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ABSTRACT 
This paper summarizes the analysis, design, implementa- 
tion, and performance analysis of an object-oriented oper- 
ating system. The analysis applies Use Case Maps (UCMs) 
to provide a high-level abstraction of the behavior scenar- 
ios for state transition, character output, network access, 
and disk access. The UCM for state transitions is converted 
into a queueing network for simulation study of I /O-bound 
versus CPU-bound systems. An overview of the later stages 
emphasizes UML for architecture and detailed collaboration, 
as well as Java examples. The performance of the disk sub- 
system is analyzed by instrumenting the Java code, and the 
results show that  design choices can affect the throughput. 

1. INTRODUCTION 
Operating systems have traditionally presented a challenge 
in terms of software design [22]. These systems have a high 
degree of concurrency and often exhibit very subtle behav- 
iors which emerge from the underlying implementation. A 
Use Case Maps (UCM) [1], [2], [7], [9] is a good candidate 
for abstracting this type of behavior, especially at the early 
analysis stage of development. A UCM provides a visual 
display of causal paths that weave through subsystems and 
transcend subsystems. UCMs have also been used in the 
context of agents [8], [10] and patterns [15]. 

The anticipated performance of a UCM can be analyzed at 
an early stage by translation to a queueing network [4] or, 
more specifically, a Layered Queueing Network (LQN) [12], 
[17], [18], [21]. Alternatively, a Unified Modeling Language 
(UML) [6], [14] presentation can be converted to a LQN [16]. 
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This allows the developer to investigate issues and problems 
with performance at an early stage of development [3], [13], 
an important consideration for performance-sensitive soft- 
ware such as an operating system. Other performance stud- 
ies examine concurrency and real-time issues [19], [20] state 
machines [25], and predictive modeling [23], [24]. 

This study summarizes the life cycle of the development of 
an operating system. The system is object-oriented but  is 
similar to the function-oriented XINU system [ll], which is, 
itself, similar to UNIX. Previously, this author implemented 
a graphical user interface to a XINU-like operating system 
[5], intended to display the high-degree of concurrency and 
state transitions present in an operating system. 

The goal of the current study is to apply modern tech- 
niques such as UCMs, UML, object-oriented programming 
(Java) to the classic domain of operating system software. 
Also, simulation and instrumentation provide for perfor- 
mance analysis of such systems. 

The paper is organized as follows. Section 2 provides a sub- 
set of the UCM notation sufficient to present classic oper- 
ating system scenarios in Section 3, as well as details of the 
network subsystem and the disk subsystem. In Section 4, 
the designs of these two subsystems are presented in UML, 
followed by Java implementations in Section 5. Section 6 
shows the results of a queueing simulation for the state tran- 
sitions in I /O-bound versus CPU-bound operating systems. 
The performance of the disk subsystem is analyzed by apply- 
ing instrumentation to the Java implementation. Most disk 
subsystems use a form of an elevator algorithm to minimize 
disk arm movement, and the results show that the choice of 
algorithm can affect the throughput of the subsystem. 

2. A SHORT UCM TUTORIAL 
Figure 1 shows a subset of UCM notation sufficient to under- 
stand the maps presented in this paper. The full notation [7] 
is still relatively straight-forward but is not needed for this 
exposition. (Note that all of the UCMs in this study were 
created using UCM Navigator [1].) A start point represents 
the beginning of a causal path, and one should imagine this 
point as a source of "tokens" (with some distribution, say, 
uniform) that  follow along the path. The path may lead 
through one or more components which have responsibili- 
ties. The path then terminates, and the direction of the 
tokens can usually be inferred from the start to end point 
but an arrow can be used as a guide. 
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I I 
F i g u r e  1: A s u b s e t  o f  U s e  C a s e  M a p  n o t a t i o n  i l lus- 
t r a t i n g  a casua l  p a t h  flow t h r o u g h  forks  a n d  jo ins ,  
a l ong  w i t h  poss ib le  w a i t i n g  p laces .  A p o o l  is a usefu l  
n o t a t i o n  for an o p e r a t i n g  s y s t e m .  

In essence, a path represents a high-level abstraction of the 
emergent behavior of the component haxdwaxe/softwaxe at 
runtime that  results from the underlying implementations 
and protocols. The path is intended to reflect this emergent 
behavior at an early stage of analysis of the problem, even 
before the underlying implementations axe attempted. 

The paths become interesting because of AND-forks/joins 
and OR-forks/joins. An OR-fork represents a probabilistic 
alternative in which a token may travel one way or another 
(the figure only shows a two-way split but it can be n-way). 
Two or more paths may come together in an OR-join. The 
example shows two paths joining which originated from an 
OR-fork; this need not be the case. Tokens on different 
segments can flow into an OR-join, at different times, and 
then each will travel along the same path. 

A token arriving at an AND-fork generates multiple, con- 
current tokens, one for each output path. An AND-join 
requires that a token wait until a token arrives at each of 
the other joining paths and, again, it is not necessary for the 
paths, which lead to an AND-join, to have been created by 
an AND-fork. A path may reach a waiting place, which halts 
a token until another token arrives along a trigger path. At 
this time, the original token moves along the continuation 
path. 

Finally, a pool is a data structure that  stores arbitrary com- 
ponents and, in the case of operating systems, can be used 
to represent a queue, an important and prevalent feature of 
any operating system. 

This is sufficient notation for the scenarios demonstrated in 
the next section. The full notation includes, among other 
things, subcomponents and stubs [7]. 

3. OS SCENARIOS AS UCMS 
This section presents a sequence of UCMs to capture the 
behavior scenarios for different aspects of the operating sys- 
tem. The goal is to show how UCMs abstract, at a high- 
level, the difficult concepts. 

