Section 3 we describe how to
handle the identified types of redundancy. In Section 4 we present and discuss
some experimental results. We conclude in Section 5 pointing out future work.

2 Redundancy in Hypotheses

Our goal is to prune the search space by eliminating redundant hypotheses.
Clearly, if an ILP system generates a single hypothesis, the hypothesis can never
be redundant. Redundancy is therefore a property of a clause within a search
space.

To guarantee completeness, we should prune the search at an hypothesis Ci

if Ci is such that (i) Ci itself is redundant, and (ii) and Ci’s descendants will
be redundant, too. The first condition says that we want to prune repeated hy-
potheses. The second condition requires further explanation. Consider a clause
obtained in an example run of Aleph [12], a top-down ILP system. In this exam-
ple we consider the well-known carcinogenesis problem.We first reach a clause
saying that a molecule is active if it includes a Carbon 22:

1. active(A)← atm(A, B, c, 22, C)
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The derivation eventually generates a clause, where D and B are Carbon 22s
(they may refer to the same atom):

2. active(A)← atm(A, B, c, 22, C), atm(A, D, c, 22, C)

We may say that the second clause is redundant because if the first clause is
satisfiable, the second is too, and vice-versa. Should we prune here? Aleph does
not prune, and eventually derives a clause saying that the atoms B and D must
have a bond:

3. active(A)← atm(A, B, c, 22, C), atm(A, D, c, 22, C), bond(A, D, B, 7)

This clause is not redundant: pruning an hypothesis is therefore wrong, if we do
not consider descendants.

Next we describe the set of prunable hypotheses as R∗. Our goal in this work
can be phrased as trying to obtain the best possible approximation to R∗. The
reader may have noticed that whether a new hypothesis Ci is in R∗ depends
(a) on the hypotheses Cj , j < i that have been generated so far, and (b) on the
hypotheses Ck, k > i that are to be generated. The structure of R∗ thus depends
on the ordering we use when we build the search space. Here, we shall consider
the popular top-down approach where clauses are refined by introducing new
substitutions and literals.

Detecting whether a clause is redundant and detecting whether all refine-
ments of a clause are also redundant is hard. We would like an efficient ap-
proach, that could detect interesting cases with little computational overhead.
Our observation is that we can be confident that two clauses will have the same
refinements, if the clauses always generate the same bindings for their variables.
More precisely, given a clause C, the set of variables V = {V : V ∈ V ars(C)}1,
and the set of success substitutions θ from all variables in V to ground terms
that satisfy C, we say that two clauses C1 and C2 are interchangeable if there
is a mapping ω from the variables in V1 to the variables in V2 such that if
∀θ1∃θ2, θ1 = ωθ2.

If the two clauses generate the same set of substitutions for all their variables,
they have the same answers for the head variables, and must thus cover the
same number of examples. One is therefore redundant. Refining in top-down
approaches consists of introducing extra goals and/or constraints, say C ′. But it
is straightforward to show that if (C1∧C ′)σ is satisfiable so must be (C2∧C ′)ωσ,
hence (C2 ∧ C ′)σ. Therefore, all refinements to C2 would be redundant (if the
search for C1 is complete).

Next, we address how to recognise cases of redundancy that address the
conditions discussed above. We will use the following notation: C is a sequential
definite clause [9], i.e., a sequence of literals, in the form L0 ← L1, . . . , Ln (n ≥
1); Li (1 ≤ i ≤ n) is a literal in the body of the clause and L0 is the head
literal of the clause; each literal Li can be represented by pi(A1, . . . , Aia) where
pi is the predicate symbol with arity ia and A1, . . . , Aia are the arguments; two
1 V ars(C) is the set of variables in a clause C.
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literals are compatible if they have the same predicate symbol and sign; two
clauses are compatible if they have the same head literal; and S is the multiset
of hypotheses of the search space generated by an ILP system. The symbol �B

denotes the logical implication and ≡B the logical equivalence considering the
background knowledge provided (B). Since there is no doubt of the context of
both logical relations we simplify the representation using only � and ≡. For
further definitions on logic we refer the reader to [13]. For an introduction to
ILP we refer the reader to [14].

