
Operating System Scenarios as Use Case Maps*

Edward A. Billard
Department of Math and Computer Science

California State University, Hayward
Hayward, CA 94542

billard @ csu hayward.ed u

ABSTRACT
This paper summarizes the analysis, design, implementa-
tion, and performance analysis of an object-oriented oper-
ating system. The analysis applies Use Case Maps (UCMs)
to provide a high-level abstraction of the behavior scenar-
ios for state transition, character output, network access,
and disk access. The UCM for state transitions is converted
into a queueing network for simulation study of I /O-bound
versus CPU-bound systems. An overview of the later stages
emphasizes UML for architecture and detailed collaboration,
as well as Java examples. The performance of the disk sub-
system is analyzed by instrumenting the Java code, and the
results show that design choices can affect the throughput.

1. INTRODUCTION
Operating systems have traditionally presented a challenge
in terms of software design [22]. These systems have a high
degree of concurrency and often exhibit very subtle behav-
iors which emerge from the underlying implementation. A
Use Case Maps (UCM) [1], [2], [7], [9] is a good candidate
for abstracting this type of behavior, especially at the early
analysis stage of development. A UCM provides a visual
display of causal paths that weave through subsystems and
transcend subsystems. UCMs have also been used in the
context of agents [8], [10] and patterns [15].

The anticipated performance of a UCM can be analyzed at
an early stage by translation to a queueing network [4] or,
more specifically, a Layered Queueing Network (LQN) [12],
[17], [18], [21]. Alternatively, a Unified Modeling Language
(UML) [6], [14] presentation can be converted to a LQN [16].

*Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

WOSP 04, January 14-16, 2004, Redwood City, CA.
Copyright 2004 ACM 1-58113-673-0/04/0001 ...$5.00.

This allows the developer to investigate issues and problems
with performance at an early stage of development [3], [13],
an important consideration for performance-sensitive soft-
ware such as an operating system. Other performance stud-
ies examine concurrency and real-time issues [19], [20] state
machines [25], and predictive modeling [23], [24].

This study summarizes the life cycle of the development of
an operating system. The system is object-oriented but is
similar to the function-oriented XINU system [ll], which is,
itself, similar to UNIX. Previously, this author implemented
a graphical user interface to a XINU-like operating system
[5], intended to display the high-degree of concurrency and
state transitions present in an operating system.

The goal of the current study is to apply modern tech-
niques such as UCMs, UML, object-oriented programming
(Java) to the classic domain of operating system software.
Also, simulation and instrumentation provide for perfor-
mance analysis of such systems.

The paper is organized as follows. Section 2 provides a sub-
set of the UCM notation sufficient to present classic oper-
ating system scenarios in Section 3, as well as details of the
network subsystem and the disk subsystem. In Section 4,
the designs of these two subsystems are presented in UML,
followed by Java implementations in Section 5. Section 6
shows the results of a queueing simulation for the state tran-
sitions in I /O-bound versus CPU-bound operating systems.
The performance of the disk subsystem is analyzed by apply-
ing instrumentation to the Java implementation. Most disk
subsystems use a form of an elevator algorithm to minimize
disk arm movement, and the results show that the choice of
algorithm can affect the throughput of the subsystem.

2. A SHORT UCM TUTORIAL
Figure 1 shows a subset of UCM notation sufficient to under-
stand the maps presented in this paper. The full notation [7]
is still relatively straight-forward but is not needed for this
exposition. (Note that all of the UCMs in this study were
created using UCM Navigator [1].) A start point represents
the beginning of a causal path, and one should imagine this
point as a source of "tokens" (with some distribution, say,
uniform) that follow along the path. The path may lead
through one or more components which have responsibili-
ties. The path then terminates, and the direction of the
tokens can usually be inferred from the start to end point
but an arrow can be used as a guide.

266

C o m p o n e n t

- -" " W a i t i n g P l a c e C ° n t i n u a t i ° n

P o o l

I I
F i g u r e 1: A s u b s e t o f U s e C a s e M a p n o t a t i o n i l lus-
t r a t i n g a casua l p a t h flow t h r o u g h forks a n d jo ins ,
a l ong w i t h poss ib le w a i t i n g p laces . A p o o l is a usefu l
n o t a t i o n for an o p e r a t i n g s y s t e m .

In essence, a path represents a high-level abstraction of the
emergent behavior of the component haxdwaxe/softwaxe at
runtime that results from the underlying implementations
and protocols. The path is intended to reflect this emergent
behavior at an early stage of analysis of the problem, even
before the underlying implementations axe attempted.

The paths become interesting because of AND-forks/joins
and OR-forks/joins. An OR-fork represents a probabilistic
alternative in which a token may travel one way or another
(the figure only shows a two-way split but it can be n-way).
Two or more paths may come together in an OR-join. The
example shows two paths joining which originated from an
OR-fork; this need not be the case. Tokens on different
segments can flow into an OR-join, at different times, and
then each will travel along the same path.

A token arriving at an AND-fork generates multiple, con-
current tokens, one for each output path. An AND-join
requires that a token wait until a token arrives at each of
the other joining paths and, again, it is not necessary for the
paths, which lead to an AND-join, to have been created by
an AND-fork. A path may reach a waiting place, which halts
a token until another token arrives along a trigger path. At
this time, the original token moves along the continuation
path.

Finally, a pool is a data structure that stores arbitrary com-
ponents and, in the case of operating systems, can be used
to represent a queue, an important and prevalent feature of
any operating system.

This is sufficient notation for the scenarios demonstrated in
the next section. The full notation includes, among other
things, subcomponents and stubs [7].

3. OS SCENARIOS AS UCMS
This section presents a sequence of UCMs to capture the
behavior scenarios for different aspects of the operating sys-
tem. The goal is to show how UCMs abstract, at a high-
level, the difficult concepts.