First, all successful operating systems rely on a state-based 
model [22], that  is, a process in the system is in one state at a 
time, and crucial events make the process transit to another 

Disk 

F i g u r e  2: A s t a t e  t r a n s i t i o n  d i a g r a m  as a U C M ,  
w i t h  p r o c e s s e s  l eav ing  t h e  C P U  for r e s c h e d u l i n g  o r  
for t h e  disk,  I / O ,  o r  I P C  s u b s y s t e m s .  

cleaxly-defined state. Figure 2 shows the state transitions 
for the system, where each transition moves along a causal 
path to a component, or subsystem, which is responsible for 
the behavior of that  particular state. 

The scheduler moves a process from the scheduling, or ready, 
state onto the CPU. If the process requires more process- 
ing, it returns to the scheduler; otherwise, the path is to 
one of three other subsystems: Interprocess Communication 
(IPC), Inpu t /Outpu t  (I/O), or disk. A subsystem handles 
the arriving process, and then returns the process to the 
scheduling state again. New processes also enter this state, 
and old ones leave the CPU. 

One of the important problems in operating systems is mu- 
tual exclusion to a critical section of code, where only one 
concurrent process executes the code at any particular time. 
The problem (not the solution) is illustrated in Fig. 3. Both 
processes have an OR-fork which results in three possible 
scenarios. 

First, each process may take the fork which leads to a wait- 
ing place. Note that  the trigger to this waiting place is a 
path that  results from an AND-fork from the other process 
after it successfully completes access to the critical section. 
That  means that  both processes will deadlock, waiting for 
the other process to cause a trigger event. 

Second, each process may take the non-waiting path and 
both might enter the critical section, hence, violating mutual 
exclusion. 

The third scenario results when one process takes the wait- 
ing path and the other process enters the critical section. 
After the access is complete, the process triggers the other 
process to enter the section. This is the desired scenario but 
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F i g u r e  3: T h r e e  scenar ios  re su l t  f r o m  th i s  c r i t i c a l  
s e c t i o n  U C M :  m u t u a l  exc lus ion ,  v i o l a t i o n  o f  m u t u a l  
exc lus ion ,  or  d e a d l o c k .  

n6nfln 

write 

F i g u r e  4: R e a d e r s  h a v e  s h a r e d  access  to  a file b u t  
m u s t  c o m p e t e  a g a i n s t  a sole  w r i t e r .  O n l y  t h e  f irst  
r e a d e r  does  t h e  a c t u a l  c o n t e n t i o n  and ,  a f t e r w a r d s ,  
u n s u s p e n d s  t h e  o t h e r  r e a d e r s .  

does not show "how" to implement the code; this is not the 
main point of the analysis stage, and the UCM provides a 
good way of abstracting the problem. 

Another important classical problem in operating systems is 
the Readers-Writer problem, see Fig. 4. Whereas the critical 
section problem requires mutual exclusive access, hence low 
concurrency, the access to a sharable resource, such as a file, 
allows for more concurrency. Readers of a file are allowed 
this type of shared access but must compete for this access 
against a sole writer to the file. The UCM shows a first 
reader competing for the file against a writer. The partic- 
ular scenario shown has the reader block at a waiting place 
while the writer actually writes to the file. Other "piggy- 
back" readers enter the scenario but are blocked at a dif- 
ferent waiting place: only the first reader needs to compete 
for the resource. After the writer is finished, it unblocks the 
first reader, who then unblocks the other piggy-back readers. 
All readers can then access the resource. 

The previous UCMs analyze the system from an outside 
perspective, but now the inner behaviors of the system are 
investigated, in particular, the three main subsystems: I /O,  
IPC, and disk. 

Figure 5 shows the classic bounded-buffer solution to the 
output subsystem. The scenario shows the behavior of print- 
ing a string of characters. The OutProducer component 
represents the "upper-half" of the device driver and it must 

F i g u r e  5: O u t p u t  s u b s y s t e m  scenar io .  T h e  p r o d u c e r  
blocks  w h e n  t h e  buf fe r  is full; t h e  c o n s u m e r  b locks  
w h e n  t h e  buf fe r  is e m p t y .  

first synchronize to be sure that  it does not overwrite the 
buffer of output characters. The OR-fork in the UCM may 
block at a waiting place, or avoid this place and move on to 
the buffer manager. 

The buffer manager puts a new character into the buffer 
pool, and then the path goes to another synchronizing mech- 
anism. This mechanism is a trigger to a waiting place where 
the "lower-half" OutConsumer is blocked. (Device drivers 
typically have these upper- and lower-half components be- 
cause of the differential in speeds: the upper-half runs, as 
the application writes strings, at the speed of the CPU, while 
the lower-half runs at the speed of the output/console con- 
troller.) 

The scenario shows that  it is important to block the Out- 
Consumer because the buffer is initially empty. It is only 
when the OutProducer has put some data into the buffer 
that  the OutConsumer can run, dequeue data from the buffer, 
and then unblock the OutProducer waiting because of a full 
buffer. It is the responsibility of the lower-half to generate 
an interrupt so that  the device controller initiates the actual 
display of data. 

A typical implementation of a lower-half usually involves a 
process with an infinite loop. The UCM here does not show 
that  and, instead, relies on the token source nature of the 
start point to process more data. Again, this demonstrates 
that  the analysis does not always directly match, nor should 
it, a design or implementation of the scenario. The input 
system has the same structure as the ouput scenario, with 
the exception that  the roles are reversed with respect to the 
buffer. 

