Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.

Automatic Failure Diagnosis Support in Distributed Large-Scale
Software Systems based on Timing Behavior Anomaly Correlation*

Nina Marwede
BTC Business Technology Consulting AG
Escherweg 5, 26121 Oldenburg, Germany
nina.marwede (@)btc-ag.com

André van Hoorn
Graduate School TrustSoft

University of Oldenburg, Oldenburg, Germany
van.hoorn@informatik.uni-oldenburg.de

Abstract

Manual failure diagnosis in large-scale software systems
is time-consuming and error-prone. Automatic failure di-
agnosis support mechanisms can potentially narrow down,
or even localize faults within a very short time which both
helps to preserve system availability. A large class of auto-
matic failure diagnosis approaches consists of two steps: 1)
computation of component anomaly scores; 2) global cor-
relation of the anomaly scores for fault localization.

In this paper, we present an architecture-centric ap-
proach for the second step. In our approach, component
anomaly scores are correlated based on architectural de-
pendency graphs of the software system and a rule set to
address error propagation. Moreover, the results are graph-
ically visualized in order to support fault localization and
to enhance maintainability. The visualization combines ar-
chitectural diagrams automatically derived from monitor-
ing data with failure diagnosis results. In a case study, the
approach is applied to a distributed sample Web application
which is subject to fault injection.

1 Introduction

For many companies, software systems such as online store
applications or information systems are business-critical.
Due to their complexity, such large-scale software systems
are practically never free of software faults, and especially
software faults are a major cause for system failures [9].
Manual failure diagnosis can be very time consuming and
error-prone, since debugging is basically a search in space
across a program state to find infected variables, and a

Matthias Rohr
BTC Business Technology Consulting AG
Escherweg 5, 26121 Oldenburg, Germany
matthias.rohr(@btc-ag.com

Wilhelm Hasselbring
Software Engineering Group
University of Kiel, Kiel, Germany
wha(@)informatik.uni-kiel.de

search in time over millions of program states [4]. This mo-
tivates the development of automated processes for failure
detection, fault localization, and fault removal [2].

Software behavior, such as timing behavior or control
flow, and its statistical analysis have been demonstrated as
valuable for failure diagnosis [1, 8, 16]. Many such ap-
proaches use the concept of anomaly detection: Current
system behavior is compared to a profile learned from his-
torical timing behavior in order to find fault indicators. De-
tecting anomalies in a software system is only the first step
of failure diagnosis. The second step is to localize a failure’s
root-cause based on the component anomaly scores in the
context of the system’s architecture. Ideally, the component
with the highest amount of anomalies or strongest anoma-
lies is the root-cause. However, a component that shows
anomalies might only be anomalous because it depends on
another component that is the real root-cause. Especially
anomalies such as exceptional long response times tend to
propagate through the software architecture. Therefore, cor-
relating anomaly scores [14] is required to compensate such
propagation effects to provide accurate and clear end-to-end
fault localization. Anomaly correlation approaches do not
necessarily suggest only one architectural element as root-
cause, but usually at least provide a significant reduction of
the search space of possible causes by declaring a large part
of the system as not being the fault.

This paper introduces the anomaly correlator RanCorr.
It analyzes the results from timing behavior anomaly detec-
tion in the context of an architectural model consisting of
calling dependencies between software components. The
architectural model is automatically derived from monitor-

* This work is supported by the German Research Foundation (DFG),
grant GRK 1076/1.

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

RanCorr Textual Output

D Model i

@ Visualization b
i —>{ (incl. aggregation to
Building architectural levels) e _I

March 2009.
Operation ’ . Execution 1.« 4| ExecutionTrace
name: String id: int ®id: int
T responseTime: long
1 startTime: long
Component anomalyScore: double
name: String 1 1
1 A A .
- Sender Receiver
1 1.* 1%
DeploymentContext Message g y MessageTrace
name: String isCall: boolean @®|id: int

\ Anomaly Graphs
@ Aggregation @ Correlation
T (computation of
anomaly scores)

Anomaly
Detection

Figure 1. Input data structures for RanCorr.

ing data. RanCorr uses a set of rules that reflects general as-
sumptions of propagation effects within the software archi-
tecture. Additionally, the approach contributes hierarchical
visualization of the anomaly detection results to support ad-
ministrators in failure diagnosis. An important aspect of the
visualization is the clearness, i.e., a measure for the contrast
of the visual impression, and an indicator for the quality of
the correlation results.

In a case study, the approach is demonstrated by inject-
ing faults into a distributed multi-user Java Web application.
The combined results of the timing behavior anomaly detec-
tor and the anomaly correlator support the claim that timing
behavior is a valuable indicator for failure diagnosis. Fur-
thermore, the results of the case study show that the require-
ments in terms of monitoring overhead and maintainability
are satisfied.

The remainder of this paper is structured as follows. Sec-
tion 2 provides the basic concepts of software timing behav-
ior anomaly detection. An overview and the details of our
anomaly correlation approach are presented in Sections 3
and 4. Sections 5 and 6 provide the case study and a dis-
cussion of results. Related work follows in Section 7 before
the conclusions are drawn in Section 8.

2 Software (Timing) Behavior
and Anomaly Detection

It is assumed that the software system under supervision is
composed of components hosted on deployment contexts.
The components provide operations, e.g., implemented as
Web services or plain Java methods. Primary artifacts of
runtime behavior are executions of the operations. A finite
sequence of executions resulting from a request is denoted
a trace. We limit the scope to synchronous communication
between executions as defined in the UML [10]: The caller
of an operation is blocked and has to wait until the callee re-
turns a result before it continues its own execution. A trace
is a complete representation of the control flow originating
from a request.

