
  

  

Abstract— Dynamic Systems & Control is one of the most 
difficult courses to teach in the mechanical engineering 
curriculum. The subject is very mathematical and the 
mathematical framework is unfamiliar to novice students. 
Recently we began using a video game to demonstrate and 
teach content of the course. The game provides a natural way 
to align instruction with constructivist theories on how people 
learn. Herein, we describe the game and present preliminary 
results demonstrating its effectiveness. 

I. INTRODUCTION 
IKE many undergraduate mechanical engineering 
curricula, Northern Illinois University has a junior-level, 

course on dynamic systems & control (DS&C).  Broadly 
speaking, students who successfully complete the course 
should demonstrate the following outcomes: 
1) Derive differential equations that model a broad class of 

mechanical systems. 
2) Determine stability of these systems and their temporal 

characteristics directly from the mathematical models. 
3) Construct feedback loops with sensors, actuators and 

computing elements which stabilize the system or alter 
its dynamics in favorable ways. 

In addition to these “hard,” content-based outcomes, we may 
also have “soft” outcomes such as developing a genuine 
interest in the subject. We would like the first dynamic 
systems and control course to serve as a gateway to deeper 
study of the subject. We would like students to become 
comfortable with dynamic systems & control so that the 
framework presented in the course becomes a natural and 
intuitive way of thinking. When confronted with 
engineering problems outside their DS&C course, we would 
like students to competently apply a DS&C perspective. 
 In our experience, students are able to achieve many of 
the “hard” outcomes enumerated above by cramming 
mathematical recipes into their short term memories and 
then performing satisfactorily on the exams. However, it 
was rare for students to at our institution take a second 
DS&C course as an elective.  It was even more rare to find a 
student choosing a capstone design project that incorporates 
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feedback control. 
 To improve the dynamic systems and control experience, 
we experimented with a video game. Our experiment is 
modeled after an earlier project in which we introduced a 
video game into a required computational methods course. 
In that prior experience, we found that students taking the 
game-based computational methods course were more 
engaged [1] and they learned the material more deeply [2], 
compared to students taking a traditional textbook-based 
course. 
 In the remainder of the paper, we outline the foundations 
of congnitive science upon which we build our educational 
approach. We discuss how the game-based dynamic systems 
and control course is structured. Finally, we present 
evidence demonstrating the success of the effort.  

II. DISSONANCE BETWEEN HOW WE TEACH AND HOW 

PEOPLE LEARN 

A. A Difference in Perception 
Let’s face it. Those of us with expertise in dynamic 

systems and control are highly mathematical, perhaps more 
so than the typical engineering professor. When we take a 
step back and look at the content of a first dynamic systems 
and control course, we see a perfectly logical collection of 
mathematical concepts, tools, algorithms, and theorems. We 
see how all the pieces fit together to form a coherent whole. 
We see the utility. We see the limitations. We see the 
symmetries, and we see the beauty in the equations. 

This is very different from what our students see. When 
they encounter the equations in rapid-fire succession, they 
are often overwhelmed by the Tsunami. The mathematics is 
unnatural for them. For our mechanical engineering 
students, it is the first time that they are required to actually 
use Laplace transforms. To replace the concrete and easily 
understood variable “time” in one’s equations with a 
complex Laplace variable that represents a combination of 
exponential growth and oscillation frequency seems 
counterintuitive. Our mechanical engineering students are 
unaccustomed to thinking of dynamic systems as 
input/output systems that can be chained together like 
components of a stereo. 

When students encounter such situations, they often resort 
to coping mechanisms. They treat the mathematics as a set 
of thought-free operations that can be combined into recipes 
and committed to memory. Obviously, this is not what we 
want our students to get out of the course. Yet, the strategy 
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often suffices to achieve a passing grade. 

B. Constructivist Theories of Learning  
One of the most common teaching models one finds in 

engineering classrooms is that of direct instruction: a mostly 
one-way process in which the all-knowing instructor 
dispenses knowledge to the novice students who then are to 
absorb and internalize it. From this perspective, students are 
merely empty vessels that can be filled (slowly) with the 
professor’s knowledge. 

