
FMET – Formally Reviewed Papers

inroads — SIGCSE Bulletin - 17 - Volume 41, Number 2 — 2009 June

Teaching Formal Methods in the
Context of Software Engineering

Shaoying Liu
Department of Computer Science

Faculty of Computer and Information Sciences
Hosei University

3-7-2 Kajino-cho Koganei-shi
Tokyo, 184-8584, Japan

sliu@hosei.ac.jp

Kazuhiro Takahashi
Research Center

The Nippon Signal Co., Ltd.
1836-1 Oaza Ezura, Kuki,
Saitama 346-8524, Japan

ktaka@signal.co.jp

Toshinori Hayashi
Research Center

The Nippon Signal Co., Ltd.
1836-1 Oaza Ezura, Kuki,
Saitama 346-8524, Japan

hayashit@signal.co.jp

Toshihiro Nakayama
Research Center

The Nippon Signal Co., Ltd.
1836-1 Oaza Ezura, Kuki,
Saitama 346-8524, Japan

nkym-ts@signal.co.jp

Abstract: Formal methods were developed to provide systematic and rigorous techniques for software development,
and they must be taught in the context of software engineering. In this paper, we discuss the importance of such a
teaching paradigm and describe several specific techniques for teaching formal methods. These techniques have been
tested over the last fifteen years in our formal methods education programs for undergraduate and graduate students at
universities as well as practitioners at companies. We also present a curriculum to systematically introduce formal
methods to students at university and a successful program of teaching formal methods to industry. Our experience
shows that students can gain confidence in formal methods only when they learn their clear benefits in the context of
software engineering.

Categories and Subject Descriptors: K.3.2 [Computers and education]: Computer and Information Science

Education – Computer science education, Curriculum. D 2.4 [Software engineering]: Software/Program
Verification – Model checking.

General Terms: Reliability, Standardization, Verification.
Keywords: Formal Methods, Education, Software Engineering, Teaching Methods, Formal engineering methods

1. INTRODUCTION
Despite more than forty years of effort to develop various
theories, languages, methods, and tool supports, practical
software engineering is still like a "desert", lacking
directions and effective ways of finding the way out of the
software crisis. Formal methods were developed to address
this problem by providing mathematically-based
techniques, including formal specification, refinement, and
verification. In theory, we now know how to use formal
notations to write specifications, use refinement calculus to
gradually transform a specification into a correct
implementation, and use Hoare or Dijkstra's logics to prove
programs correct with the same degree of the rigor that we
apply to mathematical theorems. However, none of these
techniques is easy to use by ordinary practitioners to deal
with real software projects. The problem is the complexity
and the incapability of formal methods in dealing with
large-scale systems and frequent changes in requirements
and designs in practice.

Having said the above challenges in directly applying
formal methods, we do not mean that formal methods are
useless. In fact, they are more necessary than ever when
more and more software systems are embedded into
systems deployed in many places of our society, but their
role is different from other software techniques. The role of
formal methods is education, and their power can be
transferred to software engineering projects through the
developers who have learned and mastered them. The way
to use formal methods in practice is formal engineering
methods [1], not formal methods. For example, the SOFL
formal engineering method provides a three-step approach
to constructing formal specifications to help requirements
analysis and system design, and specification-based
inspection and testing for detecting bugs in both
specifications and programs [2]. Software projects are
human activities; they must be completed by required time
and within specified budget, and they often face the
instability of development teams. In such a situation,

FMET – Formally Reviewed Papers

inroads — SIGCSE Bulletin - 18 - Volume 41, Number 2 — 2009 June

completely applying formal methods is rarely practical, but
the improvement of software quality can be realized by
equipping the developers with a disciplined manner and
rigorous way of thinking through formal methods
education.

