

Abstract— Dynamic Systems & Control is one of the most
difficult courses to teach in the mechanical engineering
curriculum. The subject is very mathematical and the
mathematical framework is unfamiliar to novice students.
Recently we began using a video game to demonstrate and
teach content of the course. The game provides a natural way
to align instruction with constructivist theories on how people
learn. Herein, we describe the game and present preliminary
results demonstrating its effectiveness.

I. INTRODUCTION
IKE many undergraduate mechanical engineering
curricula, Northern Illinois University has a junior-level,

course on dynamic systems & control (DS&C). Broadly
speaking, students who successfully complete the course
should demonstrate the following outcomes:
1) Derive differential equations that model a broad class of

mechanical systems.
2) Determine stability of these systems and their temporal

characteristics directly from the mathematical models.
3) Construct feedback loops with sensors, actuators and

computing elements which stabilize the system or alter
its dynamics in favorable ways.

In addition to these “hard,” content-based outcomes, we may
also have “soft” outcomes such as developing a genuine
interest in the subject. We would like the first dynamic
systems and control course to serve as a gateway to deeper
study of the subject. We would like students to become
comfortable with dynamic systems & control so that the
framework presented in the course becomes a natural and
intuitive way of thinking. When confronted with
engineering problems outside their DS&C course, we would
like students to competently apply a DS&C perspective.
 In our experience, students are able to achieve many of
the “hard” outcomes enumerated above by cramming
mathematical recipes into their short term memories and
then performing satisfactorily on the exams. However, it
was rare for students to at our institution take a second
DS&C course as an elective. It was even more rare to find a
student choosing a capstone design project that incorporates

Manuscript received September 22, 2009. This work was supported by

the National Science Foundation under Grant 0633162. Any opinions,
findings, and conclusions are those of the author and do not necessarily
reflect those of the National Science Foundation.

B. D. Coller is Associate Professor of Mechanical Engineering at
Northern Illinois University, DeKalb, IL 60115 USA (phone: 815-753-9944
fax: 815-753-0416; e-mail: coller@ceet.niu.edu)

feedback control.
 To improve the dynamic systems and control experience,
we experimented with a video game. Our experiment is
modeled after an earlier project in which we introduced a
video game into a required computational methods course.
In that prior experience, we found that students taking the
game-based computational methods course were more
engaged [1] and they learned the material more deeply [2],
compared to students taking a traditional textbook-based
course.
 In the remainder of the paper, we outline the foundations
of congnitive science upon which we build our educational
approach. We discuss how the game-based dynamic systems
and control course is structured. Finally, we present
evidence demonstrating the success of the effort.

II. DISSONANCE BETWEEN HOW WE TEACH AND HOW

PEOPLE LEARN

A. A Difference in Perception
Let’s face it. Those of us with expertise in dynamic

systems and control are highly mathematical, perhaps more
so than the typical engineering professor. When we take a
step back and look at the content of a first dynamic systems
and control course, we see a perfectly logical collection of
mathematical concepts, tools, algorithms, and theorems. We
see how all the pieces fit together to form a coherent whole.
We see the utility. We see the limitations. We see the
symmetries, and we see the beauty in the equations.

This is very different from what our students see. When
they encounter the equations in rapid-fire succession, they
are often overwhelmed by the Tsunami. The mathematics is
unnatural for them. For our mechanical engineering
students, it is the first time that they are required to actually
use Laplace transforms. To replace the concrete and easily
understood variable “time” in one’s equations with a
complex Laplace variable that represents a combination of
exponential growth and oscillation frequency seems
counterintuitive. Our mechanical engineering students are
unaccustomed to thinking of dynamic systems as
input/output systems that can be chained together like
components of a stereo.

When students encounter such situations, they often resort
to coping mechanisms. They treat the mathematics as a set
of thought-free operations that can be combined into recipes
and committed to memory. Obviously, this is not what we
want our students to get out of the course. Yet, the strategy

A Video Game for Teaching Dynamic Systems & Control to
Mechanical Engineering Undergraduates

B. D. Coller

L

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

WeA11.3

978-1-4244-7427-1/10/$26.00 ©2010 AACC 390

often suffices to achieve a passing grade.