2.1 Self-Redundant Clauses

Ideally we would like to verify redundancy syntactically, that is, just through
scanning the literals or clauses. On the other hand, we sometimes require se-
mantic information, that is, prior knowledge on the model, to determine equi-
valence between clauses or literals. We also distinguish the interesting cases of
self-redundant clauses i.e., where by just looking at a clause we know that the
clause must repeat a parent in the search tree, naming the remainder cases
context-derived.

The problem of verifying whether a clause h is self-redundant corresponds
to the problem of verifying whether the clause is condensed, that is, whether it
does not subsume any proper subset of itself. Gottlob et al. [15] showed that
the problem of verifying whether a clause is condensed is co-NP-complete. They
also showed that it is undecidable to verify that a clause does not contain any
proper subset that is implied by the clause. We thus can only hope to address
specific instances of the problem.

The ILP process refines a clause by adding an extra literal or by binding
variables in a clause. It is therefore natural to focus on redundant literals:

Definition 1 (Self-Redundant Literal). The literal Li is a self-redundant
literal in a clause C if (C \ Li) � C

Clauses which have a self-redundant literal are clearly self redundant : they
can be reduced back to a simpler parent. Consider for example the clause a(X)←
b(X), b(X). All solutions and refinements to a(X) ← b(X), b(X) are solutions
and refinements to a(X) ← b(X). A case where we can prune clauses through
syntactic analysis is therefore the basic case where a literal appears duplicate in
a clause.

Semantic Redundancy. Other examples of self-redundant clauses can be
found using background knowledge. We may know of some degenerate cases when
a literal is always or never satisfiable. We may also have extensional information
on a predicate stating whether it is reflexive, associative, or commutative. Last,
we generalize this concept through the notion of entailment between sub-goals.

We consider reflexivity as an example of two degenerate cases, a valid literal
or an unsatisfiable literal:

Definition 2 (Tautology). A literal Li is tautologically redundant in C if Li

is true for all possible instantiations.
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Consider for instance the ”greater or equal” relation denoted by≥. The literal
X ≥ X is a tautologically redundant literal in the clause a(X)← X ≥ X.

Definition 3 (Contradiction). A literal Li is a contradiction in C if C \ Li

is satisfiable and C is inconsistent.

Consider for instance the ”greater than” relation denoted by > and the ”less
than” relation denoted by <. The literal X > Y is a contradiction redundant
literal in the clause a(X)← X < Y, X > Y .

Definition 4 (Commutativity). The literal Li = pi(A1, . . . , Aia) is com-
mutative redundant in a clause C if there is a compatible literal Lj =
pi(B1, . . . , Bja) such that:

1. Lj 
= Li

2. ∃ permutation((B1, . . . , Bja)) = (A1, . . . , Aia)
3. Lj ≡ Li

Consider the clause C = r(X, Z) ← mult(X, 2, Z), mult(2, X, Z) where
mult(X, Y, Z) is true if Z = X ∗ Y . Since multiplication is commutative, it is
known that mult(X, Y, Z) ≡ mult(Y, X, Z), thus mult(2, X, Z) is a commutative
redundant literal.

Definition 5 (Transitivity). The literal Li is transitive redundant in a clause
C if there are two compatible literals Lj and Lk in C such that Li 
= Lj 
= Lk

and Lj ∧ Lk � Li

Consider again the ”greater or equal” relation: the literal X ≥ Z is transitive
redundant in the clause p(X, Y, Z)← X ≥ Y, Y ≥ Z, X ≥ Z.

The previous declarations are easy to compute and do capture some of the
most common cases of redundancy. The price is that we are restricted to some
very specific cases. We next move to more general definitions:

Definition 6 (Direct Equivalence). A literal Li is direct equivalent in a
clause C if there is a literal Lj in C such that Li 
= Lj and Li ≡ Lj.