Cognitive science, however, paints a different picture of 
how learning actually works. One of the most widely 
accepted and empirically confirmed models of how people 
learn is that of Constructivism. That is, human learning is 
constructed. Learners build new knowledge, based upon the 
foundation of previous learning: 

 
New information is filtered through mental structures 
(schemata) that incorporate the student’s prior 
knowledge, beliefs, preconceptions and 
misconceptions, prejudices and fears. If the new 
information is consistent with those structures it may be 
integrate into them, but if it is contradictory, it … is 
unlikely to be truly incorporated into the individual’s 
belief system – which is to say, it will not be learned. 
[3] 
 
The early chapters of many elementary textbooks often 

discuss feedback in general and refer to common every-day 
devices such as thermostats and automotive cruise control. 
But this is normally a passive reading exercise rather than an 
engaging experience for students. After the introductory 
chapters, common textbooks become very axiomatic and 
deductive. The building blocks upon which new 
mathematical knowledge is constructed is prior 
mathematical knowledge. 

In the minds of us DS&C experts, self-described 
mathematical geeks, this may appear to be a natural and 
logical choice. However, mechanical engineering 
undergraduates are different. Most did not choose 
mechanical engineering because they liked mathematics. 
They chose mechanical engineering because they like cars, 
airplanes, bicycles… They like to build things. They like to 
take things apart. They like to tinker and figure out how 
things work. The mental structures (schemata) our students 
possess are less compatible with the expository style of 
typical textbooks. 

C. Connections to Real Machines and Devices  
Authors and instructors often attempt to establish 

connections between the theory and the types of machines 
and devices students care about. In general, this is good. But 
it is important to examine it from the perspective of the 
constructivist framework of human learning.  

For example, consider the homework problem shown in 
Figure 1. In this problem copied from Dorf and Bishop [4, p. 

481], students are led to believe that the block diagram is 
that of the attitude control system of the awe-inspiring 
Boeing-Bell V-22 Osprey tiltrotor aircraft. In the homework 
problem, students are asked to find the range of gains that 
stabilize the aircraft and to calculate performance metrics for 
certain gain combinations. 

Y(s)K (s   + 1.5 s + 0.5)
s

2 1
(20 s + 1)(10 s + 1)(0.5 s + 1)

R(s)

D(s)

 

 
Fig. 1. Block diagram for a better-than-average 
homework problem [4].  Photograph from [5]. 

However, when one types “V22  Osprey crash” into the 
search field of YouTube, one realizes that the dynamics of 
the part-airplane, part-helicopter vehicle are much more 
complicated, and the block diagram in Figure 1 with third 
order plant dynamics and PID controller is a vast over-
simplification. Any credible connection between the 
mathematics and the real engineering system is severed. 
From a constructivist perspective, the Osprey problem has 
additional drawbacks: most students do not have any direct 
experience with a tiltrotor aircraft. They do not have a gut 
feel for what would be a good amount of overshoot, or an 
appropriate settling time. Therefore, they cannot intrinsically 
place a value on the quality of their controller design. Value 
only comes from the score they receive toward their overall 
grade in the class.  

III. PREVIOUS ATTEMPTS AT CREATING AN ACTIVE AND 
CONSTRUCTIVE DS&C COURSE 

In the past, we have attempted to incorporate inquiry-
based experiential learning into the dynamic systems & 
control course by focusing student activities and 
assignments on several simple canonical dynamics and 
control problems: mass-spring-damper systems, pendula, 
inverted pendula, DC electric motors, kinematic models of 
vehicle steering, simplified models of vehicle longitudinal 
dynamics, and more. In all cases, students used or created 
their own Matlab/Simulink simulations, sometimes with 
animation. The simulations had much in common with the 
“Virtual Experiments” modules in the upcoming textbook by 
Golnaraghi & Kuo [6]. For the electric motor and inverted 
pendulum problems, we provided physical hardware for 
students to experiment with. 