B. Constructivist Theories of Learning
One of the most common teaching models one finds in

engineering classrooms is that of direct instruction: a mostly
one-way process in which the all-knowing instructor
dispenses knowledge to the novice students who then are to
absorb and internalize it. From this perspective, students are
merely empty vessels that can be filled (slowly) with the
professor’s knowledge.

Cognitive science, however, paints a different picture of
how learning actually works. One of the most widely
accepted and empirically confirmed models of how people
learn is that of Constructivism. That is, human learning is
constructed. Learners build new knowledge, based upon the
foundation of previous learning:

New information is filtered through mental structures
(schemata) that incorporate the student’s prior
knowledge, beliefs, preconceptions and
misconceptions, prejudices and fears. If the new
information is consistent with those structures it may be
integrate into them, but if it is contradictory, it … is
unlikely to be truly incorporated into the individual’s
belief system – which is to say, it will not be learned.
[3]

The early chapters of many elementary textbooks often

discuss feedback in general and refer to common every-day
devices such as thermostats and automotive cruise control.
But this is normally a passive reading exercise rather than an
engaging experience for students. After the introductory
chapters, common textbooks become very axiomatic and
deductive. The building blocks upon which new
mathematical knowledge is constructed is prior
mathematical knowledge.

In the minds of us DS&C experts, self-described
mathematical geeks, this may appear to be a natural and
logical choice. However, mechanical engineering
undergraduates are different. Most did not choose
mechanical engineering because they liked mathematics.
They chose mechanical engineering because they like cars,
airplanes, bicycles… They like to build things. They like to
take things apart. They like to tinker and figure out how
things work. The mental structures (schemata) our students
possess are less compatible with the expository style of
typical textbooks.

C. Connections to Real Machines and Devices
Authors and instructors often attempt to establish

connections between the theory and the types of machines
and devices students care about. In general, this is good. But
it is important to examine it from the perspective of the
constructivist framework of human learning.

For example, consider the homework problem shown in
Figure 1. In this problem copied from Dorf and Bishop [4, p.

481], students are led to believe that the block diagram is
that of the attitude control system of the awe-inspiring
Boeing-Bell V-22 Osprey tiltrotor aircraft. In the homework
problem, students are asked to find the range of gains that
stabilize the aircraft and to calculate performance metrics for
certain gain combinations.

Y(s)K (s + 1.5 s + 0.5)
s

2 1
(20 s + 1)(10 s + 1)(0.5 s + 1)

R(s)

D(s)

Fig. 1. Block diagram for a better-than-average
homework problem [4]. Photograph from [5].

However, when one types “V22 Osprey crash” into the
search field of YouTube, one realizes that the dynamics of
the part-airplane, part-helicopter vehicle are much more
complicated, and the block diagram in Figure 1 with third
order plant dynamics and PID controller is a vast over-
simplification. Any credible connection between the
mathematics and the real engineering system is severed.
From a constructivist perspective, the Osprey problem has
additional drawbacks: most students do not have any direct
experience with a tiltrotor aircraft. They do not have a gut
feel for what would be a good amount of overshoot, or an
appropriate settling time. Therefore, they cannot intrinsically
place a value on the quality of their controller design. Value
only comes from the score they receive toward their overall
grade in the class.

III. PREVIOUS ATTEMPTS AT CREATING AN ACTIVE AND
CONSTRUCTIVE DS&C COURSE

In the past, we have attempted to incorporate inquiry-
based experiential learning into the dynamic systems &
control course by focusing student activities and
assignments on several simple canonical dynamics and
control problems: mass-spring-damper systems, pendula,
inverted pendula, DC electric motors, kinematic models of
vehicle steering, simplified models of vehicle longitudinal
dynamics, and more. In all cases, students used or created
their own Matlab/Simulink simulations, sometimes with
animation. The simulations had much in common with the
“Virtual Experiments” modules in the upcoming textbook by
Golnaraghi & Kuo [6]. For the electric motor and inverted
pendulum problems, we provided physical hardware for
students to experiment with.

Students created mathematical models for the systems,

391

tested the utility and limitations of the mathematical models,
and designed model-based controllers for the systems. Many
of the assignments asked students to explore the space of
physical parameters and controller gains. Some were open-
ended design problems.