To encourage more students, both inexperienced and
experienced in software development, to learn formal
methods, we must first build up their motivation by
demonstrating the clear benefits of formal methods in
improving current software engineering practice. While this
is rather challenging due to the lack of reliable quantitative
evidence in industry, many empirical studies, some of
which were done in industrial setting [3,4,5], may be used
for this purpose. To let students enjoy learning formal
methods, excellent teaching styles and techniques, sensible
curriculum arrangements, and academia-industry
collaboration will be the key of success. In this paper, we
describe several techniques for teaching students formal
methods, an effective university curriculum, and a
successful program for teaching formal methods to
industry. Our fundamental idea is to put the formal methods
education in the context of software engineering, because
our interest is in the issue of how to foster software
engineers for industry. Of course, as Parnas pointed out [6],
formal methods should not be restricted to software
engineering, but linked to and integrated in general
engineering mathematics. Since the issue of general
application of formal methods is beyond the scope of this
paper, we focus our discussions on the issue of teaching
formal methods for software engineering.

The remainder of this paper is organized as follows.
Section 2 concentrates on discussions of teaching
techniques, the most important factor of the three in the key
of success mentioned above. Section 3 describes the current
curriculum arrangement in the Department of Computer
Science at Hosei University, which proves to be effective.
Section 4 presents a successful program for teaching formal
methods to industry. Section 5 discusses the importance of
continuing education. Finally, in Section 6 we conclude the
paper.

2. TEACHING TECHNIQUES
In this section, we introduce some specific techniques for
teaching formal methods. These techniques have been
tested by the first author over the last fifteen years of
teaching VDM [7], SOFL [1], and Morgan's refinement
calculus [8] at universities and companies.

2.1 Starting with Examples
Learning formal methods is similar to learning other
theories or techniques, students like to start with simple
examples. These examples must come from the daily life
and must be able to link the problem in practice to a
potential formal methods solution. This way of teaching
will motivate students and build up their interests in formal
methods. For example, when explaining the ambiguity

problem in informal specifications and the fact that it can
be resolved by formalization, we often use an operation for
searching for an integer in an integer list as an example.
After explaining the impreciseness of the informal
requirement statements, we present a formal specification
which is both precise and concise. This example helps
students understand the potential power of formalization.

2.2 Gradual Introduction to Important Concepts
The fundamental concepts are the key to understand the
spirit of formal methods. It is quite effective to help
students understand the essential principle of formal
methods if sufficient efforts are made to teach the concepts.
For example, when introducing formal specifications, we
focus on the illustration of pre- and post-conditions. An
effective way to teach the pre-post concept is by comparing
them with the corresponding algorithm and let students
understand the real difference and relation between a
specification and an algorithm. The comparison can be
made on the basis of simple scientific computation. For
example, we often use the operation for yielding the square
root of an integer as an example. The pre-condition of the
operation is x ≥ 0 and the post-condition of the operation
can be y² = x, where x is input and y is output. But the
corresponding algorithm would be something like y =
Math.sqrt(x). This example gives rise to a problem that
output y produced by the algorithm may not satisfy the
post-condition of the operation because the algorithm
obtains only an approximation of the real square root of
some positive integers. In this circumstance, it is useful to
tell the students the importance of noticing this
inconsistency between the specification and the
implementation. This is also a good example to show the
need for using or building proper theories in the application
domain.

2.3 Massive Exercises on Basics
Efficiently writing accurate formal specifications requires
the developer to have a good understanding of features of
various data types and high skills in applying the well-
defined operators on the data types, such as boolean, set,
sequence, and map types. Therefore, massive exercises on
the basic operators must be done by students. The most
effective way to incorporate exercises into the teaching
program is to let students do exercises immediately after a
data type is introduced. For example, after the introduction
of the set types, students must learn the meaning of the
operators, such as union, intersection, cardinality,
membership, subset, proper subset, and so on by applying
them to specific set values. If time allows, a public
discussion on students' results is helpful. According to our
experience, such a discussion can help capable students
find out the reason for their mistakes and ordinary students
find out the correct way of thinking. This training is similar
to the basic training in sports. To be an excellent football
player, for example, one must run fast and have a strong

FMET – Formally Reviewed Papers

inroads — SIGCSE Bulletin - 19 - Volume 41, Number 2 — 2009 June

body. To build up these qualities, he or she must spend
much time and make great efforts in the basic training.
Anybody who ignores the basic training will fail to perform
satisfactorily in matches..