The basic software runtime behavior model described
above can provide input data for anomaly detectors that
compute anomaly scores by comparing an execution’s re-

(computation of h\
anomaly ratings) II

Figure 2. Conceptual architecture, analysis
activities and output of RanCorr.

sponse time with historical ones. Such anomaly detectors
can for instance be found in [1,3,5,16].

The combination of anomaly scores and the runtime soft-
ware behavior provides the input data for anomaly correla-
tion. For our anomaly correlator RanCorr, this model is
defined as shown in Figure 1. In addition to a response time
and a start time, each execution has an anomaly score which
is assumed to be in the interval [-1,1] C R. A score of
—1 means that the execution has a normal behavior, and 1
means that this execution is considered to be very anoma-
lous.

3 Overview of our
Anomaly Correlation Approach

Our correlation approach draws conclusions from the ar-
rangement of the timing anomalies in the calling depen-
dency graph to identify which component and deployment
context (e.g., a virtual machine) contains the fault — pro-
vided the failure significantly influenced the timing behav-
ior.

A calling dependency graph consists of nodes which rep-
resent software operations, and directed edges that represent
call actions between operations. In addition, the graph is
hierarchical: A component has a set of operations, and a
deployment context hosts a set of components. The calling
dependency graph is automatically constructed from moni-
toring data.

It is a common assumption that anomalies propagate
through the calling dependency graph in backwards di-
rection of calling dependencies as suggested e.g. by Gr-
uschke [6]: If a graph node is behaving anomalous, then
the node’s callers typically show anomalous behavior them-
selves. Our approach performs a backward propagation
analysis by evaluating each node’s neighborhood for prop-
agation patterns.

An overview of RanCorr’s four anomaly correlation ac-
tivities and their relations is given in Figure 2.

1. Model Building. Based on the monitoring data and

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.

the evaluation results of the anomaly detectors, the
caller—callee relations as well as their anomaly scores
are combined into a model of the application under
analysis. This graph-like representation of the appli-
cation contains both static relations of the elements of
the architectural structure, and anomalies in their dy-
namic behavior.

2. Aggregation. The anomaly scores of all executions
are aggregated to an anomaly score for each architec-
tural element, which is a single number representing
an element’s degree of being anomalous.

3. Correlation. = The anomaly scores are correlated
within the architectural context to determine an
anomaly rating for each architectural element. An
anomaly rating expresses RanCorr’s estimate that an
architectural element is the root cause of a fault that
caused the anomalies. In the correlation, edges of the
calling dependency graph are analyzed for anomaly
propagation effects between operations. Ideally, the
correlation analysis is able to perform a negation of the
propagation effects. The correlation analysis is imple-
mented by applying a rule set that is based on general
assumptions about propagation.

4. Visualization. The result of the correlation activity is
a list of anomaly ratings for the architectural elements
of the application under analysis. Initially, this list con-
tains anomaly ratings for all instrumented operations
(i.e., the software methods). Using additional aggrega-
tion, ordered lists of ratings for all components and de-
ployment contexts are returned. The visualization ac-
tivity produces a graphical visualization on operation-,
component-, or deployment context level for support-
ing administrators. Component level or deployment
context level visualizations are more coarse-grained
and more suitable to provide a first overview than the
most detailed operation level visualization. An exam-
ple visualization that covers all three levels is provided
in Figure 3. The case study in Section 5 contains fur-
ther examples.

The correlation activity forms the core of the failure diag-
nosis, since it localizes faults based on evaluating anomaly
ratings in the architectural context. The anomaly ratings are
single real-valued numbers in the interval [—1,1] C R, cre-
ated by aggregating all anomaly scores of one graph node.
The ratings reflect to what extent a node is suspected to be
the root-cause of failure. The correlation step basically re-
distributes the anomaly ratings within the graph structure.
The anomaly ratings have a maximum value of 1, meaning
a significant anomaly, while —1 means perfectly normal be-
havior. An anomaly rating of 0 means that the classification
is ambiguous.

$

o512

e hos

Ve A2 T
Virtual Machine 'tier” Virtual Machine ‘scooter | | Virtual Machine ‘puck
[41472/61098 | 0,03 | 25,90%] [818/2176 | -0,07 | 23,43%] [1447/2943 | -0,03 | 24,48%]

Deployment Context Level
Component Level’

Virtual Machine *klotz |
0912

org.apache.struts.action.ActionServiet
[41827/85960 | 0,190 7,81% 1

A

Tl 0ss

K
presentation.CartBean]

[1107/2170| -0,087 | 5,99% |

presentation.OrderBean
[1454/3917 0,094 17,18%]

ion.C:
[18138/26837 | 0,048 | 6,88% | [494/1088 | ~0,062 6,16% |

st N 735 o8 Jross

service.hessian.client.OrderService| service.hessian.client. AccountService|
[484/981-0,057 | 6,19% | [523/1088 | 0,033 | 6,35% |

fomn lsaos o

Y

Component Level,
Operation Level

“service.hessian.client.CatalogService ~ / s 7
9167 ANEEY foss o167 a9

y

'y 2 v s
[T i etProductListByC: | [getitemListByProduct(String) getCategory(String)
(362919167 | -0,046 | -0.281]227%]| |[6365/12437 | -0.161 | -0,006 | 3,14% [9167/9167 | 0,995 | 0,406 | 4,43% | (6300/11349 | 0,216 | 0,037 | 3.04%)

{9167 {0167 11349

getltemListByProduct(Sting intnt)
[9167/9167 | 0,995 | 0,488 | 4,69% |

Figure 3. Visualization on three architecture
levels.

4 Anomaly Correlation Algorithms

After the strategy and activities of RanCorr were presented
above, next the aggregation and correlation activities are
detailed. Three different algorithms that both cover aggre-
gation and correlation are introduced in the following Sec-
tions 4.1-4.3. Figure 4 shows how these three algorithms
are structured according to the architectural levels (opera-
tion, component, and deployment context), and what tech-
niques are used. This shows that we apply correlation on
the operation level, which is the most detailed architectural
level in the system model.