In course evaluations, students almost uniformly praised
the concrete learning experiences. They claimed that the
modules helped clarify theoretical content of the course and
aided their learning. However, it did not appear as though
students were connecting with the subject in a deep way.
Although the inverted pendulum problem has much in
common dynamically with a Segway Personal Transporter,
the pendulum just is not as interesting. Although learning to
control an electric motor provides a foundation on which
one can design a robot arm for a Mars rover, studying the
physics of the motor itself is not as exciting as the things one
can potentially do with it. Our students chose mechanical
engineering because they like to tinker. They want to build
machines that do cool things. By focusing on simple systems
that could be components of more interesting machines, or
mechanical metaphors of more interesting machines, we
wondered if we were missing the target in our attempt to
create an effective and engaging learning environment.

Based on our earlier success in using a video game to
teach computational methods [1], [2], we decided to try a
game-based approach in Dynamic Systems & Control.

IV. EDUTORCS, THE VIDEO GAME
Our video game is called EduTorcs. At its heart, our game

is a sophisticated vehicle simulator. It has a computational
model for automobile physics. A-arm suspension
kinematics, steering rack/pinion/tie-rod kinematics, full 3D
rotations, transmission, differential, engine characteristics,
sway bars, and tire mechanics are all included in the model.
Recently we have added a bicycle/motorcycle model to the
game. The computational model of the bike include the
physics of telescopic fork and swing arm suspension, full 3D
rotations, tire mechanics, rider lean, and gyroscopic effects
of the spinning wheels.

We have built our video game on top of an existing open-
source game called Torcs (www.torcs.org). Torcs provides
the game framework and graphics engine for our game. It
synchronizes our simulations so that they run in real time,
and it gives EduTorcs the look and sound of commercial
video games similar to Need for Speed or Gran Turismo.
See Figure 2 for screen shots of the game.

Even with all its similarities, students normally do not
“play” our game EduTorcs like a traditional video game.
They primarily interact with the game through a software
interface we have created. Instead of spending countless
hours, joystick in hand, honing one’s eye-hand coordination
and reaction skills, our mechanical engineering students
improve their “driving” skills by applying tools and
techniques of dynamic systems & control, and by applying
sound engineering decision-making to the problem. The

game’s student interface provides access to certain data
directly from the simulation. Students write driving
algorithms in C++, and their programs get linked to the
game at run time.

Fig. 2. Screen shots from the game EduTorcs.

Our reason for choosing a car driving theme for the game,
rather than rockets or airplanes, is because (almost) all our
students know how to drive (in real life). Following the
constructivist paradigm, we ask students to build upon this
foundational knowledge in effort to devise computational
algorithms so that the car can drive itself around the track.

A. First Steps in the Game
Good video games are designed so that the initial

challenges within the game are relatively easy to
accomplish. Then, as the player’s skills develop, the
challenges intensify. Likewise, in EduTorcs, we start with a
simple task: write a small algorithm that will steer the car
around a serpentine track at modest speeds.

When students first run EduTorcs, their car sits motionless
on the track. To get the car to move, one may write a short
program similar to the one below:

Void Driver::defaultDriver()
{
 brake = 0.0;
 gear = 1;
 throttle = 0.3;
}

The first line of the program, brake=0.0, tells the
simulation to disengage the brakes. The second line,
gear=1, puts the transmission in first gear. The third line,
throttle=0.3, is equivalent to pressing on the gas pedal,
30% of full throttle. If the program contains just these three
lines, then the car will ease forward, slowly picking up
speed until the first turn in the road. Then, the car drives off
the track and smashes into the wall. Clearly, the driving
algorithm needs a steering command.

To get the car to steer, we suggest that students modify
their code as follows:

Void Driver::defaultDriver()
{
 brake = 0.0;
 gear = 1;
 throttle = 0.3;
 steer = -0.2 * toCenter;
}

392

The variable toCenter is defined by the student interface.
It contains the distance [in meters] of the car’s lateral sensor
from the center line of the track. (See Figure 3.) The signed
variable is positive when the car is to the left of the center
line and negative when the car is to the right. Therefore,
when the car is on the center line the steer command is set
to zero and the car drives straight ahead. When the car is to
the left of center, the steer command becomes negative,
meaning that the car turns to the right. When the car is to the
right of center, the steer command becomes positive
causing the car to turn to the left. The farther the car is from
the center line, the larger the steering command.