2.4 Teaching Specification Patterns for

Abstraction Skills
Effectively using a formal method requires the developer to
have high skills and ability in mathematical abstraction,
especially in the context of software development. How to
help students strengthen their abstraction skills and ability
therefore becomes an important issue in formal methods
education. While this has been recognized widely as the
most difficult thing in teaching, we have gained sufficient
knowledge and understanding through our long time
teaching experience. Considering the fact that the basic
operations required in a software system usually include
searching, sorting, merging of two collections of objects,
adding some elements to a collection of objects,
eliminating some elements from an existing collection of
objects, updating some elements from an existing collection
of objects, mathematical computation, and their
combinations, we put the emphasis on the teaching of how
to express all of the above functions using appropriate data
types and their related operators. Each of such expressions
will form a specification pattern that will remain in students
mind and available for application in real software
development. For example, what are possible specification
patterns for a function which tests that a collection of
integers is empty? To answer this question, we first define
a collection of integers as a set and a sequence in SOFL (or
VDM), respectively, such as intset: set of int and intseq:
seq of int. We then discuss the most commonly used
specification patterns for each of the data abstractions. For
example, for the set of integers, we can use the following
patterns to express the fact that the set is empty: intset = {}
and card(intset) = 0. Of course, we could have more
patterns to express the same meaning, but those would be
much more complex and no good for readability. For
instance, a possible pattern can be: forall[x: int] | x notin
intset. It is up to the teacher to decide whether to discuss
such a complicated pattern within the required teaching
time. In the case of a sequence of integers, we can use the
following patterns to express the fact that the sequence is
empty: intset = [] and len(intset) = 0.

After each basic specification pattern is mastered by
students, we can then go further to explain how such basic
patterns can be applied in a more complicated situation. Let
us take an operation to search for an integer in a collection
of integers as an example. To explain how such an
operation is specified, we take the same approach as the
one to teaching the basic patterns by first defining the
collection of integers as a set of integers and a sequence of
integers, respectively, and then explaining how the
operation can be specified by combining the basic patterns
for each of the data abstractions.

2.5 Practice through Small Projects
While the basic training is important in teaching and
studying formal methods, we should never forget to give
students opportunities for linking formal methods to
software engineering. In other words, they need to be
taught how formal methods will possibly help them in
software development practice; otherwise, students
(perhaps with some exceptions) will likely to lose the
motivation of learning or applying formal methods in
practice. The most effective way for this is to let students
conduct small projects. For example, after the introduction
of VDM-SL and massive exercises on the basics, we can
ask students to do one or two small projects. One project
can be the construction of a formal specification for a small
library system, and another possibility is to let students
complete a formal specification for an ATM software.
Through such small projects, students can really feel how
formal specifications can be built and organized in real
software development projects. Of course, such a practice
may also give students an opportunity to find the weakness
of the specification language they are using. For example,
lacking an intuitive mechanism for structuring a whole
system in a structured manner in VDM could be found by
students. The answer to this problem is to introduce the
SOFL specification language to them, since SOFL has
solved this problem by using intuitive and formalized data
flow diagrams and process decompositions. In fact, many
existing formal notations focus only on one aspect of the
problem in software engineering and ignore the others, but
a real software project needs to take care of all possible
aspects. If a method or technique merely helps solve one
problem but create more other problems in the context of
software engineering, it is unlikely to be popular among
practitioners and to be applied in real projects. In this
regard, the SOFL method has shown to be the exception,
because it provides a systematic and rigorous process to
integrating formal techniques into existing software
engineering practices and creates no more problems.