Note that in the definition of direct equivalent redundant literal we drop
the compatibility constraint on the literals. For instance, the literal X < 1 is
equivalent redundant in the clause p(X)← 1 > X, X < 1 since 1 > X ≡ X < 1.
This is another type of semantic redundancy.

We can move one step further and consider entailment.

Definition 7 (Proper Direct Entailment). A literal Li is proper direct en-
tailed in a clause C if there is a compatible literal Lj in C such that Li 
= Lj

and Lj � Li.

For instance, the literal X < 2 is a proper direct entailed redundant in the
clause p(X)← X < 1, X < 2.
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Definition 8 (Direct Entailment). A literal Li is direct entailed redundant
in C if there is a sub-sequence of literals SC in C \ Li such that SC � Li.

For instance, consider the clause p(X) ← X ≤ 1, X ≥ 1, X = 1. The literal
X = 1 is direct entailed redundant because there is a sequence of literals (X ≤
1, X ≥ 1) that imply Li. In general, verifying whether a set of sub-goals entails
another one requires solving a constraint system over some specific domain (the
integers in the example).

Our definitions do not guarantee that all the refinements of a redundant
clause with a redundant literal Li are themselves redundant. In the case of
equivalence, a sufficient condition to guarantee that the clause belongs to R∗ is
that all variables in the right hand of the equivalence also appear in the left-hand
side Li, and vice-versa: if two literals are equivalent, all their instances will also
be equivalent. In the case of entailment, it is sufficient that all variables in the
left-hand side appear in Li. Otherwise we could refine the entailing literal to a
more specific set of literals which would not entail Li.

2.2 Context-Derived Redundancy

When considering contextual redundancy we are manipulating the set of clauses
(hypotheses) found so far S, instead of sets of literals as in self redundancy:

Definition 9 (Context-Derived Redundant Clause). The clause C is con-
textual redundant in S ∪ {C} if S � C.

The major types of contextual redundancy are obtained by generalizing over
the cases of self redundancy:

Definition 10 (Duplicate). A clause C is duplicate redundant in S ∪ {C} if
C ∈ S.

For instance, consider that S contains the clause p(X)← a(X, Y ). Then the
clause C = p(X)← a(X, Y ) is duplicate redundant in S ∪ {C}.

Definition 11 (Commutativity). The clause C is commutative redundant in
S ∪ {C} if there is a compatible clause D ∈ S with the same literals of C but
with a different ordering such that C ≡ D.

For instance, C = p(X) ← a(c, X), a(d, X) is a commutative redundant
clause in S if S contains p(X)← a(d, X), a(c, X).

Definition 12 (Transitivity). The clause C is transitive redundant in S∪{C}
if there are two compatible clauses D and E in S such that

1. the body of D and E differ only in one literal (LD and LE respectively)
2. the body of C contains one more literal than D (LC)
3. LC ∧ LD � LE
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For instance, consider the clause p(X, Y, Z)← X > Y, Y > Z. Such clause is
transitive redundant in a set S containing p(X, Y, Z)← X > Y and p(X, Y, Z)←
X > Z.

Definition 13 (Direct Equivalence). The clause C is directly equivalent re-
dundant in S ∪ {C} if there is a compatible clause D ∈ S such that

1. the body of C and D differ only in one literal (LC and LD respectively)
2. LC is a direct equivalent literal in D

As an example consider S = {D = p(X) ← X > 1}. The clause p(X) ←
1 < X is proper equivalent redundant in S since the clauses differ in one literal
(X > 1 and 1 < X) and 1 < X is a direct equivalent redundant literal in D.

Definition 14 (Direct Entailment). The clause C is directly entailed redun-
dant in S ∪{C} if there is a literal LC in C and a compatible clause D ∈ S such
that

1. LC is a direct entailed redundant literal in D (for some SC)
2. D \ SC = C \ LC .

Consider S = {D = p(X)← X ≤ 1, X ≥ 1}. The clause C = p(X)← X = 1
contains a literal X = 1 that is a directly entailed redundant literal in D. Thus
C is a directly entailed redundant clause.

