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Abstract. We present a novel approach to the matching of subgraphs
for object recognition in computer vision. Feature similarities between
object model and scene graph are complemented with a regularization
term that measures differences of the relational structure. For the re-
sulting quadratic integer program, a mathematically tight relaxation is
derived by exploiting the degrees of freedom of the embedding space of
positive semidefinite matrices. We show that the global minimum of the
relaxed convex problem can be interpreted as probability distribution
over the original space of matching matrices, providing a basis for effi-
ciently sampling all close-to-optimal combinatorial matchings within the
original solution space. As a result, the approach can even handle com-
pletely ambiguous situations, despite uniqueness of the relaxed convex
problem. Exhaustive numerical experiments demonstrate the promising
performance of the approach which – up to a single inevitable regu-
larization parameter that weights feature similarity against structural
similarity – is free of any further tuning parameters.

1 Introduction

Recognition of objects by matching relational structures of local features is a
key problem of computer vision. Since such structures were suggested for image
analysis in 1971 by Barrow and Popplestone [1], a very broad range of approaches
have been suggested to cope with the inherent combinatorial complexity of the
corresponding matching problem. A non-exhaustive list of relevant work includes
tree search algorithms [2], evolutionary strategies [3], spectral approaches [4, 5],
the expectation maximization framework [6], matching of structures in terms of
generalized maximum clique search [7], interpolation-based matching [8], metric
embedding [9], matching by graph seriation and sequence alignment [10], and
exact probabilistic inference using sparse graphical models with computationally
feasible junction trees [11]. Since a general discussion of related work is beyond
the scope of this contribution, we refer to [12] for a recent survey.

The specific motivation for our work comes from two different directions. The
first line of research originates from independent work of Gold and Rangarajan



[13] and Ishii and Sato [14] on deterministic annealing strategies for the matching
of relational structures with equal number of nodes over the convex hull of all
permutation matrices (cf. also [15, 16]). The second line of research concerns
specific instances of the general pattern of convex relaxations of combinatorial
integer programming problems [17, 18] to the specific problem addressed in [13,
14], the quadratic assignment problem [19, 20]. Using established benchmark
tests [21], a thorough experimental comparison of both approaches [22] revealed
similar performance, provided the used parameters for deterministic annealing
[13, 14] are optimized for each problem instance, whereas no parameter tuning
is necessary for a convex relaxation approach [19, 20].

The applicability of approaches related to the quadratic assignment problem
is limited to the matching of relational structures with feature sets of (almost)
equal cardinality. From the viewpoint of computer vision, such approaches are
not applicable to the more frequent scenario of matching smaller model graphs

representing typical object views, to larger scene graphs representing current
observations – see Figure 1 for an illustration.

The present paper is an attempt to overcome this limitation by a novel op-
timization approach to subgraph matching. From the computational viewpoint,
we consistently use semidefinite relaxation, as motivated by the discussion above,
and by its performance in connection various combinatorial problems in com-
puter vision [23, 24]. Besides obtaining parameter-free algorithms, we point out
an additional benefit of this relaxation strategy – the interpretation of the glob-
ally optimal solution to the relaxed problem as probability distribution over the
original combinatorial solution space. While this possibility is obvious from the
mathematical viewpoint, it is by no means clear that this conveys useful infor-
mation about the complex original solution space. This interpretation shows,
however, that uniqueness in a larger embedding space is associated with the ex-
plicit representation of multiple hypotheses in the original space. In particular,
our approach can cope with ambiguous situations. This accounts for a another
novel aspect of our contribution.

Organization. We design a variational problem to subgraph matching in
section 2. The domain of the resulting quadratic functional is the space of bi-
nary matching matrices. The optimality of the matchings is defined in terms
of feature similarities and structural similarities, weighted by a single regular-
ization parameter. In section 3, a semidefinite relaxation of this combinatorial
optimization problem is derived. The additional degrees of freedom of the larger
embedding space are exploited to incorporate constraints of the original prob-
lem formulation, thus tightening the relaxation mathematically. A probabilistic
interpretation of the corresponding globally optimal solution and its ability to
cope with ambiguous situations, is discussed in section 4. We summarize exhaus-
tive numerical experiments in section 5 that characterize the performance of our
approach.

