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ABSTRACT
In this paper, we revisit the problem of performance prediction on
shared memory parallel machines, motivated by the need for se-
lecting parallelization strategy for random write reductions. Such
reductions frequently arise in data mining algorithms.

In our previous work, we have developed a number of techniques
for parallelizing this class of reductions. Our previous work has
shown that each of the three techniques, full replication, optimized
full locking, and cache-sensitive, can outperform others depend-
ing upon problem, dataset, and machine parameters. Therefore, an
important question is, “Can we predict the performance of these
techniques for a given problem, dataset, and machine?”.

This paper addresses this question by developing an analytical per-
formance model that captures a two-level cache, coherence cache
misses, TLB misses, locking overheads, and contention for mem-
ory. Analytical model is combined with results from
micro-benchmarking to predict performance on real machines. We
have validated our model on two different SMP machines. Our re-
sults show that our model effectively captures the impact of mem-
ory hierarchy (two-level cache and TLB) as well as the factors that
limit parallelism (contention for locks, memory contention, and co-
herence cache misses). The difference between predicted and mea-
sured performance is within 20% in almost all cases. Moreover,
the model is quite accurate in predicting the relative performance
of the three parallelization techniques.

1. INTRODUCTION
Predicting performance of a program on a parallel machine has
always been a hard problem. A variety of approaches have been
taken, including detailed simulations [5], profiling [15], analytical
modeling [21], and micro-benchmarking [17]. Profiling and simu-
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lation based approaches can be quite time consuming, but usually
lead to more realistic predictions. Analytical models can provide
results in a short time, but researchers have had only a limited suc-
cess in validating these results on real machines.

The feasibility and appropriateness of a particular approach de-
pends upon the goal in performing the prediction. Tools and tech-
niques for performance prediction have been developed with many
goals, including improving architectural designs, understanding sys-
tem factors and trade-offs, or deciding suitability of a parallel ma-
chine or a particular configuration for an application.

In this paper, we revisit the problem of performance prediction for
shared memory parallel machines, with the goal of choosing the
best technique among a set of parallelization techniques for a class
of problems. Our work is motivated by the need for selecting par-
allelization technique for random write reductions, which arise in
data mining algorithms.

1.1 Random Write Reductions
We define a random write reduction loop to have the following
characteristics: 1) the elements of an array or a collection may be
updated in multiple iterations of the loop, but only using associa-
tive and commutative operations (we refer to such a collection or
array as a reduction object), 2) there are no other loop carried de-
pendencies, except on the elements of the reduction object. Thus,
the iterations of the loop can be reordered without affecting the cor-
rectness of the computation, and 3) the element(s) of the reduction
object updated in a particular iteration of the loop cannot be deter-
mined statically or with inexpensive runtime preprocessing.

Algorithms for many data mining tasks, including association min-
ing, clustering, classification, constructing artificial neural networks,
and learning by analogy involve random write reductions [10]. With
the availability of large datasets in many application areas, it is be-
coming increasingly important to execute data mining tasks in par-
allel. At the same time, technological advances have made shared
memory parallel machines more scalable. Large shared memory
machines with high bus bandwidth and very large main memory are
being sold by several vendors. Vendors of these machines are tar-
geting data warehousing and data mining as major markets. Thus,
shared memory parallelization of random write reductions is of sig-
nificant interest.

In our previous work, we have developed several techniques for
parallelizing random write reductions [10, 11]. One of the tech-



niques involves creating a copy of the reduction object for each
thread and is referred to as full replication. The other techniques
use locking to avoid race conditions. Among the locking schemes,
two have shown particularly promising performance. They are op-
timized full locking and cache-sensitive locking. In optimized full
locking, there is one lock associated with each reduction element.
Further, to avoid additional cache misses because of a large number
of locks, this lock is allocated on the same cache block as the re-
duction element. To reduce the memory requirements for locks in
optimized full locking, we have designed the cache-sensitive lock-
ing scheme. In this scheme, there is a single lock for all reduction
elements on the same cache block, which is also allocated within
the same cache block.

Our previous work has shown that each of these three techniques
can outperform others depending upon the problem, dataset, and
machine parameters. Therefore, an obvious question is, “Can we
predict the performance of these techniques for a given problem,
dataset, and machine?”.