2.6 Teaching Formal Methods Using Formal

Engineering Methods
The ultimate goal of teaching formal methods (FM) is to
create possibility of students applying them in practice.
Formal engineering methods (FEM) show how FM can be
applied in real projects. One of the very important aspects
of FEM is the emphasis of combining diagrams, formal
notation, and natural language in a coherent and systematic
manner for writing specifications [1]. The purpose of this is
to help developers easily understand the specifications they
are writing and the specifications written by others.
Visualization is intuitive and suitable for describing the
overall idea and system architectures; formal notation has a
strength to achieve preciseness of statements in
specifications; and natural language can be used to provide
a friendly interpretation of formal expressions. In general,

FMET – Formally Reviewed Papers

inroads — SIGCSE Bulletin - 20 - Volume 41, Number 2 — 2009 June

FEM differs from FM in that FM tries to answer the
question ``what should we do and why’’ in software
development, but FEM tries to answer the question ``what
can we do and how?’’. To this end, FEM focuses on
techniques and methods for integrating formal methods into
the entire process of software development so that the
strength of formal methods can be utilized in practice and
their weakness of being complex can be avoided. FEM
offers how software systems, including all level documents,
are actually created and expressed formally, not just a
simple mixture of formal notations with pictures. Since a
detailed introduction to FEM is beyond the scope of this
paper, we refer the reader to the SOFL book [1] for a
comprehensive description of FEM.

In fact, the same principle of FEM can also be
effectively applied to the teaching of formal methods
courses, since teaching is actually a kind of software
project whose product is educated students. For example,
when explaining a mathematical expression, such as Z = X
union Y, we can use a graphical representation (e.g., Venn
diagrams) to illustrate the union operation, and at the same
time use English, for instance, to explain the meaning of
the operation. When introducing an operation in VDM, we
can draw a process as we do in the SOFL language to show
the input, output, and external variables, but the details of
the function of the operation are defined using pre- and
post-conditions. With informal explanations in English, the
meaning of the whole operation specification can be easily
digested by students.

2.7 Tool Support in Education
Almost all of us may have experienced using tools in
teaching programming languages, such as Java and C, and
found that it is effective to help students write, execute, and
test programs (they need many pre-defined packages).
Many of formal methods educators apply this idea to the
teaching of formal methods courses as well. However, our
experience in teaching both VDM and SOFL courses,
which focus on formal specification techniques, suggest
that using tools in teaching formal methods is not
necessarily effective; perhaps less effective than not using
tools in some circumstances. There are two reasons. One is
that learning formal methods requires students to learn both
syntax and semantics of the related specification language.
The most effective way for students to remember them is to
write formal specifications by hand, as they learn English
as a foreign language. It is feasible, because exercises
assigned to students in classes are of small scale. It is also
effective in strengthening students' memory of the syntax
and in deepening their understanding of the abstraction
techniques, because students would have no chance to
"copy and paste" without thinking by themselves, as we
often do on a computer. Another reason is that the purpose
of writing a specification is not for a computer to directly
run it, but for people to read and understand. Therefore,
letting them write a good style of formal specifications by

hand is much more helpful for learning than by using a tool
to automatically improve the style and format of their
specifications. In the case of programming, without a tool,
such as a compiler, we cannot run the program. But in the
case of writing a specification, there is no need to run it, so
without a tool support will not create any significant
inconvenience. Instead, for some students who do not want
to study formal methods, tool support will create chances
for them to "copy and paste" without thinking.

Having said the above, it does not mean that tool
support is not necessary for using formal methods in
practice. On the contrary, tool support is crucial for
improving productivity and reducing chances of creating
mistakes in practical developments. For this reason, we let
students use a supporting tool, such as IFAD VDMTools or
SOFL GUI editor, when they carry out a small project, after
a systematic learning of formal specification techniques in
classes. This way also has an effect that students feel
extremely happy with the tool offering high automation in
both writing and analyzing specifications. They have this
kind of feeling because they have gone through a hard time
in learning formal methods by hand. This is similar to the
situation where a person feels happy when he or she has a
chance to eat delicious food after a long time starving.