The types of redundancy just described, both self and contextual redundancy,
form an hierarchy as illustrated in Figure 1, in the Appendix.

3 Handling Redundancy

In this section we describe how and where the redundancy types identified in
the previous section can be eliminated in ILP systems that follow a top-down
search approach.

In general, the generation of hypotheses in top-down ILP systems can be seen
as being composed by the following two steps. First, an hypothesis is selected
to be specialized (refined). Then, some literal generation procedure selects, or
generates a literal, to be added to the end of the clause’s body. We advocate
that almost all types of redundancy identified could be efficiently eliminated if an
expert provides meta-knowledge to ILP systems about predicates’ properties and
relations among the predicates in the background knowledge. Such information
can be used by the literal generation procedure or by the refinement procedure
to avoid the generation of self and contextual redundant hypotheses.

3.1 Possible Approaches

We envisage several approaches to incorporate the information provided by the
expert in ILP systems to avoid the generation of redundant hypotheses. In a
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nutshell, either we can take advantage of user-defined constraint mechanisms, or
user-defined pruning, or we can improve the refinement operator.

A first approach could be the extension of user-defined constraint mecha-
nisms available in some systems (e.g., Progol [16], Aleph [12], Indlog [17]). The
constraints are added by a user in the form of clauses that define when an hypo-
thesis should not be considered. Integrity constraints are currently used to pre-
vent the generation of self redundant clauses containing contradiction redundant
literals. Note that an “ . . . integrity constraint does not state that a refinement
of a clause that violates one or more constraints will also be unacceptable.” [12].
Thus the constraint mechanism is not suitable for our needs since we want to
discard refinements of redundant clauses.

Another approach to eliminate redundant literals could be through user-
defined pruning declarations that some ILP systems accept (e.g., Progol [16],
Aleph [12], IndLog [17]). Pruning is used to exclude clauses and their refine-
ments from the search. It is very useful to state which kinds of clauses should
not be considered in the search. Some ILP systems allow a user to provide such
rules defining when an hypothesis should be discarded (pruned). The use of pru-
ning greatly improves the efficiency of ILP systems since it leads to a reduction
of the size of the search space. User-defined pruning declarations to encode meta-
knowledge about redundancy has the advantage that they can easily be incor-
porated into ILP systems that support user-defined pruning. However, in our
opinion, one should try to eliminate the redundancy as a built-in procedure of
the refinement operator instead of using mechanisms like user-defined pruning
since the first option should be more efficient.

A third approach is the modification of the refinement operator and the
literal generation procedure to allow the use of information provided by the
expert. This is the approach followed and is next described.

3.2 Redundancy Declarations

To eliminate the generation of redundant hypotheses we modified the refinement
operator and literal generation procedure to exploit redundancy meta-knowledge
provided by an expert. We modified the April [18] ILP system to accept the
redundancy declarations that we next describe. The declarations are provided
to the system as background knowledge in the form of Prolog rules. We chose the
April system due to our knowledge regarding its implementation but we should
note that the work described is also applicable to other ILP systems.

We start by describing the declarations that a user may pass to the literal
generation procedure. Duplicate, commutative, and direct equivalent redundant
literals can be eliminated during literal generation.

The user may inform the April system of literals’ properties through decla-
rations such as tautology, commutative, and equiv. For instance, the decla-
ration :- tautology(’≤’(X,X)) informs the system that literals of the form
’≤’(X,X) are tautological redundant literals. With this information the ILP
system avoids the generation of such redundant literals.
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The commutative declaration indicates that a given predicate is commu-
tative. This information helps the ILP system to avoid the generation of hy-
potheses with commutative redundant literals. As an example consider that
we inform the ILP system that the predicate adj(X,Y) is commutative (e.g.,
:-commutative(adj(X,Y),adj(Y,X))). That information can be used to pre-
vent the generation of commutative equivalent literals such as adj(X, 2) and
adj(2, X).