Students created mathematical models for the systems, 
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tested the utility and limitations of the mathematical models, 
and designed model-based controllers for the systems. Many 
of the assignments asked students to explore the space of 
physical parameters and controller gains. Some were open-
ended design problems. 

In course evaluations, students almost uniformly praised 
the concrete learning experiences. They claimed that the 
modules helped clarify theoretical content of the course and 
aided their learning. However, it did not appear as though 
students were connecting with the subject in a deep way. 
Although the inverted pendulum problem has much in 
common dynamically with a Segway Personal Transporter, 
the pendulum just is not as interesting. Although learning to 
control an electric motor provides a foundation on which 
one can design a robot arm for a Mars rover, studying the 
physics of the motor itself is not as exciting as the things one 
can potentially do with it. Our students chose mechanical 
engineering because they like to tinker. They want to build 
machines that do cool things. By focusing on simple systems 
that could be components of more interesting machines, or 
mechanical metaphors of more interesting machines, we 
wondered if we were missing the target in our attempt to 
create an effective and engaging learning environment. 

Based on our earlier success in using a video game to 
teach computational methods [1], [2], we decided to try a 
game-based approach in Dynamic Systems & Control. 

IV. EDUTORCS, THE VIDEO GAME 
Our video game is called EduTorcs. At its heart, our game 

is a sophisticated vehicle simulator. It has a computational 
model for automobile physics. A-arm suspension 
kinematics, steering rack/pinion/tie-rod kinematics, full 3D 
rotations, transmission, differential, engine characteristics, 
sway bars, and tire mechanics are all included in the model. 
Recently we have added a bicycle/motorcycle model to the 
game. The computational model of the bike include the 
physics of telescopic fork and swing arm suspension, full 3D 
rotations, tire mechanics, rider lean, and gyroscopic effects 
of the spinning wheels. 

We have built our video game on top of an existing open-
source game called Torcs (www.torcs.org). Torcs provides 
the game framework and graphics engine for our game. It 
synchronizes our simulations so that they run in real time, 
and it gives EduTorcs the look and sound of commercial 
video games similar to Need for Speed or Gran Turismo. 
See Figure 2 for screen shots of the game. 

Even with all its similarities, students normally do not 
“play” our game EduTorcs like a traditional video game. 
They primarily interact with the game through a software 
interface we have created. Instead of spending countless 
hours, joystick in hand, honing one’s eye-hand coordination 
and reaction skills, our mechanical engineering students 
improve their “driving” skills by applying tools and 
techniques of dynamic systems & control, and by applying 
sound engineering decision-making to the problem. The 

game’s student interface provides access to certain data 
directly from the simulation. Students write driving 
algorithms in C++, and their programs get linked to the 
game at run time. 

 

 
Fig. 2. Screen shots from the game EduTorcs. 

Our reason for choosing a car driving theme for the game, 
rather than rockets or airplanes, is because (almost) all our 
students know how to drive (in real life). Following the 
constructivist paradigm, we ask students to build upon this 
foundational knowledge in effort to devise computational 
algorithms so that the car can drive itself around the track. 

A. First Steps in the Game  
Good video games are designed so that the initial 

challenges within the game are relatively easy to 
accomplish. Then, as the player’s skills develop, the 
challenges intensify. Likewise, in EduTorcs, we start with a 
simple task: write a small algorithm that will steer the car 
around a serpentine track at modest speeds. 

When students first run EduTorcs, their car sits motionless 
on the track. To get the car to move, one may write a short 
program similar to the one below: 

 
Void Driver::defaultDriver() 
{ 
  brake = 0.0; 
  gear = 1; 
  throttle = 0.3; 
} 

The first line of the program, brake=0.0, tells the 
simulation to disengage the brakes. The second line, 
gear=1, puts the transmission in first gear. The third line, 
throttle=0.3, is equivalent to pressing on the gas pedal, 
30% of full throttle. If the program contains just these three 
lines, then the car will ease forward, slowly picking up 
speed until the first turn in the road. Then, the car drives off 
the track and smashes into the wall. Clearly, the driving 
algorithm needs a steering command. 