The so-called trivial algorithm uses averaging as aggre-
gation and correlates by using the identity function, which
can also be considered omitting correlation. The main pur-
pose of the trivial algorithm is to provide a reference point
for a later quantification of other algorithms’ benefits. The
simple and advanced algorithms use rules, implemented as
conditional mathematical functions, to inverse propagation

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.
Trivial Simple Advanced

. * * *

ES)

S unweighted unweighted unweighted

95’) arithmetic mean arithmetic mean power mean o

> -3

< | [g

Q

D =

S *5

T unweighted distance and call freq. >

g arithmetic mean weighted power mean

3

O

<

8 Q

% unweighted unweighted unweighted 5 é

S arithmetic mean arithmetic mean power mean @ %

Q E?

g g

I3 unweighted unweighted unweighted 5 =

% arithmetic mean arithmetic mean power mean @ g)

> =

< ~—~

® ® ®

Figure 4. Three algorithm variants derive
anomaly ratings from anomaly scores pro-
vided by an anomaly detector. Anomaly rat-
ings are computed for operations, compo-
nents, and deployment contexts.

effects. The advanced algorithm uses enhanced aggregation
and correlation methods to consider more assumptions on
how propagation effects distribute anomaly scores among
the components.

4.1 Trivial Algorithm

The trivial algorithm aggregates anomaly scores s € .S; to
determine the anomaly rating r; of an operation ¢ (the i-th
operation provided by the anomaly detector). The aggre-
gation uses the unweighted arithmetic mean as shown in
Equation 1.

ri =29 Z:L-ZS (1)

|S7‘ seS;

As displayed in Figure 4, the unweighted arithmetic mean
is also used to aggregate a component’s anomaly rating, and
a deployment context’s rating from the corresponding oper-
ation ratings and component ratings respectively.

4.2 Simple Algorithm

Two rules are used to detect configurations in the anomaly
structure that are relatively clear to understand and to imple-
ment. Two specific conditions are tested, and an increase or
decrease flag is set. Additional information is completely

ignored, because its effects are unknown and could be mis-
leading. The cause rating is then derived from the anomaly
rating, according to the flags.

More precisely, the anomaly rating is increased if the un-
weighted arithmetic mean of the anomaly ratings of the di-
rectly connected callers (upwards in the calling dependency
graph) is greater than the anomaly rating of the currently
considered operation. This means that this operation is
likely to be the cause of failure, because the dependent oper-
ations show significant anomalies. The rating is decreased
if the maximum of the anomaly ratings of the directly con-
nected callees (downwards in the graph) is greater than the
anomaly rating of the current operation. This means that
this operation’s rating is likely to be a propagation from an-
other operation it depends on. Under all other conditions,
as well as in special cases such as singular connections, and
the root operation, the value of the anomaly rating is for-
warded without change.

Equation 2 defines the correlation function of the simple
algorithm that computes r; as the anomaly rating for op-
eration i, S; as the (unweighted arithmetic) mean anomaly
score for operation ¢, F;n as the mean of all anomaly scores
corresponding to operations with calls to 7, and maxz?** as
max{Sy|k is operation called by operation i}.

LS+, 8 >80 A maxt <5
rp = % (S - 1), an <S; A mazi >S; (2)
Si, else

The function for increase and decrease (% < (S; £ 1)) is
chosen for its simple linear graph, staying in range [—1, 1].
Again, the aggregation is done through an unweighted arith-
metic mean calculation on all three levels.

4.3 Advanced Algorithm

The advanced algorithm extends the simple algorithm by
the following features:

e The anomaly rating for each node is computed by ag-
gregating the anomaly scores of its forward and back-
ward transitive closure. For instance, the anomaly rat-
ing for the node D (Figure 5) is computed based on the
aggregated anomaly scores (values inside the nodes) of
A, B, H-J, F, and G, in contrast to the simple algorithm
that considers only A, B, F, and G.

e Distance and edge weights, i.e., the calling frequen-
cies, are used to weight the connections. Together
with the consideration of the transitive closure de-
scribed above, this models the observation that anoma-
lies propagate via the edges over the complete calling
graph with descending strength by increasing distance.

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.
\ / \ /
\\ ’/ \\ //
\\ // \\ /I
N N
H o6 | 04 J 04
< 7
\ / /
AY / /
\\ /’ II
958 \ /4312 /4661
\ Vi !’
\\ II I/
N b
A o7 B o5
< —
\ / AY
\ FAREAN
\ / \
3256\ 231/ \564
\ / N
\ / \
\ / \
\ / \
N b N
C -o7 ‘ D 0.9‘ ‘ E —0,9‘
7
\ / AY
\ FAREAN
\ / \
385" 842/ N\ 611
\ / N
\ / N
\ / AN
NI \
F -o03 G -o0s8

Figure 5. Example: An anomaly in D is prop-
agated upwards in the calling dependency
graph. Neighbor and callee elements are not
affected. The nodes and edges are annotated
with anomaly scores and calling frequencies.

e The power mean is used for aggregation and corre-
lation, instead of the arithmetic mean. This allows
one to vary the influence of extreme values within
the anomaly scores. A power mean with exponent 1
is equal to the arithmetic mean. Exponents smaller
than 1 reduce the influence of outliers, while exponents
greater than 1 increase it.

The advanced algorithm is detailed in the remainder of this
section.

4.3.1 Weighted power mean

Common definitions for the power mean are only valid for
positive values and do not weight values. An extended
power mean S is provided in Equation 3. S;, aggregates
the anomaly scores S; = {s1,...,s,} for an operation i

with the corresponding weights W; = {w1,...,w,}. The

parameter p is the exponent of the power mean.

n
w; - v(s;,p)
5 j=1 1
Si,p = n—’B)
W

P 3)

1, a>=0

a,q) :=|a|?-
v(a,q) = |a| {_1’ w0

4.3.2 Aggregation of anomaly scores

According to Figure 4, the three aggregation steps use an
unweighted power mean to combine all anomaly scores of
an operation (or higher level element) into a single number.
The weights in the power mean (Equation 3) are set to 1 in
anomaly score aggregation.