Notation. We will use the following notation throughout this paper:
x>: transpose of x; In: n × n unit matrix; en: vector of all ones: (en)i = 1, i =
1, . . . , n; Enn: matrix of all ones: Enn = ee>; Tr[X ] trace of the matrix X ; A⊗B:



Kronecker product of matrices A and B; δij : Kronecker delta: δij = 1 if i = j,
and 0 otherwise; Mn×m: set of n×m matching matrices; diag(X): vector of the
diagonal elements of the matrix X .

2 Variational Approach

In this paper, we consider undirected graphs G = (V, E) with nodes V =
{1, . . . , n} and edges E ⊂ V × V . We denote the model graph with GK and
the scene graph with GL. The corresponding sets VK and VL contain K = |VK |
and L = |VL| nodes respectively. We assume L ≥ K. Furthermore, we assume a
distance function w(i, j) to be given which measures the similarity of each pair
of vertices i ∈ VK and j ∈ VL.

Graphs representing object views are called model graphs or object graphs

in this paper. In the same way as model graphs, scene graphs are computed by
extracting local image features and spatial relationships in a preprocessing step.
Our aim is to find a reasonable matching between the nodes of the model graph
and the scene graph. In figure 1 a example for a subgraph matching problem
is shown. The left object graph GK has to be matched against the scene graph
GL. We do not discuss image preprocessing in this paper (cf. section 5.1, first

Fig. 1. The object graph GK (left) with K = 12 nodes has to be matched against the
scene graph (left) with L = 41 nodes. Local feature information is ambiguous.

paragraph) but assume the model and scene graphs to be given, along with a
similarity between the nodes of the different graphs.

2.1 Bipartite Matching

If we ignore the structure in both the model and the scene graph, then an
optimal assignment of the K vertices of the model graph can be easily found as



a matching in the bipartite graph (VK ∪ VL, E), with edges (i, j) ∈ E, defined
for all pairs i ∈ VK , j ∈ VL with corresponding weights w(j, i).

Let x ∈ {0, 1}KL denote the 0/1-indicator vector for the bipartite matching
between the nodes of the object and scene graph. A element Xji = 1 indicates
that the node i of the first set VK is matched to the node j in the second set
VL. The elements of the indicator vector are ordered as follows:

x = (X11, · · · , XL1, X12, · · · , XL2, · · · , X1K , · · · , XLK)>. (1)

Thus the indicator vector x can be interpreted as a sequence of appended
columns of a matching matrix X ∈ ML×K . With the same order we denote
the weight vector (w(1, 1), · · ·w(L, K))> with w.

Then using AK = IK ⊗e>L and AL = e>K⊗IL, the optimal bipartite matching
between the two node sets can be found by solving the following linear integer
program:

min
x

w>x s.t. AKx = eK , ALx ≤ eL , x ∈ {0, 1}KL (2)

The constraints ensure that the feasible vectors x all represent a bipartite map-
ping. The totally unimodular matrix A = (A>

K , A>
L )> along with the integer

valued data of the equality and inequality constraints guarantees that (2) can
easily be solved by the following linear program which has a integral solution
(cf., e.g., [25, 26]):

min
x

w>x s.t. AKx = eK , ALx ≤ eL , x ≥ 0 (3)

2.2 Quadratic Integer Program

To incorporate the relational structure of both the model graph and the scene
graph, we extend the linear integer program (2) with a quadratic term x>Qx.
The non-negative parameter α ∈ R

+ is added to control the influence of these
additional costs. Formally the quadratic integer program then reads:

min
x

w>x + αx>Qx s.t. AKx = eK , ALx ≤ eL , x ∈ {0, 1}KL (4)

As before, the matching constraints are defined by the linear constraints. The
matrix Q ∈ R

KL×KL in the quadratic term of (4) to be specified below in-
volves the symmetric 0/1-adjacency matrices NK , NL of the model graph and
the scene graph, respectively, which encode the neighborhood structure in these
two graphs. To simplify the notation we define also the Complementary Adja-

cency Matrices.

Definition 1. Complementary Adjacency Matrices

N̄L = ELL − NL − IL N̄K = EKK − NK − IK



These matrices can be interpreted as indicator matrices for non-adjacent nodes.
They have the element (N̄)ij = 1 if the corresponding nodes i and j are not
directly connected in the graph.