Interprocess communication allows processes to coordinate 
their activities and is one of the most important features of 
an operating system. A semaphore may be used to control 
access to shared data or a critical section of code. Mes- 
sage passing is an alternative form of IPC. Messages may 
pass along a port within a computer system or, as shown in 
Fig. 6, across a network to a port on another system. The 
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Receiver receive 
MessageQueue 

Sender ~ NetPoo2 

F i g u r e  6: A s e n d e r  t r a n s m i t s  a m e s s a g e  a c r o s s  t h e  
n e t w o r k ,  w i t h  a l i s t e n i n g  p r o c e s s  a t  t h e  o t h e r  e n d  
o f  t h e  c o n n e c t i o n .  W h e n  t h e  m e s s a g e  a r r i v e s ,  i t  is 
p l a c e d  i n t o  t h e  q u e u e  a n d  a b l o c k e d  r e c e i v e r  c a n  
r e t r i e v e  t h e  m e s s a g e .  

sender interacts  wi th  a por t  of the  current  system, the  re- 
sult is an AND-fork  which sends the  message on the network, 
and continues the  behavior  of the  current  process. On the  
receiver side, the act of request ing a message causes the pa th  
to go into a wait ing place. This  scenario results when the  
receiver requests  a message but  no messages are available in 
the message queue, or inbox. 

The  port  on the receiver side also has another  concurrent  
pa th  which blocks on a wai t ing place, l istening for messages 
coming in from the  network. W h e n  a message arrives from 
the sender, this pa th  unblocks, continues along the pa th  to 
put  the  new message in the queue, and then  tr iggers the 
blocked receiver to dequeue the  new message, hence return-  
ing it to the  receiver. 

The  last major  subsystem is the  disk, Figs. 7 and 8. The  
scenario to read a block of da t a  from the disk is shown in 
Fig. 7, where it is assumed tha t  the  read is "synchronous",  
tha t  is, the  read must  suspend in a wait ing place unti l  the  
complet ion of the  disk read. The  reader  provides a buffer in 
which the device driver fills the  data.  This  disk opera t ion  
takes a long t ime compared  to the  speed of the  reader,  i.e., 
C P U  speed. If the  reader were to continue, wi thout  a sus- 
pension, then  it would be eligible to read from a buffer wi th  
non-existent  data.  

On the  other  hand, the disk wri te  scenario, Fig. 8, assumes 
an "asynchronous" write, tha t  is, the  write does not  have 
to suspend. Instead, a wri te  can continue on a pa th  and 
go about  doing other  work, but  usually this other  work in- 
volves more wri t ing to the  disk. In part icular ,  this work 
could involve reusing the same buffer tha t  was provided in 
the  previous wri te  operat ion.  Since the  disk wri te  opera-  
t ion takes a long t ime in comparison,  the  writer  would, in 
effect, wri te  over the original data.  For this reason, an asyn- 
chronous wri ter  needs to al locate an ext ra  buffer in which to 
copy the  data.  This  is the da t a  tha t  will be wr i t ten  to the  
disk. The  wri ter  is then  free to reuse the original buffer over 
again. The  only problem is tha t  opera t ing  systems do not al- 
locate any more memory  after boot  t ime because tha t  could 
lead to a complete  drain on memory  by over-demanding disk 
writers. Instead,  only a fixed amount  of these "copy" buffers 

mad 
U rHalf 

enqueue 

QuequUe~ interrupt 
I ~ dequeue 

F i g u r e  77: A d i s k  r e a d  p l a c e s  a r e q u e s t  i n t o  t h e  q u e u e  
a n d  w a k e s  u p  t h e  l o w e r - h a l f  p r o c e s s .  A f t e r  p r o c e s s -  
i n g  t h e  r e q u e s t ,  t h e  l o w e r - h a l f  u n b l o c k s  t h e  " s y n -  
c h r o n o u s "  r e a d .  

are al located at boot  time, and an over-demanding write  will 
have to suspend if these are all consumed. When  the  system 
finishes processing a previous write request,  a buffer will be 
returned,  and a suspended wri ter  can then  reuse this as the 
copy buffer. 

Now for the  details of bo th  the  read and write  scenarios as 
presented in the  UCMs.  A reader first interacts  wi th  the  
upper-hal f  of the device driver. The  upper-hal f  enqueues a 
disk request  on a disk queue and then  sends a message on 
a port ,  thus signally the  lower-half to unblock and dequeue 
the  disk request.  Note  tha t  this disk queue is probably  not 
a Firs t - In  F i r s t -Out  (FIFO)  queue because the  disk requests  
would tend  to make the  disk arm move back and forth while 
processing very few requests.  Typically, an elevator algo- 
r i t hm [11], [22] would be used so tha t  many requests  can be 
processed as the  disk arm moves in one direction. 

After  the  lower-half removes a disk request,  an in terrupt  
is generated for the disk controller to process the  request.  
After  the processing occurs, the reading process, which has 
been suspended in the  upper-half ,  is now unsuspended.  

The  disk wri te  scenario, Fig. 8, is more complicated because 
it is asynchronous and requires the  addit ional  copy buffer 
mechanism. First ,  the  wri ter  needs to acquire a copy buffer, 
which may  or may  not  block depending on the  availabil- 
i ty of buffers. Ei ther  immediately,  or after the  suspended 
writer  unblocks, a disk request  is placed into the  disk queue 
and a message sent on the  port .  This  message unblocks the  
lower-half, tel l ing it to ext rac t  from the  disk queue. Af- 
ter  processing the request,  the  copy buffer is re turned  to 
the buffer pool  manager ,  which then  unblocks a suspended 
writer.  Note  tha t  a wri ter  only suspends in the  case of an 
empty  buffer pool; otherwise,  the  wri ter  is free to continue 
with  its act ivi t ies at the  same t ime as the  device driver pro- 
cesses requests. 
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write 

dequeue interrupt 

F i g u r e  8: A n  " a s y n c h r o n o u s "  d isk  w r i t e  a t t e m p t s  to  
a l loca t e  a copy buffer  f rom t h e  buffer  pool .  I f  e m p t y ,  
it  b locks;  o the rwi se ,  t h e  wr i t e  p laces  a r e q u e s t  in to  
t h e  q u e u e  a n d  wakes  u p  t h e  lower-half .  Beca use  of 
t he  copy  buffer ,  t he  w r i t e  does  no t  n e e d  to  wai t  u n t i l  
t h e  r e q u e s t  is p rocessed .  