4.3.3 Correlation of anomaly ratings

The correlation function uses the anomaly rating of the
highest rated callee (successor in the graph) like in the sim-
ple variant, but additionally includes indirectly connected
operations. The mean calculation of the caller operations
(predecessors in the graph) is now weighted by distance and
edge weight. The edge weight can be either absolute, or rel-
ative.

A function traverses the dependency graph upwards and
downwards in a tree-like depth-first search, storing the
length of the shortest path to each directly or indirectly con-
nected other operation, and the number of connections, i.e.,
the number of executions on that path. It is assumed that
the intensity of a propagated anomaly decreases by distance
to its origin. Each sample weight w € W; is defined as the
edge weight e divided by the distance d as shown in Equa-
tion 4 where z is a distance intensity constant.

- °
==

The anomaly rating r; for an operation ¢ is defined as fol-
lows:

w

4)

13 i r S
5 (Sio2+1), St > Si02Amazi™ < S0
_)i 3 i 3 o
ri =935 (Sio2—1), S < Sio2Amazi™ > Sioo
Si,o,g, else

S)
In Equation 5, g}” and maz$** include the directly and in-
directly connected operations in the dependency graph as
described above. The power mean exponent is set to 0.2 by
default (thus weakening the influence of outliers). On the
higher aggregation levels, the power mean exponent is set
to 2.0 and 3.0 for component and deployment context level,
respectively.

S Evaluation

In the following, the applicability of RanCorr’s three algo-
rithms is evaluated. For this, several fault injection scenar-
ios are applied to a distributed system.

5.1 Evaluation Goals and Metrics

The two evaluation goals are to evaluate 1) whether injected
faults are accurately localized, and 2) whether RanCorr

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.
«execution environment» «execution environment»
«component» «component»
Account %7{07 Account
Database
«execution environment /(“ «execution environment»
«component» { «component»
on 1T o1 ¢ ~ «component»
atalo H p
Presentation g O} Catalog
Database
\()\ «execution environment»
<component» «component»
Op . O+ Order
raer Database

Figure 6. Deployment architecture of the dis-
tributed JPetStore.

clearly ranks the components. Furthermore, the different
algorithm variants and parameter values are to be evaluated
with respect to these goals. Concrete metrics for localiza-
tion accuracy and clearness are defined as follows.

Accuracy

For the n decreasingly ordered anomaly ratings (1, . .., 7,)
and r; corresponding to the architectural element which was
subject to fault injection, let accuracy be defined as follows
(Equation 6).

accuracy({r1,...,rn}) = %

1 (6)
where rank denotes an architectural element’s position in
the corresponding list of decreasingly ordered anomaly rat-
ings. The accuracy is 100% if the faulty element has been
assigned the highest rating, and 0% if the lowest anomaly
rating is assigned to the faulty element.

Clearness

In addition to accuracy, we define clearness in the following
Equation 7.

r
. 77nn}) = n E @)

Z _ran?ck(rk) +1
k=1,k#j

clearness({ri, ..

where component j has the highest anomaly rating. A
higher clearness indicates a faster decrease in anomaly rat-
ings within the list, thus a higher contrast and understand-
ability in visualization.

5.2 Experiment Setup
The software system for the case study is the iBATIS JPet-

Store! which is a demo Java Web application implement-
ing an online store scenario. In order to get a more realistic

Uhttp://ibatis.apache.org/

scenario, we divided the JPetStore into components, and de-
ployed the system to five machines as illustrated in Figure 6.

The application is monitored by our monitoring frame-
work Kieker [13] which records timestamps for method ex-
ecutions and monitors control flow. In total, 34 Java meth-
ods of the application have been instrumented with moni-
toring probes.

We expose the software to probabilistic workload
that is generated by Apache JMeter’> and our extension
Markov4JMeter [15] that generates probabilistic workload
based on Markov chains. The workload is set up to con-
stantly simulate 15 concurrent users, which is far less than
the overall system capacity of about 80 concurrent users as
observed in preparative experiment runs.

5.3 Fault Injection

Fault injection is used to provoke failures of different sever-
ity and different granularity in the application under anal-
ysis. The two major fault scenarios for the case study
are programming faults and database slowdown injections.
Programming faults are implemented by manual source
code mutation, incorrect assignments, or exchanged calls.
Database slowdown injections are implemented by adding
timing delays to operations that access the database. The
delay is set to 10 ms. This slowdown is intended to have
significant influence allowing a detection with high proba-
bility.

In total, five fault injection scenarios are defined: Three
programming faults, and two database slowdowns at dif-
ferent locations. Each of these scenarios is executed three
times. Additionally, to get training data that can be as-
sumed to be free of anomalies, three experiment runs are
performed without fault-injection. Each experiment run
consists of 5 minutes warm-up, 15 minutes monitoring, and
5 minutes pre- and post-processing steps, such as restarting
the deployment contexts. This results in about 8 hours pure
experiment run time.

5.4 Monitoring Data and Anomaly Scores

The size of monitoring data is 1.7 GB, with 7 million mon-
itored executions in total, i.e., about 370,000 executions for
each run.

Regardless of the injection variant and position, the
anomaly detector always classifies a considerable fraction
of the executions anomalous. The anomaly detector used in
this case study (variant of the plain anomaly detector [11])
learns two thresholds from the run that was not subject to
fault injection. The scoring function of the anomaly detec-
tor, which is not a focus of this paper, assigns real-valued
anomaly scores in the range [—1, 1], based on the first and

Zhttp://jakarta.apache.org/jmeter/

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.