To get the car to steer, we suggest that students modify 
their code as follows: 

Void Driver::defaultDriver() 
{ 
  brake = 0.0; 
  gear = 1; 
  throttle = 0.3; 
  steer = -0.2 * toCenter; 
} 
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The variable toCenter is defined by the student interface. 
It contains the distance [in meters] of the car’s lateral sensor 
from the center line of the track. (See Figure 3.) The signed 
variable is positive when the car is to the left of the center 
line and negative when the car is to the right. Therefore, 
when the car is on the center line the steer command is set 
to zero and the car drives straight ahead. When the car is to 
the left of center, the steer command becomes negative, 
meaning that the car turns to the right. When the car is to the 
right of center, the steer command becomes positive 
causing the car to turn to the left. The farther the car is from 
the center line, the larger the steering command. 
 

 
Fig. 3. Definition of toCenter, and our initial attempt at creating 
a steering controller. 

The driving function gets called every 0.02 sec. Therefore, 
driving commands are updated 50 times per second, and 
students get to see the mechanism of feedback in action. The 
initial steering strategy we encode into EduTorcs is one 
which continually steers the car toward the center line of the 
track. It makes intuitive sense. It seems like the strategy we 
employ when we drive or own (real) cars. (Although we 
usually drive in the center of our lane rather than the center 
of the road.)  

Surprisingly, it does NOT work! When we compile the 
code and run it within EduTorcs, we see that the car is able 
to complete the first turn in the practice track. Shortly 
afterward, however, the car begins zig-zagging. The picture 
on the right in Figure 3 shows the car as it is experiencing 
the growing lateral oscillations, shortly before it crashes into 
the side wall. 

This is where we hand the problem over to the students. 
We ask them to fix the controller, to make it steer smoothly 
around the track as if a sober human was driving the car. 

In doing so, we provide them ample guidance. To begin, 
we ask students to run a part of the game which allows 
players to plug in a joystick and drive the car like in a 
traditional video game. There is an important difference, 
though. EduTorcs will record data from the joystick input. 
Afterward, we can examine the data and observe how the 
feedback controllers locked inside our unconscious minds 
are able to execute aggressive maneuvers and then damp out 
the lateral oscillations. 

Students discover the distinguishing feature of the 
controllers inside their minds which permits them to damp 
out the oscillations. On the bottom right corner of Figure 3, 

EduTorcs provides a real-time plot of toCenter and steer as 
functions of time. Notice that the steer command and lateral 
displacement are exactly 180o out of phase. The personal 
steer controllers that students have locked inside their heads 
advance the phase of the joystick input (steer input), 
compared to the proportional controller in our code snippet. 
What does this mean? The phase advance is the result of our 
minds anticipating. We begin executing the turn before the 
car crosses the center line. To make the software-based 
controller work, students must incorporate that same type of 
anticipation. All of them figure it out, some with a little 
help. 

Engineering students like to build things. They like to 
tinker. They like to figure out how to make things work. 
With the video game, all the tinkering takes place in the 
virtual world. Nonetheless, we suspect that tinkering with 
virtual objects exercises the same cognitive muscles. At the 
same time, students are absorbing important concepts of 
automatic control. First, they are witnessing the important 
role of feedback. Secondly, they discover the powerful role 
of anticipation (also known as derivative action or lead 
compensation) in creating stability. The lesson was learned 
organically without any theorems or integral 
transformations.  

In our game-based dynamic systems & control course, we 
rigorously and mathematically examine the effects of 
derivative action/lead compensation from the perspectives of 
PID, root locus, and Bode-Nyquist in much the same way as 
a traditional course. However, we do it only after students 
have had the opportunity to develop an intuition about what 
it means, after they have developed the mental structures 
necessary to accommodate the concept into their 
understanding. 