1.2 Contributions and Organization
We have developed a detailed model of the performance of ran-
dom write reductions on a shared memory machine, parallelized
using the three techniques we mentioned. We model a two-level
cache, coherence cache misses, TLB misses, locking overheads,
and contention for memory. A random write reduction loop is pa-
rameterized with the size of the reduction object, the amount of
computation in each iteration of the loop, and the size of each re-
duction element. To obtain the performance prediction from our
model, we measure 1) execution time of one iteration of the loop
when the reduction object fits in L1 cache, and 2) the latency of
L1 and L2 cache misses, TLB misses, coherence cache misses, and
memory system service time. Cache miss and TLB miss overheads
are added to the measured execution time (factor 1 above) to pre-
dict sequential execution times when the reduction object does not
fit in L1 cache. Overheads due to memory contention, coherence
cache misses, and the cost of waiting for locks are added to predict
parallel execution times. Overall, we believe that our modeling and
performance prediction methodology has implications well beyond
shared memory parallelization of random write reductions.

We have validated our model on two different SMP machines. Our
results show that our model effectively captures the impact of mem-
ory hierarchy (two-level cache and TLB) as well as the factors that
limit parallelism (contention for locks, memory contention, and co-
herence cache misses). The difference between predicted and mea-
sured performance is within 20% in almost all cases. Moreover,
the model is quite accurate in predicting the relative performance
of the three parallelization techniques.

The rest of the paper is organized as follows. We describe the prob-
lem of random write reductions and the proposed parallelization
techniques in Section 2. Our analytical model is presented in Sec-
tion 3. Experimental validation of our performance model is pre-
sented in Section 4. We compare our work with related research
efforts in Section 5 and conclude in Section 6.

2. PROBLEM STATEMENT AND PARAL-
LELIZATION TECHNIQUES

In this section, we further elaborate on the characteristics of random
write reductions. We explain the difficulties in parallelizing them
efficiently. Later, we present the parallelization techniques we have

developed for this class of codes.

2.1 Random Write Reductions
{* Outer Sequential Loop *}
While() {

{* Reduction Loop *}
Foreach(element e) {

(i, val) = Compute(e) ;
RObj(i) = Reduc(RObj(i),val) ;

}
}

Figure 1: Structure of Common Data Mining Algorithms

A canonical random write loop is shown in Figure 1. The function
Reduc is an associative and commutative function. Thus, the it-
erations of the for-each loop can be performed in any order. The
data-structure RObj is referred to as the reduction object.

The main correctness challenge in parallelizing a loop like this on a
shared memory machine arises because of possible race conditions
when multiple processors update the same element of the reduction
object. The element of the reduction object that is updated in a loop
iteration (i) is determined only as a result of the processing.

The major factors that make these loops challenging to execute
efficiently and correctly are as follows: 1) It is not possible to
statically partition the reduction object so that different processors
update disjoint portions of the collection. Thus, race conditions
must be avoided at runtime. 2) The execution time of the func-
tion Compute can be a significant part of the execution time of
an iteration of the loop. Thus, runtime preprocessing or scheduling
techniques cannot be applied. 3) In many of algorithms, the size
of the reduction object can be quite large. This means that the re-
duction object cannot be replicated or privatized without significant
memory overheads, and 4) The updates to the reduction object are
fine-grained. The reduction object comprises a large number of el-
ements that take only a few bytes, and the for-each loop comprises
a large number of iterations, each of which may take only a small
number of cycles. Thus, if a locking scheme is used, the overhead
of locking and synchronization can be significant.

2.2 Parallelization Techniques
We focus on three approaches for parallelizing random write reduc-
tions. These techniques are, full replication, optimized full locking,
and cache-sensitive locking. For motivating the optimized full lock-
ing and cache-sensitive locking schemes, we also describe a simple
scheme that we refer to as full locking.

Full Replication: One simple way of avoiding race conditions is to
replicate the reduction object and create one copy for every thread.
The copy for each thread needs to be initialized in the beginning.
Each thread simply updates its own copy, thus avoiding any race
conditions. After the local reduction has been performed using all
the data items on a particular node, the updates made in all the
copies are merged.

We next describe the locking schemes. The memory layout of
the three locking schemes, full locking, optimized full locking, and
cache-sensitive locking, is shown in Figure 2.
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Figure 2: Memory Layout for Various Locking Schemes

Full Locking: One obvious solution to avoiding race conditions is
to associate one lock with every element in the reduction object.
After processing a data item, a thread needs to acquire the lock as-
sociated with the element in the reduction object it needs to update.