Table 1. Summarized results of the fault injec-
tion scenarios (scoring from 1 (- -) to 5 (++)).

| Scenario [Injection [| Trivial | Simple | Advanced |
No. 1 Progr. fault + + +
No. 2 Progr. fault + + ++
No. 3 Progr. fault - - +
No. 4 DB slowdown + ++ ++
No. 5 DB slowdown o + ++
| Averages [34 [38 | 46 |

third quartile of an operation’s response time. These val-
ues are mapped to the anomaly scores —0.5 and 0.5 respec-
tively.

5.5 Anomaly Correlation Results

Figure 7 (next page) shows a part of a diagnosis visualiza-
tion. Due to space restrictions, most parts of the graph are
omitted. In this visualization, all three architectural levels
(operation, component, deployment context) are activated
and small histograms show the distribution of the anomaly
scores for each operation. Four components are deployed
within the one of the four deployment contexts shown.

Example visualizations for accurate localization and a
demonstration of the clearness metric are provided in Fig-
ure 9 for fault scenario 5 (DB slowdown). In the visualiza-
tions from both the trivial algorithm and the advanced al-
gorithm, all elements corresponding to the fault are deeply
red colored and have high anomaly ratings. The visualiza-
tion produced by the advanced algorithm is more clear in
pinpointing to suspected architectural elements. The high-
est ratings on their respective levels are correctly assigned
to the faulty elements (ItemSqlMapDao and ‘tier’).

All five fault scenarios are accurately localized by the ad-
vanced algorithm variant as shown in Table 1. In contrast,
the localizations performed by the trivial and simple algo-
rithms are successful in only four of the five cases, sym-
bolized by ‘++’, ‘+’, and ‘0’ signs. These three differ in
mathematical clearness, and in overall visual impression. In
scenario 3, although the trivial and simple algorithms reach
respectable values for clearness (see Figure 8), in the list of
decreasingly ordered operations, the rank of the operation
where the fault has been injected is less than one, thus the
accuracy does not reach 100% as shown in Table 2.

5.5.1 Accuracy

Table 2 presents the accuracy results. In the majority of
the evaluations, the accuracy is 1 (100%), which means that
RanCorr correctly assigned the highest anomaly rating to
the architectural element that contained the fault.

0.7

B Trivial
@ Simple
Advanced

0.6

Clearness on Operation Level
0.4 5

0.3
Clearness on Component Level

03 04 05 06 07

(a) Programming fault scenarios (b) DB slowdown scenarios

Figure 8. Clearness results.

Table 2. Anomaly correlation accuracy.

[Scenario | Injection | Trivial | Simple | Advanced |

No. 1 Progr. fault 1 1 1
No. 2 Progr. fault 1 1 1
No. 3 Progr. fault 0.97 0.97 1
No. 4 DB slowdown 1 1 1
No. 5 DB slowdown 1 1 1

Virtual Machine ’klotz2 -

Caoghear] [GanBaa]
s N 4 N\
‘client.OrderService‘

OrderSqlMapDao

Virtual Machine 'puck’

‘client.CatalogService‘ ‘client.AccountService‘

server.AccountService

AccountSglMapDao

Virtual Machine 'scooter’

server.CatalogService
ItemSglMapDao ProductSglMapDao

Virtual Machine 'tier’

(a) Result of trivial algorithm

Virtual Machine 'klotz | ,
ActionServiet <=
Pl S e
‘OrderBean‘ ‘CatalogBean‘ ‘CanBean‘ AccountBean
s Ny N
‘client.OrderService‘ ‘ client.CatalogService ‘ ‘cliem.AccoumService ‘

AccountSglMapDao

Virtual Machine 'scooter’

server.CatalogService
ItemSglMapDao ProductSglMapDao

OrderSqlMapDao

Virtual Machine ‘puck’

Virtual Machine 'tier’

(b) Result of advanced algorithm

Figure 9. Component-level visualization:
Database slowdown scenario.

Only the advanced algorithm produced completely ac-
curate results, while the trivial and simple algorithms fail
to produce accurate results for the third programming fault
scenario.

5.5.2 Clearness

The two failure diagnosis visualizations shown in Figure 9
are an example for differences in clearness of results from
the different algorithms. Figure 9 depicts the results for

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.

Virtual Machine ’klotz'
[131294/212418 | 0,02 | 25,33% |

presentation.CatalogBean
[18978/26524 | 0,310 | 8,56%]

intation.AccountBean —
086 | 0,005 | e/,saﬂ/:]
. ¥

viewProd

signon() uct()
360,005 | 0,005 2,79%] [9045/9045 | 0,786 0,786 | 5,01%]

~ < 180%0

T

org.apache.struts.action.ActionServiet os7
[56134/85142 | 0,102 | 5,87%] -
K

1(Http! quest HipServietResponse)
[1575/3143 | 0,026 | 0,026 | 2,73% |

3143 | Moss 38455,
Y

process(HttpS quest, Hitps Spoi
[27083/42571 | 0,036 | 0,518 | 1,35%]

|

presentation.CartBean
[1113/2190 | 0,055 | 6,90%] [} “2190 973 39428 _ -
£ N Y Sl

additemToCart() t(HitpServietRequest HitpServietResponse)
[1113/2190 0,05 | 0,05 | 2,96%] [27476/39428 | 0,239 0,239 | 3,47% |

S oo V2137 Tl
\\ \ \\

Figure 7. Partial example of the graphical result of RanCorr. The percent values, augmented with
colors, represent the probability for the elements to be the cause of failure.