In conclusion, the UCMs are able to abstract this lengthy 
exposition into a visually concise format. 

4. UML DESIGN 
This section presents a short summary of the UML design. 
(The full UML design contains about 125 diagrams and is 
available at http://www.sci.csuhayward.edu/-billard/ooos/.  
The design is currently used in a graduate operating sys- 
tems course.) Figure 9 shows the overall package layout 
with the public classes (+) representing the Application Pro- 
gramming Interface (API) for applications such as Dining 
Philosophers and Readers-Writer [22], both good examples 
of concurrent processes which use semaphores for interpro- 
cess communication. This package layout illustrates an im- 
portant design principle for operating systems: layer the 
software. The upper layer is for application code, the mid- 
dle layer for subsystems (IPC, I/O, Disk), and the lowest 
layer is for the core functionality of the system, in particu- 
lar, the scheduling of processes. T h e  following subsections 
provide details of the UML design of semaphores, network 
subsystem, and disk subsystem. 

4.1 Semaphore Design 
In Section 3, UCM scenarios for mutual exclusion (Fig. 3) 
and the Readers-Writer problem (Fig. 4) illustrated the need 
for semaphores to perform interprocess communication. A 
semaphore is used to protect "critical sections" of code where 
only one concurrent process should operate at a time. Entry 
to a critical section must be accompanied by a wait method 
call, which will suspend the process if another process is 
already in the section of code. When leaving a critical sec- 
tion, a process needs to do a signal call in case there are 
waiting processes. Figures 10 and 11 show the UML col- 
laboration diagrams for both methods. The main point is 
that  a counter determines whether a process needs to be 
suspended in a wait, or resumed in a signal, and, if neces- 

+Semaphore 
+Message 
+Abst ractPort 
-SPort 
~NetPort 
#NetGraph 

@ D~iningPhilosophers 
[ +ReadersWriter 
[ +LeaderElection 
] +DiskClient 

+InConsumer 
+OutProducer 
+Debug 
~¢InProducer 
~Out Consumer 
~Buffer 
~,~Console 

imports 

+DiskUpper 
:~:DiskLower 
~BufPool 
~q:DiskReq 
kDiskQueue 

J 
imports 

+Proc 
+ProcTable 
#O00S 

#PCB 

:~FIFOQueue 
~,~ PrioQueue 
~,~ Queue 
~,~Null 
:~Dispatcher 
~Scheduler 

F i g u r e  9: A p p l i c a t i o n  P r o g r a m m i n g  I n t e r f a c e  ( A P I )  
specif ied as U M L  packages  w i t h  s u b s y s t e m s  in  t h e  
m i d d l e  layer .  

l:[----count< 0] 
~ ~ b l o c k ( )  

Wait() :Seme, phore ] l'l:p:=currentPr°c0] Proc 

1.3:setState(PCB.WAITING) t 

q:FIFOQueue [ 

p:Proc I 

1.4:reSched() I OOOS.sch:Scheduler 

F i g u r e  10: C o l l a b o r a t i o n  d i a g r a m  of  a wai t  o n  a 
s e m a p h o r e .  A n e g a t i v e  c o u n t e r  causes  a r e q u e s t e r  
to  b lock  a n d  a n o t h e r  p rocess  s c he du l e d  for t he  C P U .  
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Signal() [ 

1 : [count --b -'~- < O] 
[ [ ~ unbl°ckO 

:Semaphore [ I ' I : p : :  (~Pr°c )deq  . . . .  01 Q:FIFOQ . . . .  [ 

F i g u r e  11: C o l l a b o r a t i o n  d i a g r a m  of a s igna l  on  a 
s e m a p h o r e .  A n e g a t i v e  c o u n t e r  i n d i c a t e s  t h e  exis -  
t e n c e  of  w a i t i n g  process ,  wh ich  shou ld  t h e n  be  de-  
q u e u e d  f rom the  s e m a p h o r e ' s  q u e u e  a n d  p laced  in to  
t h e  r e a d y  q u e u e  for t h e  C P U .  

sary, the scheduler will select a new process from the ready 
queue and install it on the CPU. 

4.2 Network Subsystem Design 
The design of the port subsystem, analyzed earlier as a Use 
Case Map (Fig. 6), is presented in Figs. 12, 13, and 14. 
The architecture design, Fig. 12, shows a superclass, called 
AbstractPort, which maintains both the queue of unreceived 
messages and the queue of processes waiting to receive a 
message. This class is able to generalize an implementation 
for the receive method: just return the head of the message 
queue, if not empty. 

However, the send method depends upon the type of port. 
Communication within a computer system does not require 
network access and can be performed in-memory. Communi- 
cation between two computer systems requires the network. 
Both of these ports, therefore, require specialization in sub- 
classes of the abstract superclass, with only the network port 
shown in the figure. The network port requires the host and 
port number with which to communicate on the other end 
of the network connection. The network port implements 
the Runnable interface and is, therefore, an asynchronous 
thread. The thread blocks as it listens on the network for 
incoming messages. 

Figure 13 shows the detailed design, as a UML collaboration 
diagram, of the send method. The main point is that the 
message can be serialized to a string, and then written to 
the network using Socket and BufferedWriter objects. 