Fig. 3. Definition of toCenter, and our initial attempt at creating
a steering controller.

The driving function gets called every 0.02 sec. Therefore,
driving commands are updated 50 times per second, and
students get to see the mechanism of feedback in action. The
initial steering strategy we encode into EduTorcs is one
which continually steers the car toward the center line of the
track. It makes intuitive sense. It seems like the strategy we
employ when we drive or own (real) cars. (Although we
usually drive in the center of our lane rather than the center
of the road.)

Surprisingly, it does NOT work! When we compile the
code and run it within EduTorcs, we see that the car is able
to complete the first turn in the practice track. Shortly
afterward, however, the car begins zig-zagging. The picture
on the right in Figure 3 shows the car as it is experiencing
the growing lateral oscillations, shortly before it crashes into
the side wall.

This is where we hand the problem over to the students.
We ask them to fix the controller, to make it steer smoothly
around the track as if a sober human was driving the car.

In doing so, we provide them ample guidance. To begin,
we ask students to run a part of the game which allows
players to plug in a joystick and drive the car like in a
traditional video game. There is an important difference,
though. EduTorcs will record data from the joystick input.
Afterward, we can examine the data and observe how the
feedback controllers locked inside our unconscious minds
are able to execute aggressive maneuvers and then damp out
the lateral oscillations.

Students discover the distinguishing feature of the
controllers inside their minds which permits them to damp
out the oscillations. On the bottom right corner of Figure 3,

EduTorcs provides a real-time plot of toCenter and steer as
functions of time. Notice that the steer command and lateral
displacement are exactly 180o out of phase. The personal
steer controllers that students have locked inside their heads
advance the phase of the joystick input (steer input),
compared to the proportional controller in our code snippet.
What does this mean? The phase advance is the result of our
minds anticipating. We begin executing the turn before the
car crosses the center line. To make the software-based
controller work, students must incorporate that same type of
anticipation. All of them figure it out, some with a little
help.

Engineering students like to build things. They like to
tinker. They like to figure out how to make things work.
With the video game, all the tinkering takes place in the
virtual world. Nonetheless, we suspect that tinkering with
virtual objects exercises the same cognitive muscles. At the
same time, students are absorbing important concepts of
automatic control. First, they are witnessing the important
role of feedback. Secondly, they discover the powerful role
of anticipation (also known as derivative action or lead
compensation) in creating stability. The lesson was learned
organically without any theorems or integral
transformations.

In our game-based dynamic systems & control course, we
rigorously and mathematically examine the effects of
derivative action/lead compensation from the perspectives of
PID, root locus, and Bode-Nyquist in much the same way as
a traditional course. However, we do it only after students
have had the opportunity to develop an intuition about what
it means, after they have developed the mental structures
necessary to accommodate the concept into their
understanding.

In the game-based course, the theoretical derivation not
only serves to confirm their intuitive understanding.
Students can make new use of it. The theory shows students
how to scale their steering gains with speed, so they can
safely steer their Porsche at 160 mph (257 km/hr). Also,
with the theory and modeling skills, they can figure out the
best location to place their lateral position sensor (which
generates the toCenter measurement) on the car.

B. Rest of the Game
Throughout the course, we use the video game in a

similar way to introduce other concepts. For example, we
use an event within EduTorcs called “Follow the Leader” to
introduce several concepts. The task is to design a
throttle/brake controller that will keep the car’s front bumper
exactly 1 meter away from the rear bumper of the car in
front of it. (See Figure 4). During one lap around a
competition track, the lead car drives at a variety of speeds
between 40mph (64 km/hr) and 100 mph (161 km/hr).
Students “pass” the event if their driving algorithm keeps
the integrated error below a certain critical value.

With a proportional controller, students get a steady state

393

error. It is straightforward to explain why this happens
physically and mathematically. It is an authentic opportunity
to introduce the final value theorem.