For example, the adjacency matrix NK and the appropriate complementary
adjacency matrix for a house-like model graph are shown in figure 2. With this
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Fig. 2. Example object graph and its adjacency matrix NK along with its complemen-
tary adjacency matrix N̄K .

notation and referring to the order of the set of edges defined in (1), the symmet-
ric Relational Structure Matrix Q in (4) incorporating the relational structure
is defined in the following.

Definition 2. Relational Structure Matrix

Q = NK ⊗ N̄L + N̄K ⊗ NL (5)

We explain in detail the two terms on the right hand side of (5) which are used
to construct the matrix Q:

– The first term in the quadratic expression x>Qx can be written as:

x>(NK ⊗ N̄L)x =

KL
∑

ar

KL
∑

bs

(NK)ab(N̄L)rsxarxbs (6)

The interpretation of this term is that if two nodes a and b in the model
graph are neighbors, (NK)ab = 1, then a good assignment (no costs) involves
corresponding nodes r and s in the scene graph which are neighbors, too:
(N̄L)rs = 0. For such a configuration no cost is added in (6). Otherwise if the
corresponding nodes r and s are no neighbors in the scene graph, (N̄L)rs = 1,
then a cost of 1 is added. This two configurations are visualized in figure 3.

– Analogously, the second term in xT Qx gives:

x>(N̄K ⊗ NL)x =

KL
∑

ar

KL
∑

bs

(N̄K)ab(NL)rsxarxbs (7)

This term penalizes assignments where pairs of nodes in the object graph
become neighbors in the scene graph which were not adjacent before. Figure
4 illustrates this situation in detail.
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Fig. 3. Left: Adjacent nodes a and b in the model graph GK are assigned to adjacent
nodes r and s in the scene graph GL. Right. Adjacent model nodes a and b are no
longer adjacent in the scene graph GL after the assignment. The left assignment leads
to no additional costs while the right undesired assignment adds 1 to the cost term (6).
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Fig. 4. Left: Nodes a and b which are not adjacent in the object graph GK are assigned
to nodes which are also not adjacent in the scene graph GL. Right: A pair of nodes
a and b become neighbors r and s′ after assignment. The left assignment is associated
with no additional costs in (7). The undesired assignment on the right side adds 1 to
these costs.

Note that due to the symmetry of the quadratic cost term x>Qx, every dif-
ference in the compared structure of the two graphs is penalized with a cost of 2.

In contrast to the linear bipartite matching problem (2), the computation
of the global optimum of the quadratic optimization problem (4), which in-
corporates the object and scene structure, is intrinsically difficult (NP-hard).
Therefore, we derive in the next section a tractable convex relaxation of this
NP-hard problem in order to compute a “good” local minimum.

3 Convex Problem Relaxation

The combinatorial subgraph matching approach (4) will be relaxed to a (convex)
semidefinite program (SDP) which has the following standard form:

min Tr
[

Q̃X
]

s.t. Tr[AiX ] = ci for i = 1, . . . , m (8)

X � 0



The last constraint in (8) says that X has to be positive semidefinite. We wish
to emphasize once more that this convex optimization problem can be solved
with standard methods like interior point algorithms. Note that the solution of
the relaxation (8) provides a lower bound to (4).

Below, we describe step by step how we derive such a semidefinite program
from (4). While in section 3.1, we derive an appropriate SDP objective function,
we show in section 3.2 how the bipartite matching constraints can be incorpo-
rated into the SDP (8). For more information on semidefinite programming we
refer to [27].

3.1 SDP Objective Function

In order to obtain an appropriate SDP relaxation for the combinatorial subgraph
matching problem, we start with reformulating the objective function of (4) into
a homogeneous quadratic form. And this can be stated directly in the appropriate
trace formulation of objective function for the semidefinite relaxation (8) using
the cyclic commutativity of the trace:

f(x) = w>x + αx>Qx =
(

1 x>
)

(

0 1
2w>

1
2w αQ

) (

1
x

)

= Tr
[

Q̃X
]

(9)

Here we denote with Q̃ ∈ R
(KL+1)×(KL+1) and X ∈ R

(KL+1)×(KL+1) the fol-
lowing symmetric matrices:

Q̃ =

(

0 1
2w>

1
2w αQ

)

, X =

(

1
x

)

(

1 x>
)

=

(

1 x>

x xx>

)

(10)

Besides being symmetric, the matrix X is positive semidefinite and has rank 1.
We relax the objective function by dropping the rank 1 condition of X which
makes the set of feasible matrices convex [27]. This lifts the original problem
(4) defined in a vector space with dimension KL into the space of symmetric,
positive semidefinite matrices with the dimension (KL + 1) × (KL + 1).