The equiv declaration allows an expert to indicate that two predicates, al-
though possibly different, generate equivalent literals. For instance, the decla-
ration :-equiv(’≤’(X,Y),’≥’(Y,X)) informs that the literals like ’≤’(X,1)
and ’≥’(1,X) are equivalent.

An ILP system using equivalence declarations needs only to consider one
literal of each equivalence class. There is redundancy in having commutative
and equiv declarations, since we can define commutativity using only the equiv
declaration. The main reason for this is to keep compatibility with other sys-
tems (e.g., Aleph). We point out that the described declarations allow the ILP
system to avoid the generation of several types of self redundant hypotheses and
contextual redundant hypotheses (direct equivalent redundant clauses).

The remaining types of redundancy are handled in the refinement operator.
The generation of commutative redundant clauses or clauses containing duplicate
literals is automatically avoided by April’s refinement operator without the need
of extra information provided by the user.

The declaration contradiction can be used to avoid the generation of con-
tradiction redundant hypotheses. The declaration has the form of contradi-
ction([L1, . . . , Lk]), where L1, . . . , Lk is the conjunction of literals that when
appearing together in a clause makes it inconsistent. For instance, contradi −
ction([X < Y, X > Y ]) states that both literals can not occur in an hypothesis
because they would turn it inconsistent.

The generation of transitive redundant literals and clauses can be avoided by
providing information indicating which predicates are transitive. For instance,
the rule :- transitive(lt(X,Y),lt(Y,Z),lt(X,Z)) informs that the lt (less
than) predicate is transitive. With such information, a redundant hypothesis
containing the literals lt(X,Y),lt(Y,Z) will not be generated by the refinement
operator.

Proper direct entailment redundant literals can be avoided with the knowl-
edge that a literal implies another. The knowledge can be provided using dec-
larations such as semantic rule(L1,L2):-RuleBody, meaning that L1 implies
L2 if the RuleBody is evaluated as true. For instance, the rule semantic rule(
lt(A,B),lt(A,C)):-C<B allows the refinement operator to avoid the generation
of hypotheses containing a literal like lt(A, 2) followed by a literal like lt(A,1)
(e.g.,p(X)← lt(A,2),lt(A,1)).

Direct entailed redundant literals or clauses can be prevented from being
generated if we state that there is a set of literals such that each literal in the
set implies the redundant literal. Such information can be provided with the
declaration d entail([L1, . . . , Lk],L). With such information the refinement
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Table 1. Redundancy Declarations

Redundancy Type Handled Declaration Example

Self / Tautological
literal

generation
:-tautology(’≥’(X,X)). p(X)←X≥X

Self / Contradiction refinement
:-contradiction(
[’>’(X,Y),’<’(X,Y)]).

p(X)←X<2,X>2

Self / Commutative
literal

generation
:-commutative(
mult(X,Y,R),mult(Y,X,R))

p(X)← mult(X,3,R),
mult(3,X,R)

Self & Contextual
Transitivity

refinement
:-transitive(’>’(X,Y),
’>’(Y,Z), ’>’(X,Z))

p(X)←X>Y,Y>Z

Self / Proper Direct
Entailment

refinement
semantic rule(’<’(A,B),
’<’(A,C)):- C<B

p(X)← X<0,X<2

Self & Contextual
Direct Equivalence

literal
generation

:-equiv(’<’(X,Y),
’≥’(Y,X)) p(X,Y)←X<Y,Y≥X

Self & Contextual
Direct Entailment

refinement
:-d entail([’≤’(X,Y),
’≥’(X,Y))],’=’(X,Y)

p(X,Y)←X≤Y,X≥Y,
X=Y

operator will not generate clauses containing L together with any of the Li

(1 ≤ i ≤ k) and clauses containing all Li. For instance, the clauses p(X)←
X≤1,X=1 or p(X)← X≤1,X≥1 would not be generated if the expert provides a
declaration like d entail([X≤Y,X≥Y],X=Y).