In the game-based course, the theoretical derivation not 
only serves to confirm their intuitive understanding. 
Students can make new use of it. The theory shows students 
how to scale their steering gains with speed, so they can 
safely steer their Porsche at 160 mph (257 km/hr). Also, 
with the theory and modeling skills, they can figure out the 
best location to place their lateral position sensor (which 
generates the toCenter measurement) on the car. 

B. Rest of the Game  
Throughout the course, we use the video game in a 

similar way to introduce other concepts. For example, we 
use an event within EduTorcs called “Follow the Leader”  to 
introduce several concepts. The task is to design a 
throttle/brake controller that will keep the car’s front bumper 
exactly 1 meter away from the rear bumper of the car in 
front of it. (See Figure 4). During one lap around a 
competition track, the lead car drives at a variety of speeds 
between 40mph (64 km/hr) and 100 mph (161 km/hr). 
Students “pass” the event if their driving algorithm keeps 
the integrated error below a certain critical value.  

With a proportional controller, students get a steady state 
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error. It is straightforward to explain why this happens 
physically and mathematically. It is an authentic opportunity 
to introduce the final value theorem.  

 

 
Fig. 4. Follow the leader event in EduTorcs. 

At this point, we hand the task over to the students and 
ask them to figure out how to make it work. Because of 
noise in the inter-bumper distance measurement, a high 
proportional gain will not work.  At moderate proportional 
gain, though, we have students break out their joysticks 
again. Thinking as a drivers rather a mathematicians, they 
figure out how to adjust the throttle in order to eliminate 
steady state error. By examining how the students’ intuitive 
throttle adjustments vary with error, we can recognize an 
integral-like relationship. Again, we make sense of the 
concept and then investigate the mathematical ramifications. 

As the semester progresses, challenges within the game 
get harder. For example, students develop “ride-by-wire” 
controllers for virtual motorcycles/bicycles. (Our motorcycle 
is shown on the right of Figure 1.) In this case, 
students/players provide desired turn rates  (or desired lean 
angles) with the joystick. Then the controller computes a 
steering input that, first, keeps the bike balanced and, 
second, achieves the desired turn rate. It is a control problem 
for which performance measures such as percent overshoot, 
settling time, and rise time have all take on greater meaning 
than they do in generic homework exercises such as the V-
22 Osprey problem depicted in Figure 1. If the “ride-by-
wire” controller has a large overshoot or slow settling time 
then the bike becomes difficult to maneuver. Students work 
hard to understand and then to improve the controller 
performance characteristics so that they can execute agile 
maneuvers on the bike. Learning is situated in a context that 
has authentic meaning for students. 

The course ended with a series of open-ended projects. 
Some of the students, for example, designed controllers that 
would robustly guide their cars through intricate stunt 
maneuvers worthy of a Hollywood action movie. 

Other students designed controllers for riding a bike in 
reverse. This is equivalent to Klein’s “unridable” rear-
steered bike, a famously difficult system to control because 
of fundamental limitations due to an open-loop zero in the 
right half plane [7], [8]. Finding that students had a difficult 
time trusting the mathematics and simulation of the rear-
steered bike, we actually built the bike (Figure 5, left side) 
and allowed them to attempt to ride it. This allowed students 
to make a direct connection between the mathematics and 
their physical experience. In this case, the simulated 
experience was not sufficient because students did not trust 
it. 

 
Fig 5. Some student control projects: the rear steered bike and 
riding a "wheelie." 

Another set of projects worth mentioning are those of 
students who developed controllers to balance the bike on its 
rear wheel. (See Figure 5, right side). Students developed 
one controller for longitudinal balance, i.e. keeping the front 
wheel off the ground, for a variety of different speeds and 
aerodynamic forces. Then, in order to maintain the 
“wheelie,” students had to design a lateral controller in 
which rider lean is used to prevent the bike from tipping and 
falling to the side. 