3.2 SDP Constraints

We wish to incorporate several constraints into the SDP relaxation by specifying
appropriate constraint matrices Ai ∈ R

(KL+1)×(KL+1). These SDP constraints
will have the form:

Tr[AiX ] = ci for i = 1, . . . , m

In particular, we introduce four types of constraints which correspond to the
homogeneous formulation of the problem, the 0/1-integer constraints, and the
bipartite matching constraints, respectively.

We next discuss in detail how the appropriate constraint matrices Ai can be
defined in terms of the Kronecker delta which make the implementation of our
approach easier:



– The first constraint we take into account results from the homogenization (9).
To restrict the element X11 = 1 in the matrix X , we introduce a constraint
matrix oneA whose elements can be expressed as

oneAkl = δk1δl1 for k, l = 1, . . . , KL + 1 ,

where we make use of the Kronecker delta. Note that oneA has only oneA11 =
1 as non-zero element.

– The second type of constraint we consider is derived from the integer con-
straints xi ∈ {0, 1}, i = 1, . . . , KL, which can be rewritten as x2

i = xi, i =
1, . . . , KL. If we consider the matrix X before it is relaxed (see (10)) we
observe that due to x2

i = xi the 0/1-integer elements on the diagonal of
X must be equal to the 0/1-integer elements in the first column and row
of X . Therefore the 0/1-integer constraints can be weakly enforced in the
relaxed problem by requiring the first column and row of X to be equal to
its diagonal. To implement these constraints, we introduce KL constraint
matrices intAj ∈ R

(KL+1)×(KL+1), j = 2, . . . , KL + 1. We define these con-
straint matrices to have a 2 at the appropriate diagonal element and −1 at
the corresponding elements in the first column and the first row. All other
elements are zero. Using the Kronecker delta the elements of the j-th con-
straint matrix intAj can be written as:

intAj
kl = 2δkjδlj − δkjδl1 − δljδk1 for k, l = 1, . . . , KL + 1

– The third type of constraint we take into account are the equality constraints
∑L

j=1 xij = 1, i = 1, . . . , K, which are part of the bipartite matching con-
straints in (4). They represent the constraint that each node of the smaller
graph is mapped to exactly one node of the scene graph. We define K con-
straint matrices sumAj ∈ R

(KL+1)×(KL+1), j = 1, . . . , K which ensure (tak-
ing the order of the diagonal elements into account) that the sum of the
appropriate portion of the diagonal elements of X is 1. We exploited again
the fact that xi = x2

i holds true for 0/1-variables. The matrix elements for
the j-th constraint matrix sumAj can be expressed as follows:

sumAj
kl =

jL+1
∑

i=(j−1)L+1

δikδil for k, l = 1, . . . , KL + 1

– The fourth type of constraint is related to the observation that the bipartite
matching constraints in (2) have a direct impact to certain matrix elements
of the sub-matrix X̃ = xx> of X . If x ∈ {0, 1}KL represents a bipartite
matching then certain elements in X̃ must be zero. Affected elements can
be determined by inspecting the following two cost terms which penalize



matchings that do not meet the bipartite matching constraints.

x>(IK ⊗ (ELL − IL))x =

KL
∑

ar

KL
∑

bs

(IK)ab(ELL − IL)rsxarxbs (11)

x>((EKK − IK) ⊗ IL)x =

KL
∑

ar

KL
∑

bs

(EKK − IK)ab(IL)rsxarxbs (12)

The first of these two terms penalizes non-unique assignments of model nodes
to scene nodes. Analogously, the second term penalizes assignments where
different nodes of the model graph are mapped to the same node in the scene
graph. Thus, in summary, the two terms penalize all assignments which do no
lead to a bipartite matching. Figure 5 illustrates such configurations in detail.
All integer solutions X̃ = xx> ∈ R

KL×KL, where x represents a bipartite
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bs

r

s

a=b
object graph scene graph
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object graph scene graph
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Fig. 5. Assignments which do not lead to bipartite matchings are penalized by the
quadratic terms (11) and (12).

matching, have zero-values at those matrix positions where IK ⊗ (ELL− IL)
and (EKK − IK)⊗ IL have non-zero elements. Accordingly, we want to force
the corresponding elements in X ∈ R