First, all successful operating systems rely on a state-based
model [22], that is, a process in the system is in one state at a
time, and crucial events make the process transit to another

Disk

F i g u r e 2: A s t a t e t r a n s i t i o n d i a g r a m as a U C M ,
w i t h p r o c e s s e s l eav ing t h e C P U for r e s c h e d u l i n g o r
for t h e disk, I / O , o r I P C s u b s y s t e m s .

cleaxly-defined state. Figure 2 shows the state transitions
for the system, where each transition moves along a causal
path to a component, or subsystem, which is responsible for
the behavior of that particular state.

The scheduler moves a process from the scheduling, or ready,
state onto the CPU. If the process requires more process-
ing, it returns to the scheduler; otherwise, the path is to
one of three other subsystems: Interprocess Communication
(IPC), Inpu t /Outpu t (I/O), or disk. A subsystem handles
the arriving process, and then returns the process to the
scheduling state again. New processes also enter this state,
and old ones leave the CPU.

One of the important problems in operating systems is mu-
tual exclusion to a critical section of code, where only one
concurrent process executes the code at any particular time.
The problem (not the solution) is illustrated in Fig. 3. Both
processes have an OR-fork which results in three possible
scenarios.

First, each process may take the fork which leads to a wait-
ing place. Note that the trigger to this waiting place is a
path that results from an AND-fork from the other process
after it successfully completes access to the critical section.
That means that both processes will deadlock, waiting for
the other process to cause a trigger event.

Second, each process may take the non-waiting path and
both might enter the critical section, hence, violating mutual
exclusion.

The third scenario results when one process takes the wait-
ing path and the other process enters the critical section.
After the access is complete, the process triggers the other
process to enter the section. This is the desired scenario but

267

F i g u r e 3: T h r e e scenar ios re su l t f r o m th i s c r i t i c a l
s e c t i o n U C M : m u t u a l exc lus ion , v i o l a t i o n o f m u t u a l
exc lus ion , or d e a d l o c k .

n6nfln

write

F i g u r e 4: R e a d e r s h a v e s h a r e d access to a file b u t
m u s t c o m p e t e a g a i n s t a sole w r i t e r . O n l y t h e f irst
r e a d e r does t h e a c t u a l c o n t e n t i o n and , a f t e r w a r d s ,
u n s u s p e n d s t h e o t h e r r e a d e r s .

does not show "how" to implement the code; this is not the
main point of the analysis stage, and the UCM provides a
good way of abstracting the problem.

Another important classical problem in operating systems is
the Readers-Writer problem, see Fig. 4. Whereas the critical
section problem requires mutual exclusive access, hence low
concurrency, the access to a sharable resource, such as a file,
allows for more concurrency. Readers of a file are allowed
this type of shared access but must compete for this access
against a sole writer to the file. The UCM shows a first
reader competing for the file against a writer. The partic-
ular scenario shown has the reader block at a waiting place
while the writer actually writes to the file. Other "piggy-
back" readers enter the scenario but are blocked at a dif-
ferent waiting place: only the first reader needs to compete
for the resource. After the writer is finished, it unblocks the
first reader, who then unblocks the other piggy-back readers.
All readers can then access the resource.

The previous UCMs analyze the system from an outside
perspective, but now the inner behaviors of the system are
investigated, in particular, the three main subsystems: I /O,
IPC, and disk.

Figure 5 shows the classic bounded-buffer solution to the
output subsystem. The scenario shows the behavior of print-
ing a string of characters. The OutProducer component
represents the "upper-half" of the device driver and it must

F i g u r e 5: O u t p u t s u b s y s t e m scenar io . T h e p r o d u c e r
blocks w h e n t h e buf fe r is full; t h e c o n s u m e r b locks
w h e n t h e buf fe r is e m p t y .

first synchronize to be sure that it does not overwrite the
buffer of output characters. The OR-fork in the UCM may
block at a waiting place, or avoid this place and move on to
the buffer manager.

The buffer manager puts a new character into the buffer
pool, and then the path goes to another synchronizing mech-
anism. This mechanism is a trigger to a waiting place where
the "lower-half" OutConsumer is blocked. (Device drivers
typically have these upper- and lower-half components be-
cause of the differential in speeds: the upper-half runs, as
the application writes strings, at the speed of the CPU, while
the lower-half runs at the speed of the output/console con-
troller.)

The scenario shows that it is important to block the Out-
Consumer because the buffer is initially empty. It is only
when the OutProducer has put some data into the buffer
that the OutConsumer can run, dequeue data from the buffer,
and then unblock the OutProducer waiting because of a full
buffer. It is the responsibility of the lower-half to generate
an interrupt so that the device controller initiates the actual
display of data.

A typical implementation of a lower-half usually involves a
process with an infinite loop. The UCM here does not show
that and, instead, relies on the token source nature of the
start point to process more data. Again, this demonstrates
that the analysis does not always directly match, nor should
it, a design or implementation of the scenario. The input
system has the same structure as the ouput scenario, with
the exception that the roles are reversed with respect to the
buffer.

Interprocess communication allows processes to coordinate
their activities and is one of the most important features of
an operating system. A semaphore may be used to control
access to shared data or a critical section of code. Mes-
sage passing is an alternative form of IPC. Messages may
pass along a port within a computer system or, as shown in
Fig. 6, across a network to a port on another system. The

268

Receiver receive
MessageQueue

Sender ~ NetPoo2

F i g u r e 6: A s e n d e r t r a n s m i t s a m e s s a g e a c r o s s t h e
n e t w o r k , w i t h a l i s t e n i n g p r o c e s s a t t h e o t h e r e n d
o f t h e c o n n e c t i o n . W h e n t h e m e s s a g e a r r i v e s , i t is
p l a c e d i n t o t h e q u e u e a n d a b l o c k e d r e c e i v e r c a n
r e t r i e v e t h e m e s s a g e .

sender interacts wi th a por t of the current system, the re-
sult is an AND-fork which sends the message on the network,
and continues the behavior of the current process. On the
receiver side, the act of request ing a message causes the pa th
to go into a wait ing place. This scenario results when the
receiver requests a message but no messages are available in
the message queue, or inbox.