2.8 Dealing with Time Constraint
Mathematical concepts and expressions usually require
students to take time to digest, the teaching of them should
take slow pace with many examples. However, a course is
like a software project: it also has time constraint. As a
teacher, we often face a dilemma. On the one hand, we
want to teach more contents which are all important for
studying formal methods, but on the other hand, we do not
have enough time. To tackle this problem, our experience
suggests that each course should not be too ambitious;
instead, it should be focused. For example, we can teach
formal specification, refinement, and formal verification in
three different courses, and it would be effective to focus
the teaching in each of them on the most fundamental but
important parts and give students sufficient time for them
to apply the learned techniques. For example, when
teaching SOFL, particularly techniques for writing formal
specifications using pre- and post-conditions, to students,
we usually take the interleaving approach: teaching
concepts and asking students to practice using them. After
finishing the whole course, we ask students to carry out a
small project in which all knowledge learned is required to
use. Such a way provides students with many opportunities
to learn how theoretical results can be effectively applied in
practice.

3. A SYSTEMATIC CURRICULUM
While teaching techniques are crucial to a successful
education in formal methods, a sensible arrangement of
curriculum concerning formal methods education also plays
an important role from an overall view of education. We

FMET – Formally Reviewed Papers

inroads — SIGCSE Bulletin - 21 - Volume 41, Number 2 — 2009 June

have adopted a systematic, step-by-step curriculum for
formal methods education in the Department of Computer
Science at Hosei University. Although it is still not perfect
yet in the sense of involving all students in the department,
the curriculum has proved to be effective and successful
among the students who have received the education
according to our experience over the last nine years of
practice.

The curriculum is arranged as follows. We introduce
simple VDM-like operation specification techniques to the
first year students of four-year undergraduate education,
more complicated specification techniques to the second
year students, and a systematic formal engineering methods
course to the third year students, and finally require the
students in the Software Engineering Laboratory for
Dependable Systems (SELDS) to apply the learned formal
techniques in their graduation projects. All of these classes
are optional. For the students who proceed to the
postgraduate program, we teach them formal refinement or
verification in one course, depending on the background of
students in the class (it is possible to have students in the
class who did not choose the above formal methods classes
during their undergraduate study).

We start introducing the knowledge of SOFL process
specification in pre- and post-conditions in the second
semester (one year has two semesters: Spring and Autumn
semesters) to first-year students. In the first semester,
students are required to study programming language Java.
Although Java is an object-oriented programming
language, we focus on the teaching of the basic control
structures (e.g., assignment, sequence, selection, and
iteration) rather than on object-oriented features (e.g.,
classes, inheritance). Students are given two to three
programming problems a week and the functional
requirement of each problem is written in Japanese (non-
structured Japanese). This study gives students a chance to
build up basic perception of programming and
computation, which will facilitate us to introduce simple
specification techniques in the second semester. When
teaching the concept of process specification in pre- and
post-conditions, we take a step-by-step approach to start
with simple specifications and then gradually increase the
degree of complication. After a short explanation, students
are required to first digest the specification and then
implement it in Java, and finally to test it on the basis of the
specification. Surprisingly, we found that most of the
students in the class can quickly understand the concept of
specification and implement it without problems.

In the second year, we introduce more complicated
expressions in the SOFL process specification language,
such as let-expression, if-then-else expression, and case-
expression, and the composite and set types to improve
expressive power of formal specification. The same
teaching style used for the first-year students is repeated,
but at a more complex level. Our experience shows that

most students can fulfill the assigned tasks, except a few of
students whose ability in programming is low.

In the third year, a systematic course of approximately
twenty hours on the SOFL formal engineering method is
taught using the techniques described in Section 2. Much
more students than those attending the first and second
years' classes attend this class. Students seem to be more
motivated to study this course, because many companies in
Japan are interested in students who have studied new
technologies. According to the data so far, an encouraging
news is that almost all the students whose performance is
within top 50% in this course could get satisfactory jobs in
well-known companies and almost 100% of students who
passed the examination of the course could find satisfactory
jobs in industry.