The unforeseen types of redundancy can be handled by the declaration re-
dundant(Literal,HypothesisBody):-Body, where Literal is the literal to be
added to the HypothesisBody and Body is a conjunction of literals that specify
the conditions that make an hypothesis redundant. All types of redundancy
could be handled by using this generic declaration. There are two main reasons
that lead us to provide a set of declarations instead of a single declaration. The
first reason is efficiency - ILP system implementors can devise more efficient
ways of handling the redundancy described by each declaration than through a
generic declaration of redundancy like redundant. The second reason is legibility
- declarations with names that indicate the type of redundancy simplify the
reading and the understanding of the background knowledge.

Table 1 summarizes the types of redundancy supported in our implementa-
tion, where redundancy is handled, examples of redundancy declarations and
redundant hypotheses.

A final note on the implementation. Most of the declarations described (e.g.,
transitive, contradiction, commutative, equiv, and d entail) are imple-
mented by performing a matching between the literals in a declaration and the
ones in a clause. The declaration semantic rule is the only exception to this
schema, since it involves the evaluation of the body of the semantic rule. The
test if a declaration is applicable to a clause involves comparing (matching) the
literals in the clause with the ones in the declaration. The cost of such a test is
linear on its size (number of literals), thus having a low computational cost.
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Table 2. Datasets characteristics and main experiment settings

Characterization April’s SettingsDataset | E+ | | E− | | B |/wrd i noise
krki I 342 658 1/1 1 10
krki II 3240 6760 1/1 1 10

mutagenesis 114 57 21/7 2 5
multiplication 37 24 3/2 2 0

range 19 14 1/1 1 0
proteins 848 764 24/8 2 90

ackermann 51 119 4/2 2 0

4 Experiments and Results

The utility of the redundancy declarations presented in the previous section is
empirically evaluated by determining the impact of their use in the execution
time and number of hypotheses generated. Six datasets were used in the expe-
riments. We selected datasets for which our knowledge, regarding the predicates
in the background knowledge, enabled us to identify redundancy. The datasets
were gathered from the Machine Learning repositories of Oxford2 and York3,
and from one of the authors’ home page4.

Table 2 characterizes the datasets in terms of number of positive and negative
examples as well as background knowledge size (number of predicates) and num-
ber of predicates with redundancy declarations (wrd). Furthermore, it shows the
April settings used with each dataset. The i -depth corresponds to the maximum
depth of a literal with respect to the head literal of the hypothesis [19]. Finally,
the parameter noise defines the maximum number of negative examples that an
hypothesis may cover in order to be accepted. In all datasets the search was con-
strained to find hypotheses with a body containing a maximum of seven literals.
The only exception was the mutagenesis dataset with a maximum number of
literals set to 2. No limit was imposed on the number of hypotheses generated,
and thus an exhaustive search within language restrictions was performed. In the
appendix, Table 4, we show examples of redundancy declarations used in each
dataset. The experiments were made on an AMD Athlon XP 1400+ processor
PC with 512MB of memory, running the Linux Fedora (kernel 2.4.25) operating
system. The ILP system used was the April [18] system version 0.9 together with
the YAP Prolog engine version 4.4.

Table 3 summarizes the performance of the April system using redundancy
declarations and not using them. It shows the percentage of predicates with
redundancy declarations (pwrd), the total number of hypotheses generated,
execution time, and the impact in the number of generated hypotheses and
execution time (given as a ratio between using redundancy declarations and not

2 http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/
3 http://www.cs.york.ac.uk/mlg/index.html
4 http://www.fe.up.pt/∼rcamacho/datasets/datasets.html
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Table 3. Impact of using redundancy declarations (red-decl).pwrd is the percentage
of predicates in the background knowledge with redundancy declarations.