The port on the receiver side also has another concurrent
pa th which blocks on a wai t ing place, l istening for messages
coming in from the network. W h e n a message arrives from
the sender, this pa th unblocks, continues along the pa th to
put the new message in the queue, and then tr iggers the
blocked receiver to dequeue the new message, hence return-
ing it to the receiver.

The last major subsystem is the disk, Figs. 7 and 8. The
scenario to read a block of da t a from the disk is shown in
Fig. 7, where it is assumed tha t the read is "synchronous",
tha t is, the read must suspend in a wait ing place unti l the
complet ion of the disk read. The reader provides a buffer in
which the device driver fills the data. This disk opera t ion
takes a long t ime compared to the speed of the reader, i.e.,
C P U speed. If the reader were to continue, wi thout a sus-
pension, then it would be eligible to read from a buffer wi th
non-existent data.

On the other hand, the disk wri te scenario, Fig. 8, assumes
an "asynchronous" write, tha t is, the write does not have
to suspend. Instead, a wri te can continue on a pa th and
go about doing other work, but usually this other work in-
volves more wri t ing to the disk. In part icular , this work
could involve reusing the same buffer tha t was provided in
the previous wri te operat ion. Since the disk wri te opera-
t ion takes a long t ime in comparison, the writer would, in
effect, wri te over the original data. For this reason, an asyn-
chronous wri ter needs to al locate an ext ra buffer in which to
copy the data. This is the da t a tha t will be wr i t ten to the
disk. The wri ter is then free to reuse the original buffer over
again. The only problem is tha t opera t ing systems do not al-
locate any more memory after boot t ime because tha t could
lead to a complete drain on memory by over-demanding disk
writers. Instead, only a fixed amount of these "copy" buffers

mad
U rHalf

enqueue

QuequUe~ interrupt
I ~ dequeue

F i g u r e 77: A d i s k r e a d p l a c e s a r e q u e s t i n t o t h e q u e u e
a n d w a k e s u p t h e l o w e r - h a l f p r o c e s s . A f t e r p r o c e s s -
i n g t h e r e q u e s t , t h e l o w e r - h a l f u n b l o c k s t h e " s y n -
c h r o n o u s " r e a d .

are al located at boot time, and an over-demanding write will
have to suspend if these are all consumed. When the system
finishes processing a previous write request, a buffer will be
returned, and a suspended wri ter can then reuse this as the
copy buffer.

Now for the details of bo th the read and write scenarios as
presented in the UCMs. A reader first interacts wi th the
upper-hal f of the device driver. The upper-hal f enqueues a
disk request on a disk queue and then sends a message on
a port , thus signally the lower-half to unblock and dequeue
the disk request. Note tha t this disk queue is probably not
a Firs t - In F i r s t -Out (FIFO) queue because the disk requests
would tend to make the disk arm move back and forth while
processing very few requests. Typically, an elevator algo-
r i t hm [11], [22] would be used so tha t many requests can be
processed as the disk arm moves in one direction.

After the lower-half removes a disk request, an in terrupt
is generated for the disk controller to process the request.
After the processing occurs, the reading process, which has
been suspended in the upper-half , is now unsuspended.

The disk wri te scenario, Fig. 8, is more complicated because
it is asynchronous and requires the addit ional copy buffer
mechanism. First , the wri ter needs to acquire a copy buffer,
which may or may not block depending on the availabil-
i ty of buffers. Ei ther immediately, or after the suspended
writer unblocks, a disk request is placed into the disk queue
and a message sent on the port . This message unblocks the
lower-half, tel l ing it to ext rac t from the disk queue. Af-
ter processing the request, the copy buffer is re turned to
the buffer pool manager , which then unblocks a suspended
writer. Note tha t a wri ter only suspends in the case of an
empty buffer pool; otherwise, the wri ter is free to continue
with its act ivi t ies at the same t ime as the device driver pro-
cesses requests.

269

write

dequeue interrupt

F i g u r e 8: A n " a s y n c h r o n o u s " d isk w r i t e a t t e m p t s to
a l loca t e a copy buffer f rom t h e buffer pool . I f e m p t y ,
it b locks; o the rwi se , t h e wr i t e p laces a r e q u e s t in to
t h e q u e u e a n d wakes u p t h e lower-half . Beca use of
t he copy buffer , t he w r i t e does no t n e e d to wai t u n t i l
t h e r e q u e s t is p rocessed .

In conclusion, the UCMs are able to abstract this lengthy
exposition into a visually concise format.

4. UML DESIGN
This section presents a short summary of the UML design.
(The full UML design contains about 125 diagrams and is
available at http://www.sci.csuhayward.edu/-billard/ooos/.
The design is currently used in a graduate operating sys-
tems course.) Figure 9 shows the overall package layout
with the public classes (+) representing the Application Pro-
gramming Interface (API) for applications such as Dining
Philosophers and Readers-Writer [22], both good examples
of concurrent processes which use semaphores for interpro-
cess communication. This package layout illustrates an im-
portant design principle for operating systems: layer the
software. The upper layer is for application code, the mid-
dle layer for subsystems (IPC, I/O, Disk), and the lowest
layer is for the core functionality of the system, in particu-
lar, the scheduling of processes. T h e following subsections
provide details of the UML design of semaphores, network
subsystem, and disk subsystem.