V. ASSESSMENT OF LEARNING 
When making dramatic changes to how one teaches a 

course it is important to measure effects of the changes as 
thoroughly and objectively as practically possible. In this 
effort, we began implementing a detailed assessment plan in 
the spring of 2007, the last semester that the dynamic 
systems and control class was taught without the video 
game. 

To measure learning, we developed two tests to assess 
students’ conceptual understanding of course material. The 
first test was administered roughly a week before the 
midterm examination. Students took the other test about a 
week before the final examination. We told students that 
these were practice tests. Their performance on the tests 
would not affect their grade in the course, and that they 
could use the exams to identify their weaknesses to help 
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them study for the upcoming exams that did count. By 
designing our assessment this way, we believe we were 
more likely capture students’ understanding of the material, 
while filtering out the effects of last-minute studying for an 
exam.  Also, since students are unlikely to study for a test 
that has no impact on their grade, we were comfortable 
giving the exact same practice test each year of our study. 

On the two tests, there were 69 multiple choice questions 
covering 21 concepts in the dynamic systems & control 
course. Concepts ranged from recognizing that complex 
poles produce oscillatory solutions to recognizing the utility 
of feed-forward mechanisms.  

In Figure 6, we show differences between class averages 
for each of the 21 concepts. When the difference is positive, 
students in the game-based 2009 course scored better (on 
average) than students taking the non-game course in 2007. 
In the figure, differences are normalized by the pooled 
standard deviations for each topic. The error bars denote 
95% confidence intervals for the differences between means 
as determined by t-tests. Sample sizes for the game and non-
game classes are 46 and 50 respectively for the first 11 
concepts and 45 and 49 for the remaining concepts. 
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Figure 6. Normalized differences between game and non-game 
average scores on 21 concepts. Symbols indicate two-tailed 
statistical significance: *: 0.01 < p < 0.05;  #: 0.001 < p < 0.01;  $: p 
< 0.001. 

Both courses were taught by the same professor, using the 
same textbook. Although the 2007 course was not taught 
with the video game, it was taught using an active-learning, 
inquiry-based approach outlined in Section II. Students 
taking both courses took the Mechanics Baseline Test [9] 
during the first week of the semester. Both groups of 
students scored almost identically on this test of mechanics 
and calculus knowledge as they entered the course. 
Therefore the only perceived difference between the groups 
is the type of instruction (game versus non-game) that each 
experienced. 

The differences in concept tests scores reported in Figure 
6 are clearly lopsided. Students taking the game-based 
course score better on 18 out of 21 of the concepts. Fourteen 
of these are statistically significant at a level p<0.05 (two-

tailed). There is only one concept in which the non-game 
students scored significantly better. 

At this stage, we have just begun analyzing the data we 
have collected. As we comb through the data, we will get a 
glimpse of how students with different learning styles, 
different motivation orientations, and different video game 
playing habits respond differently to our educational game. 

In addition to the learning data outlined in Figure 6, we 
collected engagement data through a technique called the 
Experience Sampling Method [10]. Students are surveyed at 
random moments. Students answer questions like “Are you 
feeling challenged?”, “Are you feeling frustrated?”, 
“bored?”, “happy?”, “curious?”, and others. When 
examined, through the perspective of flow theory [11], the 
answers provide insight into how engaged students are, in 
the moment. 

Our preliminary results show that students in 2009, 
working on their game-based DS&C homework are more 
engaged than those in 2007 working on their non-game 
DS&C homework. The findings, so far, mirror those in our 
previous study of game-based numerical methods 
instruction. [1] The engagement findings might also partially 
explain why scores for the game-based group in Figure 6 are 
considerably higher. They might explain why we have a 
roughly five-fold increase in undergraduate enrollment in 
our intermediate dynamic systems and control class in Fall 
of 2010. They might also explain the dramatic jump in 
students this year pursuing capstone design projects with 
substantial DS&C components.  
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