In the forth year, all of the students who join SELDS
under the first author's supervision will apply the SOFL
method in modeling, inspection, and testing their software
systems. Through these projects, students will learn more
experience of using the SOFL formal notation and
diagrammatic representation known as condition data flow
diagram (CDFD). We usually organize the students into
groups so that they will be able to experience how formal
specifications can help in communication, cooperation, and
documentation. All of the students who have graduated
from SELDS found their satisfactory jobs as a system or
software engineer in large enterprises, such as Sony,
Fujitsu, NEC, CSK, etc. Although we have not heard of any
serious case of formal methods being used in those
companies so far, those students who are good at formal
specification techniques are all working in responsible
positions and play important roles in system analysis and
design.

For postgraduate students in a master course or a Ph.D
course, we teach formal refinement using the textbook by
Morgan [8] so that they will learn how formal methods are
expected to use during a development process. Since most
of the students in the class of this course are not studying
software engineering but other subjects, such as animation,
graphics, artificial intelligence, network application, they
usually face a difficult time. Since there is little hope to
apply the refinement calculus in practice, students usually
forget specific laws in the calculus later on but keep the
fundamental idea of refinement in mind. We believe that
the fundamental idea will help them make sensible
decisions in practical software developments.

4. A SUCCESSFUL PROGRAM for TEACHING
FORMAL METHODS to INDUSTRY
Many companies in Japan are the makers of some products,
such as T.V sets, automobiles, trains, and traffic systems.
To increase functions and reduce the cost in the upgrading
and maintaining of systems, more and more functions are
implemented by software. Since the failure of software in
such an embedded system is likely to result in the disability
of the whole system, causing inconvenience, frustration, or

FMET – Formally Reviewed Papers

inroads — SIGCSE Bulletin - 22 - Volume 41, Number 2 — 2009 June

even danger to customers and then a big economic loss to
the makers, many companies begin to pay more and more
attentions to formal methods. To introduce formal methods
for use in companies, there are many difficulties to
overcome, such as convincing company executives and
engineers at various levels, educating people in formal
methods, and ensuring constant technical supports for the
application of formal methods in practice. It is hard to
imagine the existence of a uniform solution to all the
problems for all companies, but we have experienced a
successful program to introduce the education of VDM to
The Nippon Signal Co. Ltd. In this section, we present the
major activities involved in the program.

The program consists of two stages. In the first stage,
the three coauthors from the Nippon Signal have first
successfully convinced the company executives that the
adoption of VDM will create a great potential to improve
the quality of systems and benefit the company, and then
made a plan to teach VDM to engineers in all the relevant
sections. According to the plan, some technical people from
relevant groups are first chosen to learn VDM, and then
those people will teach VDM to more people in their own
groups. The essential idea of this plan is wonderful, but
practically it could not progress as fast as we expected,
because people who have learned VDM could not fully
understand the motivation and effective ways to write
formal specifications using VDM. To improve this
situation, we established the collaboration between Hosei
University and the company. The first task of the
collaboration project is to review and discuss the original
education plan. As a result, we worked out a more effective
teaching plan in terms of schedule, contents, and teaching
style. The first author also gave two seminars, on the basis
of his previous experiences in both software engineering
and formal methods projects in China, UK, and Japan, to
the leaders and engineers of the relevant divisions in the
company, in order to enhance the leaders and engineers'
motivation and to help them build an accurate
understanding of the real power of formal methods. The
success of this stage has made us possible to proceed to the
next stage.

The major activity in the second stage is to gain the
support from the company executives to incorporate the
teaching of VDM into the company's systematic education
program. All the technical staff of the company can freely
apply for the course, including both experienced and newly
recruited staff. Each course takes about fifteen hours, and is
taught within two days by the first author. The teaching
techniques mentioned in Section 2 are used with flexibility.
The surveys of all the courses taught so far have shown that
over 50% of the students do not have a background in
computer science or engineering, even some of them never
experienced programming before. After the courses, almost
100% of the students become aware of the real role of
formal methods in practical software development; more
than 80% begin to understand how to write VDM

specifications for real problems; and over 60% wish to use
VDM in their future work.