Figure 14 shows the design of the listener at the other end 
of the network connection. The run method uses Socket 
and BufferedReader objects to read from the network. Af- 
terwards, the new message is placed in the message queue 
and, if the queue of waiting processes is not empty, then the 
longest waiting process is placed in the ready queue. 

4.3 Disk Subsystem Design 
The design of the disk scheduling subsystem is presented in 
Figs. 15 and 16. Disk subsystems, as well as I /O subsystems, 
are usually designed with upper-half and lower-half compo- 
nents. The upper-half object has a shared data structure 
with the lower-half, a queue of disk requests sorted based 
on an elevator algorithm [ll], [22]. A port object is used to 
c o m m u n i c a t e  between the two halves. The upper-half en- 
queues new disk requests (read/write) at the request of the 

Abstract Por t 
~msgQ:FIFOQueue 
#proeQ:FIFOQueue 
~name:String 
-q- Abst r act Por t ( name: St ring) 
-block() 
q-Receive0:Message 
-bSend(msg:Message) 

<: <~ inter facet  
Runnable 
+run()  

Lk 
I 
I 

I 
I i 

NetPort 
-host:String 
-por tNum:int 
-kNetPor t (name:String) 
-J-Net Por t (name: St ring, 

host:String, 

portNum:int) 
-kSend ( msg: Message) 
+run()  

F i g u r e  12: N e t w o r k  p o r t  i n h e r i t a n c e  s t r u c t u r e  in  
U M L .  T h e  a b s t r a c t  superc las s  m a i n t a i n s  t h e  q u e u e s  
a n d  i m p l e m e n t s  t h e  rece ive  ( just  d e q u e u e  from t h e  
head  of t h e  q u e u e ) .  T h e  subc lass ,  a c o n c u r r e n t  
t h r e a d ,  s en d s  m e s s a g e s  on  a p o r t  a n d  also has a r u n  
m e t h o d  which  l i s tens  for i n c o m i n g  messages  on  t h e  
ne twork .  

Send(msg) :NetPort t l:obj:=getObject() 

I L2 t r : : toStr ing 0 

I 3:s:=create(host,portNum) 
[ 4:°s:=get Out putStream0 

10:close0 

5:osw:~create(os) 

6:out:~create(osw) 
7:write(str,0,str.lengt h0)  
8:newLine 0 
9:flush 0 

I msg:Message 

obj:Object 

s:Soeket 

[oswOuputStramWrltor I 
out:I3ufferedWriter 

F i g u r e  13: U M L  c o l l a b o r a t i o n  d i a g r a m  for N e t -  
P o r t ' s  s end  m e t h o d .  T h e  m e s s a g e  is w r i t t e n  as a 
s t r ing  to  t h e  n e t w o r k  u s i n g  a socket .  
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runO I :NetPort 

I 

l:ss:=create(portNum) 
2*:[true] I 
2-1:s::accept 0 

2_2 :is::g~et I nput St ream 0 
2-6:close 0 

2-3:isr:~create(is) 

2.4:in:=create(isr) 
2-5:str:=readLine 0 

2_7:msg::create(str) 

2_8:enqueue(msg) 

2-9:[!isE~mpty0] [ 
2_9~1:p:~ (Proc)dequeue() [ 

2-9.2:ready(p) 

ss:ServerSocket 

s:Socket 

I isr :Input St reamReader 

I in:B u fferedP..eader 

I msg:Messaage 

msgQ:FIFIQueue 

procQ:FIFOQueue 

OOOS.sch:Scheduler 

F i g u r e  14: U M L  c o l l a b o r a t i o n  d i a g r a m  for N e t -  
P o r t ' s  run  m e t h o d .  T h i s  a s y n c h r o n o u s  m e t h o d  lis- 
t e n s  on  a server  socke t ,  u n b l o c k s ,  a n d  reads  a s t r i n g  
f r o m  t h e  por t .  A f t e r  an  e n q u e u e  o f  t h e  n e w  m e s s a g e ,  
a r e c e i v i n g  proces s  can  b e  u n b l o c k e d  a n d  r e a d i e d  for 
t h e  C P U .  

application and the lower-half, an asynchronous process, de- 
queues and processes the requests. 

The requests include a buffer in which to read data or write 
data, and the design calls for any reading application to 
block until  the read operation is done ("synchronous read" ). 
For any writing application, an "asynchronous write" is per- 
mitted by doing a copy to a new buffer allocated from a 
buffer pool, before the calling application continues on with 
its computation. The pool has only a finite number of copy 
buffers and a semaphore is used to block the requesting ap- 
plication if all buffers have been allocated. The lower-half 
removes from the head of the queue, seeks to the block, and 
writes the data from this copy buffer. 

5. JAVA IMPLEMENTATION 
The object-oriented operating system was implemented in 
Java. Details of the network and disk subsystems follow. 

5.1 Network Subsystem Implementation 
The analysis and design of the network port lead to an im- 
plementation in Java, Fig. 17. The code closely follows, as it 
should, the detailed UML collaboration diagrams in Figs. 13 
and 14. 