0.70
1
o
i
n
i
=
B
i
i
1
¢
1.00
|

-4 - Scenario No. 4
- Scenario No. 5

0.90
1

Vi

0.80
1

-e - Scenario No. 1
- Scenario No. 2

. A----- T %
<~ Scenario No. 3 © N

~ia--

Clearness on Operation Level
0.50 0.60 A
| |
2
Clearness on Component Level

0.70

T T T T T
0.1 0.2 0.5 1.0 20
Component Aggregation Power Mean Exponent

01 o2 05 10 20

Component Aggregation Power Mean Exponent
(a) Programming fault scenarios (b) DB slowdown scenarios
Figure 10. Clearness for varying operation
aggregation power mean exponents.

a “database connection slowdown” scenario, for the triv-
ial and the optimized algorithm, reduced to component and
deployment context level. The correct elements are high-
lighted in both cases, and in deep red color, while the other
elements are mostly green with a high contrast for the opti-
mized algorithm. On the other hand, there is much yellow
and orange color for the trivial algorithm, meaning uncer-
tainty regarding the cause of failure. A strong propagation
effect is visible up to the presentation layer (Virtual Ma-
chine ’klotz’), still present in the final diagnosis visualiza-
tion by the trivial algorithm (Figure 9(a)).

5.6 Influence of Correlation Algorithm
Parameters

The influence of the algorithm parameters on the correlation
quality is summarized in the following paragraphs:

Operation Aggregation Power Mean Exponent The
power mean exponent affects the influence of extreme val-
ues on the mean calculation. With increasing exponent, the
influence of outliers is also increased. Figure 10 shows that

0.85
|
<

R e AR I Atk 4

0.80
|

a---A oA
,«»A"'”A

0.75
|

-4 - Scenario No. 4
+ - Scenario No. 5

Clearness on Component Level

0.70
|

T T T T T T T
0.2 0.5 1.0 2.0 5.0 10.0
Component Aggregation Power Mean Exponent

(a) DB slowdown scenarios

Figure 11. Clearness for varying component
aggregation power mean exponents.

for the aggregation of anomaly scores on operation level, a
small exponent gives better results for all fault scenarios.

Component Aggregation Power Mean Exponent Be-
cause of our iterative approach as depicted in Figure 2, the
higher-level processing does not affect the lower-level’s re-
sults. Thus, for scenarios 1-3, where the clearness on oper-
ation level is the fundamental benchmark, these values re-
main constant for higher-level aggregation. However, an
influence on the overall (visual) results is reflected by the
clearness on those levels, being a subordinate benchmark,
that shows a distinct advantage of larger aggregation expo-
nents. Figure 11 reveals ambiguous results for the scenarios
4 and 5. While scenario 4 benefits from a higher exponent,
and the aggregation on deployment context level (not shown
here) supports this for both scenarios, the curve for 5 does
not, though the range of values is small.

Correlation Power Mean Exponent Similar to the expo-
nents for aggregation, the power mean exponents for corre-
lation are analyzed. Figure 12 shows that in most cases, a
smaller value gives a better result.

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.

0.65 0.70
| I
078 0.82
I R

0.60
|
@
o
o
®
0
o
0.74
|
K
T

-e - Scenario No. 1
- Scenario No. 2
-<-- Scenario No. 3

-4 - Scenario No. 4
- Scenario No. 5

Clearness on Operation Level
<@
Clearness on Component Level

0.70
L

0.55
|

01 02 05 10 20 50 01 02 05 10 20 50
Correlation Power Mean Exponent Correlation Power Mean Exponent

(a) Programming fault scenarios (b) DB slowdown scenarios

Figure 12. Clearness for varying correlation

power mean exponents.

o
R —
T S | O Absolute e | O Absolute
& | O Relatve 3 © Relative
S 53
T2 IS4
Ss I
8 £
g i
& 8
<
oy 55
8 e 8
I e
8 g
o 9
w4 O < 4
pad I\ S
No 1 No 2 No 3 No 4 No 5

(a) Programming fault scenarios (b) DB slowdown scenarios

Figure 13. Clearness ratings for the two alter-
native edge weighting methods.

B-- - O---8--0-8-

0.90
!

O om0

0.80
Il Il
>

3

[
b
&

P g
b a
[~

0.70
L

/- - Scenario No. 1
©----9----0---0 .a- Scenario No. 2
-~ Scenario No. 3

, -4~ Scenario No. 4
V- v~ Scenario No. 5

Clearness on Operation Level
0.50 0.55 0.60 0.65 0.70
|
°
°
°
Clearness on Component Level

0.60
1

T T T T T T T T T T T T T
05 1.0 20 35 65 120 05 1.0 20 35 65 120
Neighborhood Mean Distance Exponent Neighborhood Mean Distance Exponent

(a) Programming fault scenarios (b) DB slowdown scenarios
Figure 14. Clearness for varying neighbor-
hood mean distance exponents.

Edge Weight Method Two different methods to calcu-
late the edge weights can be used in the correlation activity.
The “absolute” method uses the number of connections be-
tween the elements, while the “relative” method uses their
percentages. Figure 13 reveals no difference in the results
for scenarios 1-4, and only a very small advantage of the
“relative” method for scenario 5. However, the clearness
on higher levels is more distinctly increased in scenario 5,
and our other experiments with more algorithm variants (not
part of this paper) continuously confirmed this advantage.

Neighborhood Mean Distance Exponent As part of the
edge weight calculation (see Equation 4), the neighborhood

mean distance exponent is used to emphasize (z < 1) or
weaken (z > 1) the influence of indirectly connected ar-
chitecture elements — according to their distance — during
the correlation on operation level. Figure 14 shows a trend
that in four of the five scenarios, larger exponents provide
better results, i.e., the influence of more distant elements is
considerably weakened.

5.7 Summary

The advanced algorithm performs best in the case study. In
average, it provides accurate and more clear results than the
other two algorithms. The simple algorithm produces better
results than the trivial variant, but the difference is small in
most of the cases. The simple algorithm produces graphs
containing less yellow and orange shading than the trivial
algorithm, which can be considered to be more certainty or
precision in localization, and supports the understandability
of the visualizations.