In our experiment with apriori, with 2000 distinct items and support
level of 0.1%, up to 3 million candidates were generated [11]. In
full locking, this means supporting 3 million locks. Supporting
such a large numbers of locks results in overheads of three types.
The first is the high memory requirement associated with a large
number of locks. The second overhead comes from cache misses.
Consider an update operation. If the total number of elements is
large and there is no locality in accessing these elements, then the
update operation is likely to result in two cache misses, one for
the element and second for the lock. This cost can slow down the
update operation significantly.

The third overhead is of false sharing [8]. In a cache-coherent
shared memory multiprocessor, false sharing happens when two
processors want to access different elements from the same cache
block. In full locking scheme, false sharing can result in cache
misses for both reduction elements and locks.

Optimized Full Locking: Optimized full locking scheme over-
comes the the large number of cache misses associated with full
locking scheme by allocating a reduction element and the corre-
sponding lock in consecutive memory locations, as shown in Fig-
ure 2. By appropriate alignment and padding, it can be ensured
that the element and the lock are in the same cache block. Each
update operation now results in at most one cold or capacity cache
miss. The possibility of false sharing is also reduced. This is be-
cause there are fewer elements (or locks) in each cache block. This
scheme does not reduce the total memory requirements.

Cache-Sensitive Locking: The final technique we describe is cache-
sensitive locking. Consider a 64 byte cache block and a 4 byte re-
duction element. We use a single lock for all reduction elements in

the same cache block. Moreover, this lock is allocated in the same
cache block as the elements. So, each cache block will have 1 lock
and 15 reduction elements.

Cache-sensitive locking reduces each of three types of overhead
associated with full locking. This scheme results in lower mem-
ory requirements than the full locking and optimized full locking
schemes. Each update operation results in at most one cache miss,
as long as there is no contention between the threads. The problem
of false sharing is also reduced because there is only one lock per
cache block.

One complication in the implementation of cache-sensitive locking
scheme is that modern processors have 2 or more levels of cache
and the cache block size is different at different levels. Our imple-
mentation and experiments have been done on machines with two
levels of cache, denoted by L1 and L2. Our observation is that if
the reduction object exceeds the size of L2 cache, L2 cache misses
are a more dominant overhead. Therefore, we have used the size of
L2 cache in implementing the cache-sensitive locking scheme.

3. ANALYTICAL MODEL
This section develops analytical models for the three shared mem-
ory parallelization techniques we described earlier.

The code for the canonical random write reduction loop we are
modeling was previously shown in Figure 1. All symbols used in
our performance model are defined in Table 1. The total number of
reduction elements is denoted by E. Each element takes Se bytes.
In our implementation, each lock takes the same number of bytes as
the reduction elements, or 8, whichever is smaller. For the purpose
of our analysis, we assume that the number of bytes taken by each
lock (Sl) is the same as Se.

We assume that there are a total of t threads executing the reduction
loop. The number of iterations or updates performed by each thread
is denoted by N . Throughout our analysis, we assume that each
thread has an equal probability of accessing any reduction element
during an update operation.

The total execution time of the loop is denoted by Tloop and the
average execution time of each iteration is denoted by Taverage.
Clearly,

Tloop = Taverage × N

Taverage comprises three components, the time required for the
compute function (denoted by Tcompute), the time required for the
reduction function, (denoted by Treduc), and the overhead of the
loop (denoted by Tloop overhead). Formally,

Taverage = Tcompute + Treduc + Tloop overhead

Tcompute and Tloop overhead are generally independent of the size
of the reduction object. Our focus is on the cost of performing re-
duction functions. During the execution of the reduction function, a
thread may have to wait to acquire a lock, may incur cache misses,
TLB misses, or have to stall because of memory contention.

So, we have

Treduc = Tupdate + Twait + Tcache miss+



Symbol Definition

E Number of reduction elements
Se = Sl Size of each element or lock
Sb Size of each cache block
Sc Total cache size
Sp Page size
t Number of threads
N Number of update operations per thread
M Memory requirements of reduction elements and locks
p Number of cache blocks in the cache that hold reduction elements
q Average number of memory blocks sharing the same cache block
k Number of reduction elements in a cache block
Tloop Total execution time of the loop
Taverage Average execution time for one iteration
Tupdate Execution time of the Reduc function without cache, memory, or waiting overheads
Tperfect Execution time of one iteration without cache, memory, or waiting overheads
Tcompute Execution time for the Compute function
Treduc Execution time for the Reduc function
Tloop overhead Loop overhead
Twait Average waiting time to acquire a lock
Tcache miss Overhead of cache misses in the Reduc function
Ttlb miss Overhead of TLB misses in the Reduc function
Tmemory contention Overhead of memory contention in the Reduc function

Table 1: Definition of Symbols Used

Ttlb miss + Tmemory contention

Here, Tupdate is the cost of performing reduction operation when
there is no contention for the lock and the lock and reduction el-
ement accessed are in L1 cache. Tcache miss is the overhead be-
cause of cache misses and Twait is the time spent waiting to ac-
quire a lock. Ttlb miss is the overhead because of TLB misses,
and Tmemory contention is the stall time because of memory con-
tention.