5.2 Disk Subsystem Implementation 
In this subsection, the Java code is presented for the key 
parts of the disk subsystem, which forms the basis for the 
performance evaluation in the next section. The Java code 
for the pool of pre-allocated copy buffers, for asynchronous 

I O00S [ 

¥ 

] ] DiskLower 

I RandomAccessFile I 

Proc ] 

@ ' 
I DiskQueue ] 

I DiskReq 

byte[] 

T 
BufPool [ 

I 
v ¥ 

i .... I i I 

F i g u r e  15: S t r u c t u r e  o f  t h e  d i s k  s c h e d u l e r .  T h e  
u p p e r - h a l f  o f  t h e  d e v i c e  p laces  n e w  d i s k  r e q u e s t s  
i n t o  a s h a r e d  q u e u e  so t h a t  t h e  l o w e r - h a l f  o f  t h e  
d e v i c e  can  e x t r a c t ,  a n d  process ,  at  i ts  o w n  s p e e d .  
A m e s s a g e  p o r t  is u s e d  to  c o n t r o l  s y n c h r o n i z a t i o n  
to  t h e  s h a r e d  q u e u e ,  a n d  a buf fer  p o o l  is ava i lab le  
for a c q u i r i n g  "copy" buf fers  for a s y n c h r o n o u s  d i s k  
w r i t e  r e q u e s t s .  

write(blockNum,buf) 

4:enqueue(dr ) 

: DiskU pp e______~ [ 5:Send(null) 

i o, o i .... 
0:msg:=Receive 0 

:Semaphore 

1.1:wait0 4 [ 
5"l'4"l:Signall) ' [ 

I 
2:c°pyB~u f(bu f'buf2 )1 BufPool 

3:dr:=create0 [ :DiskReq 

I ÷ 

5.1.1:dr:=dequeue 0 

:DiskLower I 

5.1.2:seek (dr .blockNum)~ [ 
5.1.3:write(dr.buf) 

:RandomAccessFile [ 

Lt 

÷ 
5.1:resume(] 

5.1.4:putBuf(dr.buf) 

F i g u r e  16: C o l l a b o r a t i o n  d i a g r a m  o f  d i s k  s c h e d u l -  
ing  i n t e r a c t i o n .  D i s k  w r i t e s  r equ ire  a "copy" buf fer  
b e f o r e  t h e  e n q u e u e  o f  a n e w  r e q u e s t .  T h e  lower-  
h a l f  b l o c k s  on  a m e s s a g e  r e c e i v e  unt i l  a n e w  r e q u e s t  
is p l a c e d  in t h e  q u e u e .  A f t e r  p r o c e s s i n g  t h e  w r i t e  
r e q u e s t ,  t h e  buf fer  can  b e  r e t u r n e d  to  t h e  poo l .  
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public class NetPort extends AbstractPort 
implements Runnable { 

private String host; 
private int portNum; 
public NetPort (String name, String host, 

int portNum) { 
this(name); 
this.host = host; 
this.portNum = portNum; 
Thread t = new Thread(this); 
t . s t a r t ( ) ;  

} 
public void Send(Message msg){ 

Object obj = msg.getObject(); 
String msgStr = obj.toString(); 
try { 

Socket s = new Socket(host, portNum); 
BufferedWriter 

out = new BufferedWriter( 
new OutputStreamWriter( 

s.getOutputStream())); 
out.write(msgStr,O,msgStr.length()); 
out.newLine(); 
out.flush(); 
s.close(); 

} 

catch(IOException e) {} 
} 

public void run() { 
try { 

ServerSocket 
server = new ServerSocket(portNum); 

while (true) { 
Socket incoming = server.accept(); 
BufferedReader 

in = new BufferedReader( 
new InputStreamReader( 

incoming.getInputStream())); 
String s = in.readLine(); 
incoming.close(); 
msgQ.enqueue(new Message(s)); 
if (!procQ.isEmpty()) { 

Proc waiting = (Proc) procQ.dequeue(); 
O00S.sch.ready(waiting); 

} 

} catch(IOException e) {} 
} 

F i g u r e  17: J a v a  code for t h e  N e t P o r t  class. T h e r e  
is a l m o s t  a o n e - t o - o n e  r e l a t i o n s h i p  b e t w e e n  t h e  J a v a  
code a n d  t he  de t a i l ed  U M L  c o l l a b o r a t i o n  d i a g r a ms .  

public class BufPool { 
public static int NUMBUFS = 20; 
FIFOQueue bufPool = new FIFOQueue(); 
Semaphore notEmpty = new Semaphore(NUMBUFS); 
protected BufPool() { 

for (int i=l; i<=NUMBUFS; i++) 
bufPool.enqueue(new byte[512]); 

} 

protected byte[] getBuf() { 
notEmpty.Wait(); 
return (byte[]) bufPool.dequeue(); 

} 

protected void putBuf(byte[] bur) { 
bufPool.enqueue(buf); 
notEmpty. Signal(); 

} 

protected static void copyBuf(byte[] bull, 
byte[] bur2) { 

for (int i=O; i<O00S.BUFSIZE; i++) 
buf2[i] = buff[i]; 

} 
} 

F i g u r e  18: J a v a  code for pool  of p r e - a l l o c a t e d  copy 
buffers ,  w i t h  p r o t e c t e d  a c c e s s  v i a  a s e m a p h o r e .  

writes, is shown in Fig. 18. The constant NUMBUFS de- 
termines the number of pre-allocated copy buffers, which 
are placed in a First-In, First-Out queue. This constant be- 
comes a variable in the performance evaluation and turns 
out to be important to the disk throughput. A semaphore 
is provided to block requesters of copy buffers when the pool 
is empty. This has the effect of stopping a burst of asyn- 
chronous write requests, hence affecting the throughput. 

Figure 19 shows the Java code for the upper-half device 
driver. The application makes calls to the public read/write 
methods to access disk blocks. Note that an asynchronous 
write access requires the allocation of a copy buffer for the 
data, whereas the synchronous read is suspended. The upper- 
and lower-halves use messages on ports to control synchro- 
nization to the shared queue of disk requests. 

In this study, the queueing and processing of disk requests 
has two implementations. First, the C-LOOK algorithm [22] 
is a fairly simple form of an elevator algorithm: 

Move the disk arm from low to high blocks, pro- 
cessing any requests in the queue which occur 
along the way. Upon servicing the highest re- 
quested block, reset the arm to the lowest requested 
block in the queue, and start scanning toward 
higher blocks again. 