4.1 Semaphore Design
In Section 3, UCM scenarios for mutual exclusion (Fig. 3)
and the Readers-Writer problem (Fig. 4) illustrated the need
for semaphores to perform interprocess communication. A
semaphore is used to protect "critical sections" of code where
only one concurrent process should operate at a time. Entry
to a critical section must be accompanied by a wait method
call, which will suspend the process if another process is
already in the section of code. When leaving a critical sec-
tion, a process needs to do a signal call in case there are
waiting processes. Figures 10 and 11 show the UML col-
laboration diagrams for both methods. The main point is
that a counter determines whether a process needs to be
suspended in a wait, or resumed in a signal, and, if neces-

+Semaphore
+Message
+Abst ractPort
-SPort
~NetPort
#NetGraph

@ D~iningPhilosophers
[+ReadersWriter
[+LeaderElection
] +DiskClient

+InConsumer
+OutProducer
+Debug
~¢InProducer
~Out Consumer
~Buffer
~,~Console

imports

+DiskUpper
:~:DiskLower
~BufPool
~q:DiskReq
kDiskQueue

J
imports

+Proc
+ProcTable
#O00S

#PCB

:~FIFOQueue
~,~ PrioQueue
~,~ Queue
~,~Null
:~Dispatcher
~Scheduler

F i g u r e 9: A p p l i c a t i o n P r o g r a m m i n g I n t e r f a c e (A P I)
specif ied as U M L packages w i t h s u b s y s t e m s in t h e
m i d d l e layer .

l:[----count< 0]
~ ~ b l o c k ()

Wait() :Seme, phore] l'l:p:=currentPr°c0] Proc

1.3:setState(PCB.WAITING) t

q:FIFOQueue [

p:Proc I

1.4:reSched() I OOOS.sch:Scheduler

F i g u r e 10: C o l l a b o r a t i o n d i a g r a m of a wai t o n a
s e m a p h o r e . A n e g a t i v e c o u n t e r causes a r e q u e s t e r
to b lock a n d a n o t h e r p rocess s c he du l e d for t he C P U .

270

Signal() [

1 : [count --b -'~- < O]
[[~ unbl°ckO

:Semaphore [I ' I : p : : (~Pr°c)deq 01 Q:FIFOQ [

F i g u r e 11: C o l l a b o r a t i o n d i a g r a m of a s igna l on a
s e m a p h o r e . A n e g a t i v e c o u n t e r i n d i c a t e s t h e exis -
t e n c e of w a i t i n g process , wh ich shou ld t h e n be de-
q u e u e d f rom the s e m a p h o r e ' s q u e u e a n d p laced in to
t h e r e a d y q u e u e for t h e C P U .

sary, the scheduler will select a new process from the ready
queue and install it on the CPU.

4.2 Network Subsystem Design
The design of the port subsystem, analyzed earlier as a Use
Case Map (Fig. 6), is presented in Figs. 12, 13, and 14.
The architecture design, Fig. 12, shows a superclass, called
AbstractPort, which maintains both the queue of unreceived
messages and the queue of processes waiting to receive a
message. This class is able to generalize an implementation
for the receive method: just return the head of the message
queue, if not empty.

However, the send method depends upon the type of port.
Communication within a computer system does not require
network access and can be performed in-memory. Communi-
cation between two computer systems requires the network.
Both of these ports, therefore, require specialization in sub-
classes of the abstract superclass, with only the network port
shown in the figure. The network port requires the host and
port number with which to communicate on the other end
of the network connection. The network port implements
the Runnable interface and is, therefore, an asynchronous
thread. The thread blocks as it listens on the network for
incoming messages.

Figure 13 shows the detailed design, as a UML collaboration
diagram, of the send method. The main point is that the
message can be serialized to a string, and then written to
the network using Socket and BufferedWriter objects.

Figure 14 shows the design of the listener at the other end
of the network connection. The run method uses Socket
and BufferedReader objects to read from the network. Af-
terwards, the new message is placed in the message queue
and, if the queue of waiting processes is not empty, then the
longest waiting process is placed in the ready queue.

4.3 Disk Subsystem Design
The design of the disk scheduling subsystem is presented in
Figs. 15 and 16. Disk subsystems, as well as I /O subsystems,
are usually designed with upper-half and lower-half compo-
nents. The upper-half object has a shared data structure
with the lower-half, a queue of disk requests sorted based
on an elevator algorithm [ll], [22]. A port object is used to
c o m m u n i c a t e between the two halves. The upper-half en-
queues new disk requests (read/write) at the request of the

Abstract Por t
~msgQ:FIFOQueue
#proeQ:FIFOQueue
~name:String
-q- Abst r act Por t (name: St ring)
-block()
q-Receive0:Message
-bSend(msg:Message)

<: <~ inter facet
Runnable
+run()

Lk
I
I

I
I i

NetPort
-host:String
-por tNum:int
-kNetPor t (name:String)
-J-Net Por t (name: St ring,

host:String,

portNum:int)
-kSend (msg: Message)
+run()

F i g u r e 12: N e t w o r k p o r t i n h e r i t a n c e s t r u c t u r e in
U M L . T h e a b s t r a c t superc las s m a i n t a i n s t h e q u e u e s
a n d i m p l e m e n t s t h e rece ive (just d e q u e u e from t h e
head of t h e q u e u e) . T h e subc lass , a c o n c u r r e n t
t h r e a d , s en d s m e s s a g e s on a p o r t a n d also has a r u n
m e t h o d which l i s tens for i n c o m i n g messages on t h e
ne twork .

Send(msg) :NetPort t l:obj:=getObject()

I L2 t r : : toStr ing 0

I 3:s:=create(host,portNum)
[4:°s:=get Out putStream0

10:close0

5:osw:~create(os)

6:out:~create(osw)
7:write(str,0,str.lengt h0)
8:newLine 0
9:flush 0

I msg:Message

obj:Object

s:Soeket

[oswOuputStramWrltor I
out:I3ufferedWriter

F i g u r e 13: U M L c o l l a b o r a t i o n d i a g r a m for N e t -
P o r t ' s s end m e t h o d . T h e m e s s a g e is w r i t t e n as a
s t r ing to t h e n e t w o r k u s i n g a socket .