6 Discussion

The quality of RanCorr’s results depends on the complete-
ness of the dependency graph. If the monitoring instrumen-
tation is too coarse-grained, i.e., only few monitoring points
exist, then the evaluation will be imprecise, in that depen-
dencies are missing, and therefore connections between the
affected components cannot be recognized. If the instru-
mentation is too fine-grained, i.e., many methods are instru-
mented, the amount of data will increase without being an
advantage to the result.

Computational Requirements The implementation pro-
totype reasonably scales: The complete analysis of the
monitoring data of one experiment of about 41,000 traces
containing 262,000 executions takes round about 60 sec-
onds on a 1.5 GHz desktop PC with 1 GB main memory.
A large part of this time is required for loading and pars-
ing the monitoring data, reconstructing the control flow and
computing anomaly scores, while the anomaly correlation
takes about 7 seconds.

Monitoring Overhead As mentioned in the evaluation
section, the Kieker framework [13] is used for monitor-
ing calling dependencies and response times. Kieker is in-
tended to be used for continuous monitoring during regular
operation. Thus, the monitoring overhead must be consid-
erably lower than that of profiling tools. Kieker’s moni-
toring code is woven into the application code. The cost
of measurement is constant for each activated monitoring
point. In benchmarks, we observed an overhead that was
in the order of microseconds for each activated instrumen-
tation point. In order to decouple the application control

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.

flow from the measurement storage, the measurement data
is asynchronously written to permanent storage.

Of course, the overall overhead depends on the number
of activated monitoring points and its activation frequency.
A key challenge in instrumentation is always the selection
of feasible monitoring points, i.e., which operations to in-
strument. In the case of failure diagnosis, the instrumenta-
tion is guided by the desired granularity of fault localiza-
tion. In the case of component-level fault localization, the
instrumentation should be based on the granularity of the
corresponding component interfaces.

In our ongoing field study, the monitoring overhead was
reported to be very small if only the major platform services
(e.g., < 50) are instrumented.

Maintainability Our diagnosis approach requires an in-
strumentation for monitoring response times and control
flow of the system to be diagnosed. Maintainability is re-
duced if the monitoring code is manually integrated and
mixed with the source code of the business logic, because
this reduces source code readability. A less intrusive alter-
native is Aspect-Oriented Programming (AOP), since mon-
itoring is a so-called cross-cutting concern, i.e., it is typi-
cally used at many places within a software. An AOP im-
plementation can reduce the required integration steps to
only minimal changes (in our case 1-2 lines for each mon-
itoring point) in the application source code, software build
scripts, and application server configuration in order to en-
able monitoring.

Anomaly Detector Requirements The quality of
RanCorr’s results depends on the quality of the results
provided by the anomaly detector. Anomaly detection
is usually subject to false positives (false alarms). It is
expected that a certain amount of false positives can be
tolerated by the anomaly correlator, as long as the false
positives are approximately equally distributed among
all architectural elements. Obviously, only faults can be
localized that cause anomalies that can be detected by the
anomaly detector in use.

Reconstruction of Architecture Models from Monitor-
ing Data The calling dependency graphs (CDGs) used in
our approach are completely reconstructed based on moni-
toring data. An alternative is given by static analysis tools
that reconstruct such graphs based on source code analysis.
CDGs reconstructed from monitoring data may be incom-
plete as not all possible interactions among architectural el-
ements are represented by edges in the graph, while static
source code analysis identifies all possibilities for call ac-
tions. In the context of failure diagnosis, reconstruction
from monitoring data is more suitable: It is reasonable to

assume that if no interaction between two architectural el-
ements takes place during the time period before a failure,
then there is also no error- and anomaly propagation be-
tween those elements. A more detailed discussion of this
issue is provided by Gupta et al. [7].

7 Related Work

Agarwal et al. [1] evaluate response times of internal com-
ponents, similar to our approach. Anomalies result from
comparing the average response times of all operation calls
that can be connected to recent end-to-end SLA (service
level agreement) violations based on historical average re-
sponse times. In other words, the anomaly scores quantify
the recent shift in the average response times (of a subset of
the operations). In contrast to our approach, the existence of
end-to-end service level agreements is assumed. Their cor-
relation uses a clustering algorithm combined with a rank-
ing logic to sort the suspicious components.

Yilmaz et al. [16] present a fault localization approach
that compares method execution times to learned timing be-
havior profiles. The so-called Time Will Tell approach cre-
ates for each method a Gaussian Mixture Model (GMM),
i.e., a multi-dimensional probability density model, where
in this case the dimensions are given by execution times of
sub-called methods. Execution time observations are evalu-
ated in the context of the normal timing behavior of its sub-
calls. The Time Will Tell approach does not explicitly cor-
relate anomaly scores and performs a ranking of aggregated
anomaly scores similar to the trivial algorithm presented in
this paper.

Kiciman and Fox [8] describe how component interac-
tions and control-flow path shapes can be observed and an-
alyzed to detect and localize anomalies. During a train-
ing phase, a reference model is learned from monitor-
ing data. For anomaly detection, the current system be-
havior is compared to the reference model. Kiciman
and Fox [8]’s approach focuses on component interaction
anomalies (control-flow), while our focus is on timing be-
havior anomalies. In contrast to our approach, it is required
that some requests are known to be failed. As in our ap-
proach, the correlation step uses interaction paths to invert
propagation effects.

8 Conclusions and Future work

Due to their complexity, large-software systems are prac-
tically never free of faults, and manual failure diagnosis
is time-consuming and error-prone. Thus, the automa-
tion of this task is desirable. Automatic failure diagnosis
can be divided into two steps: the computation of compo-
nent anomaly scores, and the global correlation of anomaly
scores for fault localization.