Second, the XINU [11] algorithm is another form of elevator 
algorithm: 

When adding a request for block B to the exist- 
ing queue of requests, schedule it to be performed 
between requests for i and i -t- 1 if the disk arm 
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public class DiskUpper { 
private Port diskPort = new Port(); 
private Disk~ueue diskQ = new DiskQueue(); 
private BufPool bufPool = new BufPool(); 
public DiskUpper() { 

new DiskLower(diskPort,diskQ,bufPool).Start(); 
} 

private void diskEnqueue(int ioType,int blockNum, 
byte[] bur, Proc p) { 

DiskReq dr =new DiskReq(ioType,blockNum,buf,p); 
diskQ.enqueue(dr); 
diskPort.Send(null); 

} 
public void write(int blockNum, byte[] bur) { 

byte[] bur2 = bufPool.getBuf(); 
BufPool.copyBuf(buf,buf2); 
diskEnqueue(DiskReq.WRITE,blockNum,buf2,null); 

} 
public void read(int blockNum, byte[] bur) { 

Proc me = Proc.currentProc(); 
diskEnqueue(DiskReq.READ,blockNum,buf,me); 
me. Suspend(); 

} 

F i g u r e  19: J a v a  code for t h e  u p p e r - h a l f  device  
d r ive r .  W r i t e  r e q u e s t s  r e q u i r e  a "copy"  buffer  and 
read reques t s  m u s t  be  s u s p e n d e d .  

will  pass over  block B on its way  f r o m  i to i + 
1. I f  no such pair  i and i + 1 exist, add the new 
request to the end o f  the list. 

Consider the arrival of requests for blocks 50, 70, 60, 40, 80, 
20, with block 50 undergoing immediate processing. The 
C-LOOK algorithm forms a queue (50 60 70 80) (20 40) 
and processes the first batch before resetting to the second 
batch for another upward swing. Note that both batches are 
sorted in ascending order and that a binary search can be 
performed on a particular batch in order to determine the 
position for inserting a new request. The queue is imple- 
mented with a Java vector, hence, the insertion operation 
is quick. The XINU algorithm forms a queue (50 60 70 40 
80 20), which is a "fairer" order in terms of arrivals. The 
problem is that the queue is not in ascending order, im- 
plying that  a sequential search is required, rather than a 
binary search. This has performance implications which are 
analyzed in the next section. 

The lower-half device driver is shown in Fig. 20. The process 
blocks unless there are messages in the shared port from 
the upper-half device driver. The number of outstanding 
messages is equal to the number of outstanding disk requests 
in the disk queue. The lower-half extracts a disk request and 
either writes the block of data to the disk (and returns the 
pre-allocated copy buffer) or reads the block of data from 
the disk (and unsuspends the currently blocked application 
process). 

The run method of the lower-half driver is the object of 
instrumentation in the performance evaluation. The total 

public class DiskLower extends Proc { 
private RandomAccessFile raf; 
private DiskQueue diskQ; 
private Port diskPort; 
private BufPool bufPool; 
protected DiskLower(Port diskPort, 

Disk~ueue diskQ, 
BufPool bufPool) { 

this.diskPort = diskPort; 
this.diskQ = disk~; 
this.bufPool = bufPool; 

} 
public void run() { 

while (true) { 
Message msg = diskPort.Receive(); 
DiskReq dr = (DiskReq) diskQ.dequeue(); 
diskIO(dr); 

} 
} 

private void diskIO(DiskReq dr) { 
raf.seek(OOOS.BUFSIZE * dr.getBlockNum()); 
if (dr.getType() = =  DiskReq.READ) { 

raf.read(dr.getBuf()); 
dr.getProc().Resume(); 

} else { 
raf.write(dr.getBuf()); 
bufPool.putBuf(dr.getBuf()); 

} 
} 

F i g u r e  20: Par t ia l  J a v a  code for t h e  lower -ha l f  de-  
vice d r ive r .  W r i t e  r e q u e s t s  r e t u r n  t he  "copy"  buffer  
an d  read reques t s  are u n s u s p e n d e d .  

number of processed disk requests divided by the time spent 
in the body of code determines the throughput of requests 
per unit  of time. 

6. P E R F O R M A N C E  ANALYSIS 
Two performance studies are summarized in this section: 
a queueing network simulation of the state transitions and 
instrumentation of the disk subsystem. 

6.1 State Transition Simulation 
The state transition diagram, in Fig. 2, can be analyzed 
for anticipated performance using a queueing network for 
simulation. In this study, a tool implemented by the author 
[4] was used for simulation but a Layered Queueing Network 
(LQN) would be an alternative [17], [21]. 

Figure 21 shows a queueing network for Fig. 2, with new job 
arrival rate A, probabilities p~ for rescheduling on the CPU, 
exiting the system, or entering one of the subsystems (I/O, 
Disk, IPC). The service rate for the CPU is ~1 and for each 
of the subsystems #2. 

A closed-form analytic solution is determined as follows. 
The conservation of job flow establishes a set of simulta- 
neous equations for Ai, the flow at any point in the network. 
The number of visits to each point is the ratio V~ ---- A~/A. 
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Figure 21: Queueing  ne twork  for s ta te  trans i t ions  
f rom C P U  to C P U ,  I / O ,  Disk,  or  I P C .  

Service Rates 
CPU (it1) 100 jobs/sec 
I/O, Disk, IPC (#2) 10 jobs/sec 

Probabilities 
Exit (P2) 0.1 

CPU- IO- 
Bound Bound Balanced 

Reschedule (pl) 0.9 0.0 0.45 
I/O, Disk, IPC (p3) 0.0 0.90 0.45 
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Figure 22: S imulat ion  results  (5 runs each) show 
the  per formance  of I / O - b o u n d  ve r sus  C P U - b o u n d  
job s y s t e m s .  Turnaround t i m e  is the  average t i m e  
until  a j o b  ex i t s  the  sy s t em.  T h e  solid l ine repre- 
sents  an analyt ic  result  assuming  M / M / 1  queueing 
characterist ics  at each processor .  