271

runO I :NetPort

I

l:ss:=create(portNum)
2*:[true] I
2-1:s::accept 0

2_2 :is::g~et I nput St ream 0
2-6:close 0

2-3:isr:~create(is)

2.4:in:=create(isr)
2-5:str:=readLine 0

2_7:msg::create(str)

2_8:enqueue(msg)

2-9:[!isE~mpty0] [
2_9~1:p:~ (Proc)dequeue() [

2-9.2:ready(p)

ss:ServerSocket

s:Socket

I isr :Input St reamReader

I in:B u fferedP..eader

I msg:Messaage

msgQ:FIFIQueue

procQ:FIFOQueue

OOOS.sch:Scheduler

F i g u r e 14: U M L c o l l a b o r a t i o n d i a g r a m for N e t -
P o r t ' s run m e t h o d . T h i s a s y n c h r o n o u s m e t h o d lis-
t e n s on a server socke t , u n b l o c k s , a n d reads a s t r i n g
f r o m t h e por t . A f t e r an e n q u e u e o f t h e n e w m e s s a g e ,
a r e c e i v i n g proces s can b e u n b l o c k e d a n d r e a d i e d for
t h e C P U .

application and the lower-half, an asynchronous process, de-
queues and processes the requests.

The requests include a buffer in which to read data or write
data, and the design calls for any reading application to
block until the read operation is done ("synchronous read").
For any writing application, an "asynchronous write" is per-
mitted by doing a copy to a new buffer allocated from a
buffer pool, before the calling application continues on with
its computation. The pool has only a finite number of copy
buffers and a semaphore is used to block the requesting ap-
plication if all buffers have been allocated. The lower-half
removes from the head of the queue, seeks to the block, and
writes the data from this copy buffer.

5. JAVA IMPLEMENTATION
The object-oriented operating system was implemented in
Java. Details of the network and disk subsystems follow.

5.1 Network Subsystem Implementation
The analysis and design of the network port lead to an im-
plementation in Java, Fig. 17. The code closely follows, as it
should, the detailed UML collaboration diagrams in Figs. 13
and 14.

5.2 Disk Subsystem Implementation
In this subsection, the Java code is presented for the key
parts of the disk subsystem, which forms the basis for the
performance evaluation in the next section. The Java code
for the pool of pre-allocated copy buffers, for asynchronous

I O00S [

¥

]] DiskLower

I RandomAccessFile I

Proc]

@ '
I DiskQueue]

I DiskReq

byte[]

T
BufPool [

I
v ¥

i I i I

F i g u r e 15: S t r u c t u r e o f t h e d i s k s c h e d u l e r . T h e
u p p e r - h a l f o f t h e d e v i c e p laces n e w d i s k r e q u e s t s
i n t o a s h a r e d q u e u e so t h a t t h e l o w e r - h a l f o f t h e
d e v i c e can e x t r a c t , a n d process , at i ts o w n s p e e d .
A m e s s a g e p o r t is u s e d to c o n t r o l s y n c h r o n i z a t i o n
to t h e s h a r e d q u e u e , a n d a buf fer p o o l is ava i lab le
for a c q u i r i n g "copy" buf fers for a s y n c h r o n o u s d i s k
w r i t e r e q u e s t s .

write(blockNum,buf)

4:enqueue(dr)

: DiskU pp e______~ [5:Send(null)

i o, o i
0:msg:=Receive 0

:Semaphore

1.1:wait0 4 [
5"l'4"l:Signall) ' [

I
2:c°pyB~u f(bu f'buf2)1 BufPool

3:dr:=create0 [:DiskReq

I ÷

5.1.1:dr:=dequeue 0

:DiskLower I

5.1.2:seek (dr .blockNum)~ [
5.1.3:write(dr.buf)

:RandomAccessFile [

Lt

÷
5.1:resume(]

5.1.4:putBuf(dr.buf)

F i g u r e 16: C o l l a b o r a t i o n d i a g r a m o f d i s k s c h e d u l -
ing i n t e r a c t i o n . D i s k w r i t e s r equ ire a "copy" buf fer
b e f o r e t h e e n q u e u e o f a n e w r e q u e s t . T h e lower-
h a l f b l o c k s on a m e s s a g e r e c e i v e unt i l a n e w r e q u e s t
is p l a c e d in t h e q u e u e . A f t e r p r o c e s s i n g t h e w r i t e
r e q u e s t , t h e buf fer can b e r e t u r n e d to t h e poo l .

272

public class NetPort extends AbstractPort
implements Runnable {

private String host;
private int portNum;
public NetPort (String name, String host,

int portNum) {
this(name);
this.host = host;
this.portNum = portNum;
Thread t = new Thread(this);
t . s t a r t () ;

}
public void Send(Message msg){

Object obj = msg.getObject();
String msgStr = obj.toString();
try {

Socket s = new Socket(host, portNum);
BufferedWriter

out = new BufferedWriter(
new OutputStreamWriter(

s.getOutputStream()));
out.write(msgStr,O,msgStr.length());
out.newLine();
out.flush();
s.close();

}

catch(IOException e) {}
}

public void run() {
try {

ServerSocket
server = new ServerSocket(portNum);

while (true) {
Socket incoming = server.accept();
BufferedReader

in = new BufferedReader(
new InputStreamReader(

incoming.getInputStream()));
String s = in.readLine();
incoming.close();
msgQ.enqueue(new Message(s));
if (!procQ.isEmpty()) {

Proc waiting = (Proc) procQ.dequeue();
O00S.sch.ready(waiting);

}

} catch(IOException e) {}
}

F i g u r e 17: J a v a code for t h e N e t P o r t class. T h e r e
is a l m o s t a o n e - t o - o n e r e l a t i o n s h i p b e t w e e n t h e J a v a
code a n d t he de t a i l ed U M L c o l l a b o r a t i o n d i a g r a ms .