(KL+1)×(KL+1) to be zero. Fortunately,

this can be achieved with the constraint matrices zeros1Aars,zeros2 Aŝâb̂ ∈
R

(KL+1)×(KL+1) which are determined by the indices a, r,s and ŝ, â, b̂. They
have the following matrix elements

zeros1Aars
kl =δk,(aL+r+1)δl,(aL+s+1) + δk,(aL+s+1)δl,(aL+r+1) , (13)

zeros2Aŝâb̂
kl =δk,(ŝK+b̂+1)δl,(ŝK+â+1) + δk,(ŝK+â+1))δl,(ŝK+b̂+1) , (14)

where k, l = 1, . . . , KL + 1. Note that each of these matrices has only two
non-zero matrix elements at symmetric positions. The indices a, r,s and ŝ, â, b̂
attain all valid combinations of the following triples where s > r and b̂ > â:

(a, r, s) : a = 1, . . . , K; r = 1, . . . , L; s = (r + 1), . . . , L

(ŝ, â, b̂) : ŝ = 1, . . . , L; â = 1, . . . , K; b̂ = (â + 1), . . . , K

With this we define (LL − L)K/2 + (KK − K)L/2 additional constraints
that ensure zero-values at the corresponding matrix positions of X .



Altogether we have the following 1 + KL + K + (LL−L)K/2 + (KK −K)L/2
SDP constraints:

Tr[oneAX ] = 1

Tr[intAjX ] = 0 for j = 2 . . . , KL + 1

Tr[sumAjX ] = 1 for j = 1, . . . , K

Tr[zeros1AarsX ] = 0 ∀(a, r, s) , Tr[zeros2Aŝâb̂X ] = 0 ∀(ŝ, â, b̂)

The name gangster operator was introduced in [28] for the last two constraint
operators because they “shoot holes”,i.e. zeros, into the matrix X .
We note here that we dropped the additional linear inequality constraints of the
bipartite matching,

∑K
i=1 xij ≤ 1, ∀j, which, in principle, can be incorporated

by lifting schemes (see e.g. [27]). This, however, would considerably increase the
number of constraints and slow down the computation. Our experiments (section
5) show that this does not compromise the performance of our approach.

4 Combinatorial Solutions by Post-Processing

The diagonal elements of the global optimum Xbound ∈ R
(KL+1)×(KL+1) to

the semidefinite relaxation (8) can be interpreted as a non-integer approxima-
tion x̂sol = diag(Xbound) to the solution of (4). Omitting the first element in
x̂sol ∈ R

KL+1, which was added due to the homogenization (9), we obtain the
approximation xsol ∈ R

KL for the indicator vector x ∈ {0, 1}KL.

4.1 Probabilistic Interpretation of the Non-Integer Solution

According to the constraints AKxsol = eK , we have for each node i of the model
graph

∑L
j (xsol)ji = 1, i = 1, . . . , K. Hence, (xsol)ji may be considered as the

probability that model node i matches to scene node j. To illustrate this in-
terpretation, figure 6 shows a completely ambiguous situation, whereas figure 7
depicts for each of the five model nodes i = 1, . . . , 5 the values (xsol)ji. The pres-
ence of equally likely matchings clearly shows that multiple plausible hypotheses
for matchings can be represented through the convex problem relaxation. As ex-
plained next, and as validated in section 5, this property can be exploited to
compute the final matching from xsol.

4.2 Post-Processing

Winner-Take-All Strategy. An obvious strategy for determining the final
matching is to compute among all binary vectors x representing valid matchings
the vector that is maximally aligned with xsol:

max
x

x>

solx s.t. AKx = eK , ALx ≤ eL , x ∈ {0, 1}KL (15)



2312

1

2

3

4

5

4
9

10
7

6

8
1

11 3

5

13

2

2217

19 20

21
14

24 16

18
25

26

15

Fig. 6. Ambiguous situation with two global optima. The node colors indicate the
similarity between the nodes of the object and the scene graph. Despite convexity
and uniqueness, the semidefinite relaxation is able to represent multiple hypotheses for
matching – see figure 7.
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Fig. 7. The non-integer solution xsol for the ambiguous matching situation shown in
figure 6. The plot is subdivided into K = 5 segments, with the i-th segment (i ∈
{1, . . . , K}) representing all possible matchings from the model node i to all L = 26
nodes in the scene graph. In each segment the probabilities sum up to one.