Tab le  1: Exper imen ta l  des ign of C P U - b o u n d  versus  
I / O - b o u n d  s y s t e m s .  

Assuming an M/M/1 queueing system at each server, the 
response time is Ri = 1/(#i - A 0. From this, the overall 
system response (turnaround) time is: 

4 
1 1 -- Pl - P2 R~u~*~m = E ViRi -- - -  + 

i=1 P2#l - A 3p2#2 - (1 - p l  - p2)A 

The simulation experimental design of service rates and prob- 
abilities is presented in Table 1. The main feature is that 
the probabilities are adjusted to reflect the nature of the in- 
put job stream. I /O-bound jobs do not return to the CPU 
directly but, instead, go to the I /O (or disk or IPC) subsys- 
tem. CPU-bound jobs always return to the CPU for more 
processing (unless the job exits), and never do I/O. 

Figure 22 shows the difference in performance of I /O-bound 
versus CPU-bound job input streams as a function of the 
new job arrival rate. Given the faster service rate of the 
CPU, the CPU-bound system has a faster turnaround time. 

6.2 Disk Subsystem Instrumentation 
The instrumentation in the lower-half device code measures 
the throughput of disk requests, as shown in Fig. 23. The 
test application creates 5000 disk write requests. To ana- 
lyze the effect of bursty disk requests, time slicing is not 
permitted. The only thing preventing an entire burst of 
5000 requests from filling up the queue is the fact that the 
disk writes are asynchronous, necessitating the allocation of 
copy buffers. The semaphore in the buffer pool is designed 
to block this type of request if all pre-allocated buffers have 

been assigned. The number of pre-allocated buffers is the x- 
axis in Fig. 23, each data point for the throughput (y-axis), 
is the average of 5 runs. 

With a small number of copy buffers, the bursty behavior is 
controlled because the application blocks on the semaphore, 
and waits for a copy buffer to be returned by the lower-half 
device driver after processing a write request. With a large 
number of copy buffers, the bursty behavior of the applica- 
tion is only encouraged, and the queue of disk requests is 
large. 

The C-LOOK algorithm shows a constant throughput mainly 
because the binary search on the sorted queue, even on a 
long queue, is efficient in determining the insertion point. In 
the XINU algorithm, the sequential scan of the disk queue, 
to find the appropriate position, slows the system down as 
the number of pre-allocated copy buffers increases. (Note 
that a very small number of copy buffers, say 1, reduces the 
throughput because of the context switching back-and-forth 
between the upper-half and lower-half drivers.) 

Figure 24 shows the average response (or service) time to 
process a single disk write request. This is the time delta be- 
tween inserting into the queue by the upper-half and actual 
processing by the lower-half driver. The C-LOOK algorithm 
shows an increase in this response time as the size of the disk 
queue increases (according to the number of copy buffers). 
This is to be expected because, although insertion-location 
is quicker, there are still a larger number of requests in the 
queue. As for XINU, the response time is worse because the 
insertion-location time is also longer. 

7. CONCLUSIONS 
This paper has summarized the life cycle development of an 
operating system. The Use Case Maps for describing op- 
erating system scenarios illustrate the subtle characteristics 
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F i g u r e  23: Disk  wr i t e  t h r o u g h p u t  as  a f u n c t i o n  of  
t h e  n u m b e r  of copy  buffers .  T h e  X I N U  a l g o r i t h m  
suffers b e c a u s e  of  b u r s t y  a s y n c h r o n o u s  d isk  w r i t e  
r eques t s .  
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F i g u r e  24: A v e r a g e  r e s p o n s e  t i m e  as a f u n c t i o n  of 
t h e  n u m b e r  of copy buffers .  T h e  X I N U  a l g o r i t h m ,  
aga in ,  suffers b e c a u s e  of b u r s t y  a s y n c h r o n o u s  d isk  
wr i t e  r eques t s .  

found in such systems, in particular, the concurrent pro- 
cesses which block and unblock. Also, the UCMs are able to 
show the behaviors which transcend subsystems, mainly the 
upper-half and lower-half interactions of the I /O and disk 
subsystems. The UCM notation for a pool is applicable for 
the wide variety of queue structures found in such systems. 

The later part of the life cycle, the UML design and Java 
implementation, is distinct from the early UCM analysis, 
which tends to support a more open-ended, wide-ranging 
consideration of the problems at hand. 

Although operating system design has been traditionally a 
function-oriented view, all of the concepts readily translate 
to an object-oriented view, with UML presentations describ- 
ing both the organization of the subsystems and the details 
of the interactions. Class representations make clear the 
concepts of semaphores, messages, ports, processes, process 
control blocks, CPU schedulers, dispatchers, queues, as well 
as upper- and lower- half components for input, output, and 
disk schedulers. Operating systems have always presented 
challenges in terms of effective designs and the UML portion 
of this case study helps to deal with the complexities of such 
systems. 

With respect to performance, queueing network simulation 
allows for the early investigation of performance issues, rather 
than waiting until completion of the implementation. The 
instrumentation of the disk subsystem shows the interest- 
ing (and paradoxical) result that more system resources - 
in this case, copy buffers - actually leads to reduced perfor- 
mance using the XINU elevator algorithm. The C-LOOK 
algorithm, with the binary search on the sorted queue, per- 
forms well. The XINU algorithm could be improved with 
the introduction of a mechanism, say a yield, which would 
artificially slow down the burst and let the lower-half driver 
process disk requests, hence, reducing the queue length. 
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