public class BufPool {
public static int NUMBUFS = 20;
FIFOQueue bufPool = new FIFOQueue();
Semaphore notEmpty = new Semaphore(NUMBUFS);
protected BufPool() {

for (int i=l; i<=NUMBUFS; i++)
bufPool.enqueue(new byte[512]);

}

protected byte[] getBuf() {
notEmpty.Wait();
return (byte[]) bufPool.dequeue();

}

protected void putBuf(byte[] bur) {
bufPool.enqueue(buf);
notEmpty. Signal();

}

protected static void copyBuf(byte[] bull,
byte[] bur2) {

for (int i=O; i<O00S.BUFSIZE; i++)
buf2[i] = buff[i];

}
}

F i g u r e 18: J a v a code for pool of p r e - a l l o c a t e d copy
buffers , w i t h p r o t e c t e d a c c e s s v i a a s e m a p h o r e .

writes, is shown in Fig. 18. The constant NUMBUFS de-
termines the number of pre-allocated copy buffers, which
are placed in a First-In, First-Out queue. This constant be-
comes a variable in the performance evaluation and turns
out to be important to the disk throughput. A semaphore
is provided to block requesters of copy buffers when the pool
is empty. This has the effect of stopping a burst of asyn-
chronous write requests, hence affecting the throughput.

Figure 19 shows the Java code for the upper-half device
driver. The application makes calls to the public read/write
methods to access disk blocks. Note that an asynchronous
write access requires the allocation of a copy buffer for the
data, whereas the synchronous read is suspended. The upper-
and lower-halves use messages on ports to control synchro-
nization to the shared queue of disk requests.

In this study, the queueing and processing of disk requests
has two implementations. First, the C-LOOK algorithm [22]
is a fairly simple form of an elevator algorithm:

Move the disk arm from low to high blocks, pro-
cessing any requests in the queue which occur
along the way. Upon servicing the highest re-
quested block, reset the arm to the lowest requested
block in the queue, and start scanning toward
higher blocks again.

Second, the XINU [11] algorithm is another form of elevator
algorithm:

When adding a request for block B to the exist-
ing queue of requests, schedule it to be performed
between requests for i and i -t- 1 if the disk arm

273

public class DiskUpper {
private Port diskPort = new Port();
private Disk~ueue diskQ = new DiskQueue();
private BufPool bufPool = new BufPool();
public DiskUpper() {

new DiskLower(diskPort,diskQ,bufPool).Start();
}

private void diskEnqueue(int ioType,int blockNum,
byte[] bur, Proc p) {

DiskReq dr =new DiskReq(ioType,blockNum,buf,p);
diskQ.enqueue(dr);
diskPort.Send(null);

}
public void write(int blockNum, byte[] bur) {

byte[] bur2 = bufPool.getBuf();
BufPool.copyBuf(buf,buf2);
diskEnqueue(DiskReq.WRITE,blockNum,buf2,null);

}
public void read(int blockNum, byte[] bur) {

Proc me = Proc.currentProc();
diskEnqueue(DiskReq.READ,blockNum,buf,me);
me. Suspend();

}

F i g u r e 19: J a v a code for t h e u p p e r - h a l f device
d r ive r . W r i t e r e q u e s t s r e q u i r e a "copy" buffer and
read reques t s m u s t be s u s p e n d e d .

will pass over block B on its way f r o m i to i +
1. I f no such pair i and i + 1 exist, add the new
request to the end o f the list.

Consider the arrival of requests for blocks 50, 70, 60, 40, 80,
20, with block 50 undergoing immediate processing. The
C-LOOK algorithm forms a queue (50 60 70 80) (20 40)
and processes the first batch before resetting to the second
batch for another upward swing. Note that both batches are
sorted in ascending order and that a binary search can be
performed on a particular batch in order to determine the
position for inserting a new request. The queue is imple-
mented with a Java vector, hence, the insertion operation
is quick. The XINU algorithm forms a queue (50 60 70 40
80 20), which is a "fairer" order in terms of arrivals. The
problem is that the queue is not in ascending order, im-
plying that a sequential search is required, rather than a
binary search. This has performance implications which are
analyzed in the next section.

The lower-half device driver is shown in Fig. 20. The process
blocks unless there are messages in the shared port from
the upper-half device driver. The number of outstanding
messages is equal to the number of outstanding disk requests
in the disk queue. The lower-half extracts a disk request and
either writes the block of data to the disk (and returns the
pre-allocated copy buffer) or reads the block of data from
the disk (and unsuspends the currently blocked application
process).

The run method of the lower-half driver is the object of
instrumentation in the performance evaluation. The total

public class DiskLower extends Proc {
private RandomAccessFile raf;
private DiskQueue diskQ;
private Port diskPort;
private BufPool bufPool;
protected DiskLower(Port diskPort,

Disk~ueue diskQ,
BufPool bufPool) {

this.diskPort = diskPort;
this.diskQ = disk~;
this.bufPool = bufPool;

}
public void run() {

while (true) {
Message msg = diskPort.Receive();
DiskReq dr = (DiskReq) diskQ.dequeue();
diskIO(dr);

}
}

private void diskIO(DiskReq dr) {
raf.seek(OOOS.BUFSIZE * dr.getBlockNum());
if (dr.getType() = = DiskReq.READ) {

raf.read(dr.getBuf());
dr.getProc().Resume();

} else {
raf.write(dr.getBuf());
bufPool.putBuf(dr.getBuf());

}
}

F i g u r e 20: Par t ia l J a v a code for t h e lower -ha l f de-
vice d r ive r . W r i t e r e q u e s t s r e t u r n t he "copy" buffer
an d read reques t s are u n s u s p e n d e d .

number of processed disk requests divided by the time spent
in the body of code determines the throughput of requests
per unit of time.