The exact solution to (15), denoted with x∗

lin, can be computed by solving a linear
program because the constraint matrices AK and AL are total unimodular (cf.
section 2.1). According to the probabilistic interpretation, x∗

lin represents the
most probable matching.

Sampling. To exploit alternative hypotheses for valid matchings as well, we may
randomly select a node i ∈ {1, . . . , K} of the model graph and assign to it a scene
node j ∈ {1, . . . , L} by sampling from the distribution (xsol)ji, j = 1, . . . , L.
This assignment is only accepted if it results in a valid matching representing an
improved combinatorial solution. In our experiments, we conducted 10 ·KL such
sampling steps, starting with the solution x∗

lin to (15). The resulting matching
is denoted with x∗

sampling .



5 Experiments

5.1 Real World Example

For the problem shown in figure 1, we computed feature similarities (weights w)
by determining the earth mover distance [29] between local gray value histograms
for each node. We point out that more elaborate feature selection or even learning
is beyond the scope of this paper, whose main focus is the optimization.

To demonstrate that the regularization in (4) is indeed necessary, we first
computed the bipartite matching (3). The corresponding solution, shown in fig-
ure 8, just picks the locally best fitting scene graph nodes. Only the assignments
drawn in red are correct.
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Fig. 8. Matching computed by the linear program (3) without regularization, i.e. sen-
sitivity to relational structure. Only 3 out of the 12 assignments are correct (marked
with red).

The non-integer solution xsol obtained by the SDP relaxation (8) of the ap-
proach (4), is shown in figure 9, where (xsol)ji is plotted for each model node
i = 1, . . . , K. Only a few mappings i 7→ j have significantly large probabilities
(xsol)ji. The most likely assignments are marked with red, and some alterna-
tive candidates with (xsol)ji ≥ 0.1 are marked with green. The corresponding
matchings are shown in figure 10. The red assignments correspond to the optimal
combinatorial solution which, in turn, corresponds to the solution x∗

lin to (15).
Sampling, therefore, cannot lead to further improvements, in this case.

5.2 Generating Random Problem Instances

In order to get a more complete picture of the performance of our approach,
we conducted a large series of experiments with randomly generated problem
instances. Two kinds of experiments were considered:
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Fig. 9. The non-integer solution (xsol)ji for each model node i = 1, . . . , K = 12,
as obtained by the SDP relaxation. Only a few assignments have significantly large
probabilities. The most likely ones are marked with red and green, respectively.
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Fig. 10. SDP relaxation with winner take all post-processing results in the correct
matching. An alternative hypothesis is shown by the green line segments.

Random Subgraph Problems. An object graph with K nodes is randomly
created with an edge probability1 equal to 0.5. Then the scene graph is
created by copying the object graph and enlarging it to L nodes by adding
(L−K) random nodes and edges with edge probability 0.2. Hence, the model
graph always forms a subgraph of the scene graph in this series of experi-
ments. Costs {wji} are selected randomly within the small range 0.4 . . . 0.6
if the mapping of the object node i to the scene node j represents a de-
sired mapping. Otherwise the costs are set randomly to a value within the
wider range 0.4 . . . 1.0. Note that the wider range includes the small range,
which increases the probability that some undesired mappings have cheaper
assignment costs wji than the desired mapping. Therefore, the linear match-
ing approach (2), which ignores the graph structure, is likely to fail in all
experiments.

We fixed the size of the object graph to K = 9 and varied the scene graph
size from L = 14 to L = 30.

1 The edge probability is the probability that an edge of the underlying complete
graph is present.



By construction, we know which subgraph of the scene corresponds to the
object in each experiment. Accordingly, the corresponding matching is de-
fined to be ground truth, irrespective of the existence of other accidental
matchings with a better objective value (4) in some rare cases.

Random Model and Scene Graphs. In this series of experiments both
object and scene graphs with K and L nodes, respectively, are created ran-
domly, and independently from each other. The similarities wji are set ran-
domly within the range 0.4 . . . 1.0. The edge probability was set to 0.4 for
the smaller model graph, and to 0.3 for the larger scene graph.

To compute ground truth, we have to rely on exhaustive search, forcing us
to limit2 the maximum size of the scene graph to L = 19.

For each size L, we created 1000 problem instances. The value of the regulariza-
tion parameter α was 0.15 and 0.3 for the subgraph and purely random problems,
respectively.