| Hypotheses | Time (sec.)Dataset pwrd
normal red-decl (%) normal red-decl (%)

krki I 100 2,671 411 15 4.8 1.39 29
krki II 100 4,999 1,341 27 67.72 28.65 42

mutagenesis 30 3,823 3700 97 31,133 30,975 99
multiplication 66 2,163 1,032 47 2.03 0.96 47

range 100 5,257 303 6 6.3 0.15 2
proteins 33 1,470,742 1,303,351 88 499,638 457,582 91

ackermann 50 38,197 31,656 82 70.69 60,77 85

using them). For the purposes of this study we do not present accuracies of the
models generated because they do not differ in both runs for each dataset. How-
ever, it is important to remember that the accuracy of the models is not affected
negatively since the redundancy information provided is used to eliminate R∗
redundant hypotheses. Note that the performance results for the mutagenesis
dataset are very preliminary. In this dataset, due to time limitations, we had to
constrain the search to find clauses using only up to two literals in the body. Ne-
vertheless, the results show that even for such small search space we can obtain
a slight improvement. For the remaining datasets considered, one can observe
that redundancy declarations reduced the execution time and the number of hy-
potheses generated. The reductions were more substantial in the datasets with
greater pwrd.

5 Conclusions

This work contributes to the effort of improving the efficiency of ILP systems. We
studied the major forms of redundancy found in the search space of ILP applica-
tions and described how to avoid redundancy. In our approach, a domain expert
provides meta-knowledge about the redundancy types by describing high-level
properties of the relations in the background knowledge. Experimental results
show that performance improvements can be obtained by using redundancy de-
clarations.

The major thrust of our work is to make ILP systems able to learn from
large datasets. Most ILP systems are configured to generate a limited number
of hypotheses. Therefore, avoiding redundant hypotheses may also lead to the
generation of better hypotheses that otherwise would be lost due to the search
limit. We hope that this may result in an improvement of the quality of the
induced models. Further experiments are required to better assess this claim,
and to understand what redundancy declarations and how often each contributes
to the reduction on the search space. It would be also interesting to see which
types of redundancy can be detected automatically, perhaps in a pre-processing
stage, in order to automatically generate the redundancy declarations.
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- self
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Fig. 1. Redundancy hierarchy
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Table 4. Examples of redundancy declarations used on the experiments

Datasets Declarations

Krki I & II
:-commutative(adj/2).
:-tautology(adj(X,X)).

multiplication
:- equiv(mult(A,B,C),mult(B,A,C)).
:- equiv(plus(A,B,C),plus(B,A,C)).

range

semantic rule(lt(A,B),lt(A,C)):-
number(B),number(C),
C<B.

semantic rule(lt(A,B),lt(C,B)):-
number(A),number(C),
C<A.

proteins

:-transitive(lth).
:-transitive(ltv).
semantic rule(lth(A,B),ltv(B,A)).
semantic rule(ltv(A,B),lth(B,A)).
:-d entail([very hydrophobic(A)],aromatic or very hydrophobic(A)).
:-d entail([aromatic(A)],aromatic or very hydrophobic(A)).
:-d entail([small(A)],small or polar(A)).
:-d entail([polar(A)],small or polar(A)).
:-d entail([aromatic or very hydrophobic(A),not very hydrophobic(A)],aromatic(A)).
:-d entail([small or polar(A),large(A)],polar(A)).

ackermann :-transitive(incr(A,B),decr(B,A),’=’(A,B)).

mutagenesis

:-tautology(gteq(X,X)).
:-tautology(lteq(X,X)).
semantic rule(gteq(A,B),gteq(A,C)):-

number(B),number(C),
B>C.

semantic rule(gteq(A,B),gteq(C,B)):-
number(A),number(C),
A>C.

:-transitive(lteq).
:-transitive(gteq).
:-commutative(connected/2).
:-d entail([benzene(X,Y)],ring size 6(X,Y)).
:-d entail([carbon 5 aromatic ring(X,Y)],ring size 5(X,Y)).
:-d entail([carbon 6 ring(X,Y)],ring size 6(X,Y)).
:-d entail([hetero aromatic 6 ring(X,Y)],ring size 6(X,Y)).
:-d entail([hetero aromatic 5 ring(X,Y)],ring size 5(X,Y)).
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