6. P E R F O R M A N C E ANALYSIS
Two performance studies are summarized in this section:
a queueing network simulation of the state transitions and
instrumentation of the disk subsystem.

6.1 State Transition Simulation
The state transition diagram, in Fig. 2, can be analyzed
for anticipated performance using a queueing network for
simulation. In this study, a tool implemented by the author
[4] was used for simulation but a Layered Queueing Network
(LQN) would be an alternative [17], [21].

Figure 21 shows a queueing network for Fig. 2, with new job
arrival rate A, probabilities p~ for rescheduling on the CPU,
exiting the system, or entering one of the subsystems (I/O,
Disk, IPC). The service rate for the CPU is ~1 and for each
of the subsystems #2.

A closed-form analytic solution is determined as follows.
The conservation of job flow establishes a set of simulta-
neous equations for Ai, the flow at any point in the network.
The number of visits to each point is the ratio V~ ---- A~/A.

274

n e w

Q
C P U

r e s e h e d u l e e x i t

I / O

~2

Disk

,JO

I P C

Figure 21: Queueing ne twork for s ta te trans i t ions
f rom C P U to C P U , I / O , Disk, or I P C .

Service Rates
CPU (it1) 100 jobs/sec
I/O, Disk, IPC (#2) 10 jobs/sec

Probabilities
Exit (P2) 0.1

CPU- IO-
Bound Bound Balanced

Reschedule (pl) 0.9 0.0 0.45
I/O, Disk, IPC (p3) 0.0 0.90 0.45

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0.0

~ / B a l a n c e d r /

~ v ~ CPU Bo T

i i J i

2.0 4.0 6.0 8.0 10.0
New Job Arrival Rate (jobs/sec)

Figure 22: S imulat ion results (5 runs each) show
the per formance of I / O - b o u n d ve r sus C P U - b o u n d
job s y s t e m s . Turnaround t i m e is the average t i m e
until a j o b ex i t s the sy s t em. T h e solid l ine repre-
sents an analyt ic result assuming M / M / 1 queueing
characterist ics at each processor .

Tab le 1: Exper imen ta l des ign of C P U - b o u n d versus
I / O - b o u n d s y s t e m s .

Assuming an M/M/1 queueing system at each server, the
response time is Ri = 1/(#i - A 0. From this, the overall
system response (turnaround) time is:

4
1 1 -- Pl - P2 R~u~*~m = E ViRi -- - - +

i=1 P2#l - A 3p2#2 - (1 - p l - p2)A

The simulation experimental design of service rates and prob-
abilities is presented in Table 1. The main feature is that
the probabilities are adjusted to reflect the nature of the in-
put job stream. I /O-bound jobs do not return to the CPU
directly but, instead, go to the I /O (or disk or IPC) subsys-
tem. CPU-bound jobs always return to the CPU for more
processing (unless the job exits), and never do I/O.

Figure 22 shows the difference in performance of I /O-bound
versus CPU-bound job input streams as a function of the
new job arrival rate. Given the faster service rate of the
CPU, the CPU-bound system has a faster turnaround time.

6.2 Disk Subsystem Instrumentation
The instrumentation in the lower-half device code measures
the throughput of disk requests, as shown in Fig. 23. The
test application creates 5000 disk write requests. To ana-
lyze the effect of bursty disk requests, time slicing is not
permitted. The only thing preventing an entire burst of
5000 requests from filling up the queue is the fact that the
disk writes are asynchronous, necessitating the allocation of
copy buffers. The semaphore in the buffer pool is designed
to block this type of request if all pre-allocated buffers have

been assigned. The number of pre-allocated buffers is the x-
axis in Fig. 23, each data point for the throughput (y-axis),
is the average of 5 runs.

With a small number of copy buffers, the bursty behavior is
controlled because the application blocks on the semaphore,
and waits for a copy buffer to be returned by the lower-half
device driver after processing a write request. With a large
number of copy buffers, the bursty behavior of the applica-
tion is only encouraged, and the queue of disk requests is
large.

The C-LOOK algorithm shows a constant throughput mainly
because the binary search on the sorted queue, even on a
long queue, is efficient in determining the insertion point. In
the XINU algorithm, the sequential scan of the disk queue,
to find the appropriate position, slows the system down as
the number of pre-allocated copy buffers increases. (Note
that a very small number of copy buffers, say 1, reduces the
throughput because of the context switching back-and-forth
between the upper-half and lower-half drivers.)

Figure 24 shows the average response (or service) time to
process a single disk write request. This is the time delta be-
tween inserting into the queue by the upper-half and actual
processing by the lower-half driver. The C-LOOK algorithm
shows an increase in this response time as the size of the disk
queue increases (according to the number of copy buffers).
This is to be expected because, although insertion-location
is quicker, there are still a larger number of requests in the
queue. As for XINU, the response time is worse because the
insertion-location time is also longer.

7. CONCLUSIONS
This paper has summarized the life cycle development of an
operating system. The Use Case Maps for describing op-
erating system scenarios illustrate the subtle characteristics

275

3500

3000

"~ 2500

& 2000

1500

1000

500

o
o

C-LOOK

i i i

500 1000 1500
NumberofCopy Buffers

2000

F i g u r e 23: Disk wr i t e t h r o u g h p u t as a f u n c t i o n of
t h e n u m b e r of copy buffers . T h e X I N U a l g o r i t h m
suffers b e c a u s e of b u r s t y a s y n c h r o n o u s d isk w r i t e
r eques t s .