5.3 Evaluation

Fraction of Optimally Solved Problem Instances. Figure 11 shows the
percentage of optimally3 solved problem instances for various problem sizes K
and L. We observe that for almost all smaller subgraph problems the global

99.6 99.7 99.9 98.7 98.2 96.3 95.4 94 92.8
88.2 86.3 84.1

79.8 77.6 78.3
73.6

69.2

98.9 98.8 97.5
93.2

87.5
82.1

77

69.2

61.1

50.7
47.5

39.5

30.3 27.6
24

17.2
13.2

33.9

26.1 28.4
25.2 24.6 23.2

4.6 2.6 1.9 1 0.9 0.5

9,14 9,15 9,16 9,17 9,18 9,19 9,20 9,21 9,22 9,23 9,24 9,25 9,26 9,27 9,28 9,29 9,30
K,L

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f O
pt

im
al

 S
ol

ut
io

ns

Sampling (subgraph problems)
Winner Take All (subgraph problems)
Sampling (random problems)
Winner Take All (random problems)

Fig. 11. Fraction of optimally solved problem instances for increasing problem sizes
K and L. The sampling post-processing step significantly increases this fraction by
exploiting the information in the non-integer solution vector xsol.

2 The number of possible assignments growth as L!/(L − K)!.
3 We count a solution as optimal if it has an equal or better objective value than the

objective value of the correct matching.



optimum is obtained by the convex relaxation followed by the winner take all
post-processing step. The main observation, however, is that the sampling was
always able to significantly increase the fraction of global optimal solutions.
This confirms the usefulness of a probabilistic interpretation of the non-integer
solution vector xsol to the SDP relaxation. Furthermore, figure 11 shows that
the more structured subgraph matching problems are easier to solve than the
purely random problem instances.
Quality of Optima. To get a more accurate picture of the performance of our
approach, we investigated the quality of the combinatorial solutions. To this end,
we computed the mean values along with the standard deviation of the ratios
f∗

lin/f∗
opt and f∗

sampling/f∗
opt for the solutions f∗

lin and f∗

sampling obtained by the
winner take all and the sampling post-processing step, respectively. A ratio close
to 1 indicates that the obtained solution is close to the objective value f ∗

opt of the
true matching. The results are shown in table 1. We observe that the sampling

K,L 9,15 9,17 9,19 9,25 9,30

f∗

lin/f∗

opt 1.00 ± 0.01 1.01 ± 0.04 1.02 ± 0.08 1.17 ± 0.21 1.35 ± 0.24
subgraph problems

f∗

sampling/f∗

opt 0.99 ± 0.01 0.99 ± 0.01 1.00 ± 0.02 1.02 ± 0.06 1.05 ± 0.09

f∗

lin/f∗

opt 1.58 ± 0.36 1.74 ± 0.42 1.99 ± 0.49 n.a. n.a.
random problems

f∗

sampling/f∗

opt 1.10 ± 0.12 1.11 ± 0.12 1.14 ± 0.14 n.a. n.a.

Table 1. Mean and standard deviation of the optima relative to the correct solution.
A ratio close to 1 indicates that the computed solution is close to f∗

opt. Winner take
all post-processing is always inferior to sampling. Note that the ratio for the subgraph
problems can become smaller than 1 due to accidental matchings with smaller objective
function value than that of the correct matching.

post-processing step always improves the results obtained by the winner take all
post-processing, and that the corresponding mean f ∗

sampling is very close to f∗
opt.

For example, for the larger subgraph problems with K = 9, L = 30, the sampling
improves the deviation from 35% to only 5%. Again, the random problems turn
out to be more difficult to solve, but sampling still leads to good solutions close
to the global optimum.

6 Conclusion

We proposed and investigated a novel approach to subgraph matching in com-
puter vision using regularized bipartite matching, semidefinite relaxation, and a
corresponding probabilistic post-processing step. A salient property of our ap-
proach is its mathematical simplicity: high-quality approximate solutions can be
computed by just solving a convex optimization problem. As a consequence, no
additional tuning parameters related to search heuristics, etc. are needed, apart
from a single regularizing parameter penalizing structural differences of match-
ings. Extensive numerical experiments revealed a surprisingly good quality of
the suboptimal solutions. Our approach provides a basis for learning optimal
feature configurations for object recognition in future work.
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