10

Appeared in A. Winter, R. Ferenc, and J. Knodel (eds.), Proceedings of the 13th European
Conference on Software Maintenance and Reengineering (CSMR 2009), pages 47-57. IEEE.

March 2009.

In this paper, we presented the anomaly correlation ap-
proach RanCorr for supporting failure diagnosis. Anomaly
scores for operation executions are correlated based on ar-
chitectural calling dependency graphs and a rule set to ad-
dress error propagation. RanCorr computes anomaly rat-
ings on operation-, component-, and deployment context
level, and visualizes the diagnosis results in architectural
diagrams. All steps of the approach are completely auto-
matic: monitoring, initialization of the anomaly detector,
derivation of architecture dependency graphs from monitor-
ing data, and failure diagnosis.

In a case study, RanCorr was applied to a distributed
Java Web application, subject to fault injection of differ-
ent types and severity, and exposed to probabilistic work-
load. The correlation performed by RanCorr is based on
anomaly scores provided by the timing behavior anomaly
detector [11, 12]. The results of the three algorithms were
analyzed with respect to accuracy and clearness. Moreover,
we presented results analyzing the influence of the algo-
rithm parameters on the correlation quality.

The results of the evaluation show that the presented al-
gorithms are able to perform significantly better than a plain
aggregation of anomaly scores. The case study provides ad-
ditional empirical support for the claim that timing behavior
anomalies can be a valuable indicator in failure diagnosis.
Therefore, timing behavior based failure diagnosis can be
considered an efficient complement to other failure diagno-
sis methods that focus on the observation of other system
characteristics.

Future work consists of evaluation in the field. Two main
long-term evaluation goals are 1) to quantify failure diagno-
sis accuracy and clearness for real faults in real systems and
2) evaluating benefits from the visualization approach used,
i.e., presenting anomaly ratings on three architecture levels
of different granularity, in the context of maintenance with
human administrators and developers.

References

[1] M. K. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi,
and A. Sailer. Problem determination using dependency
graphs and run-time behavior models. In A. Sahai and
FE. Wu, editors, Proceedings of the 15th IFIP/IEEE Inter-
national Workshop on Distributed Systems: Operations and
Management (DSOM 2004), volume 3278 of LNCS, pages
171-182. Springer, Nov. 2004.

A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr.
Basic concepts and taxonomy of dependable and secure
computing. [EEE Transactions on Dependable and Secure
Computing, 1(1):11-33, 2004.

R. M. Bailey and R. C. Soucy. Performance and availability
measurement of the IBM information network. IBM Systems
Journal, 22(4):404-416, 1983.

H. Cleve and A. Zeller. Locating causes of program fail-
ures. In Proceedings of the 27th International Conference

(2]

(3]

(4]

11

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

on Software Engineering (ICSE’05), pages 342-351. ACM
Press, May 2005.

A. Diaconescu and J. Murphy. Automating the perfor-
mance management of component-based enterprise systems
through the use of redundancy. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’05), pages 44-53. ACM, 2005.

B. Gruschke. A new approach for event correlation based on
dependency graphs. In Proceedings of the 5th Workshop of
the OpenView University Association, Apr. 1998.

M. Gupta, A. Neogi, M. K. Agarwal, and G. Kar. Dis-
covering dynamic dependencies in enterprise environments
for problem determination. In Proceedings of the 14th
IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM’03), volume 2867 of
LNCS, pages 221-233. Springer, Oct. 2003.

E. Kiciman and A. Fox. Detecting application-level failures
in component-based internet services. IEEE Transactions on
Neural Networks: Special Issue on Adaptive Learning Sys-
tems in Communication Networks, 16(5):1027-1041, Sept.
2005.

P. Kiing and H. Krause. Why do software applications
fail and what can software engineers do about it? A case
study. In Proceedings of the IRMA Conference: Managing
Worldwide Operations and Communications with Informa-
tion Technology, pages 319-322. 1GI, 2007.

Object Management Group (OMG). Unified Modeling Lan-
guage: Superstructure Version 2.1.1, Feb. 2007.

M. Rohr. Workload-sensitive Timing Behavior Anomaly De-
tection for Automatic Software Fault Localization. PhD the-
sis, Department of Computing Science, University of Old-
enburg, Oldenburg, Germany, 2009. (work in progress).

M. Rohr, S. Giesecke, and W. Hasselbring. Timing Behavior
Anomaly Detection in Enterprise Information Systems. In
J. Cardoso, J. Cordeiro, and J. Filipe, editors, Proceedings of
the Ninth International Conference on Enterprise Informa-
tion Systems (ICEIS’07), pages 494-497. INSTICC Press,
June 2007.

M. Rohr, A. van Hoorn, J. Matevska, N. Sommer, L. Sto-
ever, S. Giesecke, and W. Hasselbring. Kieker: Continuous
monitoring and on demand visualization of Java software
behavior. In Proceedings of the IASTED International Con-
ference on Software Engineering 2008 (SE 2008), pages 80—
85. ACTA Press, Feb. 2008.

M. Steinder and A. S. Sethi. The present and future of event
correlation: A need for end-to-end service fault localization.
In Proceedings of 11IS SCI World Multi-Conference on Sys-
temics, Cybernetics and Informatics 2001, Vol. XII, pages
124-129, 2001.

A. van Hoorn, M. Rohr, and W. Hasselbring. Generating
probabilistic and intensity-varying workload for Web-based
software systems. In Proceedings of the SPEC International
Performance Evaluation Workshop 2008 (SIPEW °08), vol-
ume 5119 of LNCS, pages 124—143. Springer, June 2008.
C. Yilmaz, A. Paradkar, and C. Williams. Time Will Tell:
Fault localization using time spectra. In Proceedings of
the 30th International Conference on Software Engineering
(ICSE ’08), pages 81-90. ACM, May 2008.