The implementation of the above education program
has led to the start of VDM applications in several groups
at The Nippon Signal Co. Ltd. These applications have
created a demand for effective software tool supports. We
have begun a further cooperation to develop some
supporting tools for VDM, such as automatic test case
generation tool. We believe that our cooperation in both
education and tools development will accelerate the process
of transferring formal methods into industry.

5. CONTINUING EDUCATION
Our experience in applying and teaching formal methods in
both academia and industry have convinced us that formal
methods education is necessary and helpful, but it does not
automatically mean that the teaching of formal methods is
popular among students. Our observation shows that people
with certain working experience usually find formal
methods, particularly formal specification techniques, easy
to learn and use, but this may not be true for students
without working experience. The important reasons include
that the students usually do not deeply understand the
importance of the role of formal methods in software
quality assurance and the contents of formal methods are
quite complex. Since formal methods education is
necessary and useful, a possible solution to this problem is
to arrange formal methods as compulsory rather than
optional courses. Thus, every student will be forced to learn
formal methods. In addition to this assurance, by applying
effective teaching methods, such as those mentioned above,
and appropriate requirements for different level students, it
would be highly possible to let more and more students
learn formal methods. However, even if this possibility
becomes reality, it will not guarantee that formal methods
will become attractive to students. To be attractive, formal
methods must achieve a good balance among the three
qualities: simplicity, visualization, and preciseness, and
must also demonstrate their benefits in ensuring software
quality and reducing the cost of software projects. Teaching
of formal methods must also provide fun for students, as in
teaching computer graphics or animation. Unfortunately,
few of existing formal methods have satisfied these criteria,
and it is hard to imagine that any teaching method would
significantly improve this situation. Since software
development needs mathematical way of thinking, we
believe that no matter whether formal methods are
attractive or not, education in formal methods must
continue at academia and hopefully in industry as well.
Only education can make the application of formal methods
in software engineering possible.

6. CONCLUSIONS
Education is the necessary and most effective way to
transfer formal methods to software industry. The most
important influence factor for the success of formal

FMET – Formally Reviewed Papers

inroads — SIGCSE Bulletin - 23 - Volume 41, Number 2 — 2009 June

methods education is whether the education is put in the
context of software engineering. In this paper, we have
described several techniques for teaching formal methods
in the context of software engineering to both experienced
and inexperienced students, each of which has been tested
in practice. We believe that no matter whether formal

methods can be used directly as an effective software
engineering technique in practice, their education will
definitely benefit software engineering practice through
well-trained and well-disciplined engineers. The only way
to effectively transfer formal methods to industry is:
education, education, and education.

REFERENCES
[1] S. Liu. Formal Engineering for Industrial Software Development Using the SOFL Method. Springer-Verlag, ISBN 3-540-20602-7,

2004.
[2] S. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: A Formal Engineering Methodology for Industrial Applications. IEEE

Transactions on Software Engineering, 24(1):337.344, January 1998. Special Issue on Formal Methods.
[3] B. P. Collins and C. J. Nix. The Use of Software Engineering, Including the Z notation, in the Development of CICS. Quality

Assurance, 14(2):103.110, September 1988.
[4] D. L. Parnas. Inspection of Safety-Critical Software Using Program-Function Tables. In D. M. Hoffman and D. M. Weiss, editors,

Software Fundamentals: Collected Papers by David L. Parnas, pages 371.382. Addison Wesley, 2001.
[5] S. Sahara. An Experience of Applying Formal Method on a Large Business Application (in Japanese). In Proceedings of 2004

Symposium of Science and Technology on System Verification, pages 93.100, Osaka, Japan, Feb. 4-6 2004. National Institute of
Advanced Industrial Science and Technology (AIST).

[6] D. L. Parnas. Education for Computing Professionals. Computer, 23(1):17.22, 1990.
[7] C. B. Jones. Systematic Software Development Using VDM. 2nd edition, Prentice Hall, 1990.
[8] C. Morgan. Programming from Specifications. 2nd edition, Prentice-Hall, 1994.

Check out the

AIS

Association for
Information Systems

<http://plone.aisnet.org/>