Fig. 4. Follow the leader event in EduTorcs.

At this point, we hand the task over to the students and
ask them to figure out how to make it work. Because of
noise in the inter-bumper distance measurement, a high
proportional gain will not work. At moderate proportional
gain, though, we have students break out their joysticks
again. Thinking as a drivers rather a mathematicians, they
figure out how to adjust the throttle in order to eliminate
steady state error. By examining how the students’ intuitive
throttle adjustments vary with error, we can recognize an
integral-like relationship. Again, we make sense of the
concept and then investigate the mathematical ramifications.

As the semester progresses, challenges within the game
get harder. For example, students develop “ride-by-wire”
controllers for virtual motorcycles/bicycles. (Our motorcycle
is shown on the right of Figure 1.) In this case,
students/players provide desired turn rates (or desired lean
angles) with the joystick. Then the controller computes a
steering input that, first, keeps the bike balanced and,
second, achieves the desired turn rate. It is a control problem
for which performance measures such as percent overshoot,
settling time, and rise time have all take on greater meaning
than they do in generic homework exercises such as the V-
22 Osprey problem depicted in Figure 1. If the “ride-by-
wire” controller has a large overshoot or slow settling time
then the bike becomes difficult to maneuver. Students work
hard to understand and then to improve the controller
performance characteristics so that they can execute agile
maneuvers on the bike. Learning is situated in a context that
has authentic meaning for students.

The course ended with a series of open-ended projects.
Some of the students, for example, designed controllers that
would robustly guide their cars through intricate stunt
maneuvers worthy of a Hollywood action movie.

Other students designed controllers for riding a bike in
reverse. This is equivalent to Klein’s “unridable” rear-
steered bike, a famously difficult system to control because
of fundamental limitations due to an open-loop zero in the
right half plane [7], [8]. Finding that students had a difficult
time trusting the mathematics and simulation of the rear-
steered bike, we actually built the bike (Figure 5, left side)
and allowed them to attempt to ride it. This allowed students
to make a direct connection between the mathematics and
their physical experience. In this case, the simulated
experience was not sufficient because students did not trust
it.

Fig 5. Some student control projects: the rear steered bike and
riding a "wheelie."

Another set of projects worth mentioning are those of
students who developed controllers to balance the bike on its
rear wheel. (See Figure 5, right side). Students developed
one controller for longitudinal balance, i.e. keeping the front
wheel off the ground, for a variety of different speeds and
aerodynamic forces. Then, in order to maintain the
“wheelie,” students had to design a lateral controller in
which rider lean is used to prevent the bike from tipping and
falling to the side.

V. ASSESSMENT OF LEARNING
When making dramatic changes to how one teaches a

course it is important to measure effects of the changes as
thoroughly and objectively as practically possible. In this
effort, we began implementing a detailed assessment plan in
the spring of 2007, the last semester that the dynamic
systems and control class was taught without the video
game.

To measure learning, we developed two tests to assess
students’ conceptual understanding of course material. The
first test was administered roughly a week before the
midterm examination. Students took the other test about a
week before the final examination. We told students that
these were practice tests. Their performance on the tests
would not affect their grade in the course, and that they
could use the exams to identify their weaknesses to help

394

them study for the upcoming exams that did count. By
designing our assessment this way, we believe we were
more likely capture students’ understanding of the material,
while filtering out the effects of last-minute studying for an
exam. Also, since students are unlikely to study for a test
that has no impact on their grade, we were comfortable
giving the exact same practice test each year of our study.

On the two tests, there were 69 multiple choice questions
covering 21 concepts in the dynamic systems & control
course. Concepts ranged from recognizing that complex
poles produce oscillatory solutions to recognizing the utility
of feed-forward mechanisms.

In Figure 6, we show differences between class averages
for each of the 21 concepts. When the difference is positive,
students in the game-based 2009 course scored better (on
average) than students taking the non-game course in 2007.
In the figure, differences are normalized by the pooled
standard deviations for each topic. The error bars denote
95% confidence intervals for the differences between means
as determined by t-tests. Sample sizes for the game and non-
game classes are 46 and 50 respectively for the first 11
concepts and 45 and 49 for the remaining concepts.