1,50

~'~ 1.25

.~ 1,00

0,75

0.50

o,25

0.00
0 500 1000 1500 2000

Number o f Copy Buffers

F i g u r e 24: A v e r a g e r e s p o n s e t i m e as a f u n c t i o n of
t h e n u m b e r of copy buffers . T h e X I N U a l g o r i t h m ,
aga in , suffers b e c a u s e of b u r s t y a s y n c h r o n o u s d isk
wr i t e r eques t s .

found in such systems, in particular, the concurrent pro-
cesses which block and unblock. Also, the UCMs are able to
show the behaviors which transcend subsystems, mainly the
upper-half and lower-half interactions of the I /O and disk
subsystems. The UCM notation for a pool is applicable for
the wide variety of queue structures found in such systems.

The later part of the life cycle, the UML design and Java
implementation, is distinct from the early UCM analysis,
which tends to support a more open-ended, wide-ranging
consideration of the problems at hand.

Although operating system design has been traditionally a
function-oriented view, all of the concepts readily translate
to an object-oriented view, with UML presentations describ-
ing both the organization of the subsystems and the details
of the interactions. Class representations make clear the
concepts of semaphores, messages, ports, processes, process
control blocks, CPU schedulers, dispatchers, queues, as well
as upper- and lower- half components for input, output, and
disk schedulers. Operating systems have always presented
challenges in terms of effective designs and the UML portion
of this case study helps to deal with the complexities of such
systems.

With respect to performance, queueing network simulation
allows for the early investigation of performance issues, rather
than waiting until completion of the implementation. The
instrumentation of the disk subsystem shows the interest-
ing (and paradoxical) result that more system resources -
in this case, copy buffers - actually leads to reduced perfor-
mance using the XINU elevator algorithm. The C-LOOK
algorithm, with the binary search on the sorted queue, per-
forms well. The XINU algorithm could be improved with
the introduction of a mechanism, say a yield, which would
artificially slow down the burst and let the lower-half driver
process disk requests, hence, reducing the queue length.

8. REFERENCES
[1] Use Case Maps Web Site:

http://www.UseCaseMaps.org.

[2]

[a]

[4]

[5]

D. Amyot, R. J. A. Buhr, T. Gray, and L. Logrippo.
Use case maps for the capture and validation of
distributed systems requirements. In Fourth
International Symposium on Requirements
Engineering, pages 44-53, 1999.

S. Balsamo, P. Inverardi, and C. Mangano. An
approach to performance evaluation of software
architectures. In First International Workshop on
Software and Performance, pages 178-190, 1998.

E. Billard and A. Riedmiller. Q-Sim: A GUI for a
queueing simulator using Tcl/Tk. A CM Software
Engineering Notes, 19(4):82-85, 1994.

E. Billard and A. Riedmiller. A GUI for a manager of
lightweight processes. A CM Software Engineering
Notes, 20(5):48-50, 1995.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

276

[7] R. J. A. Buhr. Use Case Maps as architectural entities
for complex systems. [EEE Transactions on Software
Engineering, 24(12):1131-115, 1998.

[8] R. J. A. Buhr, D. Amyot, M. Elammari, D. Quesnel,
T. Gray, and S. Mankovski. High level, multi-agent
prototypes from a scenario-path notation: A
feature-interaction example. In Third Conference on
Practical Application of Intelligent Agents and
Multi-Agent Technology, 1998.

[9] R. J. A. Buhr and R. S. Casselman. Use Case Maps
for Object-Oriented Systems. Prentice Hall, 1996.

[10] R. J. A. Buhr, M. Elammari, T. Gray, and
S. Mankovski. Applying Use Case Maps to multi-agent
systems: A feature interaction example. In 31st
Annual Hawaii International Conference on System
Sciences, 1998.

[11] D. Comer and T. Fossum. Operating System Design:
The XINU Approach. Addison-Wesley, 1988.

[12] G. Franks, S. Majumdar, J. Neilson, D. Petriu,
J. Rolia, and C. M. Woodside. Performance analysis of
distributed server systems. In Sixth International
Conference on Software Quality, pages 15-26, 1996.

[13] C. Hrischuk, J. Rolia, and C. M. Woodside.
Automatic generation of a software performance
model using an object-oriented prototype. In Third
International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, pages 399-409, 1995.

[14] C. Larman. Applying UML and Patterns. Prentice
Hall, 2002.

[15] G. Mussbacher and D. Amyot. A collection of patterns
for Use Case Maps. In First Latin American
Conference on Pattern Languages of Programming,
2001.

[16] D. Petriu, C. Shousha, and A. Jalnapurkar.
Architecture-based performance analysis applied to a
telecommunication system. IEEE Trans. Soft. Eng.,
26(11):1049-1065, Nov 2000.

[17] D. Petriu and M. Woodside. Analysing software
requirements specifications for performance. In Third
International Workshop on Software and
Performance, 2002.

[18] S. Ramesh and H. G. Perros. A multi-layer
client-server queueing network model with
synchronous and asynchronous messages. In First
International Workshop on Software and
Performance, pages 107-119, 1998.

[19] W. C. Scratchley and C. M. Woodside. Evaluating
concurrency options in software specifications. In
International Conference on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, pages 330-338, 1999.

[20] B. Selic, G. Gullickson, and P. T. Ward. Real-time
Object-Oriented Modeling. Wiley, 1994.

[21] K. H. Siddiqui and M. Woodside. Performance-aware
software development (PASD) using resource demand
budgets. In Third International Workshop on Software
and Performance, 2002.

[22] A. Silberschatz and P. B. Galvin. Operating Systems
Concepts. Addison-Wesley, 1998.

[23] C. U. Smith and L. G. Williams. Performance
Solutions: A Practical Guide to Creating Responsive,
Scalable Software. Addison-Wesley, 2001.

[24] L. G. Williams and C. U. Smith. Performance
evaluation of software architectures. In First
International Workshop on Software and
Performance, pages 164-177, 1998.

[25] C. M. Woodside, C. Hrischuk, B. Selic, and
S. Bayarov. A wideband approach to integrating
performance prediction into a software design
environment. In First International Workshop on
Software and Performance, pages 31-41, 1998.

277