0.0

X XNG
S

�1.0

�2.0

N
o

G
am

e
(N

)
G

am
e

(G
)

* $

$

#

$

*

$

*
$ $ #

* *
$

*

2.0

1.0

Figure 6. Normalized differences between game and non-game
average scores on 21 concepts. Symbols indicate two-tailed
statistical significance: *: 0.01 < p < 0.05; #: 0.001 < p < 0.01; $: p
< 0.001.

Both courses were taught by the same professor, using the
same textbook. Although the 2007 course was not taught
with the video game, it was taught using an active-learning,
inquiry-based approach outlined in Section II. Students
taking both courses took the Mechanics Baseline Test [9]
during the first week of the semester. Both groups of
students scored almost identically on this test of mechanics
and calculus knowledge as they entered the course.
Therefore the only perceived difference between the groups
is the type of instruction (game versus non-game) that each
experienced.

The differences in concept tests scores reported in Figure
6 are clearly lopsided. Students taking the game-based
course score better on 18 out of 21 of the concepts. Fourteen
of these are statistically significant at a level p<0.05 (two-

tailed). There is only one concept in which the non-game
students scored significantly better.

At this stage, we have just begun analyzing the data we
have collected. As we comb through the data, we will get a
glimpse of how students with different learning styles,
different motivation orientations, and different video game
playing habits respond differently to our educational game.

In addition to the learning data outlined in Figure 6, we
collected engagement data through a technique called the
Experience Sampling Method [10]. Students are surveyed at
random moments. Students answer questions like “Are you
feeling challenged?”, “Are you feeling frustrated?”,
“bored?”, “happy?”, “curious?”, and others. When
examined, through the perspective of flow theory [11], the
answers provide insight into how engaged students are, in
the moment.

Our preliminary results show that students in 2009,
working on their game-based DS&C homework are more
engaged than those in 2007 working on their non-game
DS&C homework. The findings, so far, mirror those in our
previous study of game-based numerical methods
instruction. [1] The engagement findings might also partially
explain why scores for the game-based group in Figure 6 are
considerably higher. They might explain why we have a
roughly five-fold increase in undergraduate enrollment in
our intermediate dynamic systems and control class in Fall
of 2010. They might also explain the dramatic jump in
students this year pursuing capstone design projects with
substantial DS&C components.

REFERENCES
[1] B. D. Coller and D. J. Shernoff, “Video game-based education in

mechanical engineering: A look at student engagement,”
International Journal of Engineering Education. 25(2). pp. 308—318,
2009.

[2] B. D. Coller and M. J. Scott, “Effectiveness of using a video game to
teach a course in mechanical engineering,” Computers & Education.
53(?). pp. 900—912, 2009.

[3] M. J. Prince and R. M. Felder, “Inductive teaching and learning
methods: Definitions, comparisons, and research bases,” Journal of
Engineering Education. 95(2). pp. 123—138, 2006.

[4] R. C. Dorf and R. H. Bishop, Modern Control Systems. Pearson 2008.
[5] Merlin_1. Osprey, 2007 Photograph obtained from

http://www.flickr.com/photos/merlin_1/365734300/ on 4 Aug 2009.
Photograph covered by Creative Commons License that allows use for
non-profit purposes and does not allow derivative works. Use of the
photograph does not constitute endorsement by the photographer.

[6] F. Golnaraghi and B. C. Kuo, Automatic Control Systems, 9th Edition,
Wiley, 2010.

[7] K. J. Astrom, R. E. Klein, and A. Lennartsson, “Bicycle dynamics and
Control.” IEEE Control Systems Magazine, pp. 26 – 47, August 2005.

[8] B. D. Coller and J. Szalko, “How to ride Klein’s unridable bike.” (In
preparation.)

[9] D. Hestenes and M. Wells, “A mechanics baseline test.” The Physics
Teacher, 30, pp. 159 – 165, 1992.

[10] M. Csikszemtmihalyi and R. Larson, “Validity and reliability of the
experience sampling method.” Journal of Nervous & Mental Disease.
175 (9), pp. 525 – 536, 1987.

[11] M. Csikszemtmihalyi, Flow: The Psychology of Optimal Experience.
Harper Perennial, 1990.

395