We denote

Tperfect = Tcompute + Tupdate + Tloop overhead

Tperfect represents the cost of executing one iteration of the loop
with no contention for locks, and no overhead because of the mem-
ory hierarchy. We also have

Taverage = Tperfect + Twait + Tcache miss+

Ttlb miss + Tmemory contention

Tperfect can be measured by executing a small problem where all
reduction elements and locks fit in the level one (L1) cache, and
only one thread is executed. Though it is possible that an analytical
model for computing Tperfect can be developed, there are several
advantages in measuring it directly. First, there is no need to an-
alyze the loop body to count the number and type of operations.
Second, we don’t need to micro-benchmark every different type of
operation. Finally, we don’t need to model the instruction level
parallelism that the processor supports. Recent work on modeling
microprocessors supporting ILP has shown that it can be extremely
complicated [2, 18]. Moreover, if Tperfect is measured using a

small dataset, the time required for performing this measurement
will be very small.

3.1 Cost of Waiting
We now compute the time spent waiting to acquire a lock. Obvi-
ously, this factor does not arise in the full replication scheme. The
analysis presented here is parameterized with the number of locks
and applies to both optimized full locking and cache sensitive lock-
ing scheme. The total number of locks in the cache sensitive lock-
ing scheme is much smaller, which increases the time spent waiting
to acquire a lock.

Each thread operates independently during the compute phase. Be-
fore performing the update on the reduction element, the thread
needs to acquire a lock. We can divide Taverage into three com-
ponents, the time that each thread executes independently (denoted
by a), the time spent holding the lock (denoted by b), and the time
spent waiting to acquire a lock (denoted by Twait). Formally,

a = Tcompute + Tloop overhead

b = Treduc − Twait

Twait is the quantity we need to compute. The total number of
threads is t and the number of locks is m.

The problem can be solved using standard results from queuing
theory. Each locks can be viewed as an independent queue. For
simplifying the problem, we assume that the lock has a fixed ser-
vice time, b. Then, in queuing theory terminology, each lock has an
associated M/D/1 queue [13]. If the fraction of the time the lock
is acquired by any of the threads (i.e. busy) is U , then the expected



waiting time is given by

Twait =
bU

2(1 − U)

If the arrival rate for requests to acquire a particular lock is λ, U is
given as

U = λb

We next compute the arrival rate of requests for acquiring a par-
ticular lock. Each thread makes a request to acquire a lock every
a + b + Twait units of time. Since there are t threads and each
thread has an equal probability of accessing each lock, we have

λ =
t

(a + b + Twait)m

Thus, we get

Twait =
b2t

2m(a + b + Twait)
×

1

1 − (bt)/((a + b + Twait)m)

This gives us a quadratic equation in Twait. After solving the equa-
tion and making some simplifications, we have

Twait =
b

2(a/b + 1)(m/t) − 1

This expression matches our intuition that the waiting time increases
as the number of threads (t) or the service time (b) increases and
decreases as the number of locks (m) or the compute time (a) in-
creases.

3.2 Cost of Cache Misses
This subsection focuses on analyzing the cost of cache misses, in-
cluding capacity, conflict, and coherence cache misses [8].

In a shared memory parallel machine, cache misses can be classi-
fied into four categories: 1) Cold misses, which arise when a cache
block is accessed for the first time, 2) Capacity misses, which occur
due to the limited capacity of the cache, 3) Conflict misses, which
occur due to limited associativity of the cache, and 4) Coherence
misses, which occur when a cache block is invalidated by other
processors.

Since our focus is on long running applications, (i.e. N >> E),
the overall impact of cold cache misses is not significant. There-
fore, we only focus on capacity, conflict, and coherence misses.
For simplicity, we only consider direct-mapped cache. This allows
us to analyze conflict and capacity cache misses together. We are
modeling a two-level cache, where the two levels are denoted by
L1 and L2, respectively.

The sum of probabilities of capacity and conflict misses at the L2
level is denoted by Smiss2. Here, S stands for cache misses due
to a single processor. Similarly, the sum of the probability of ca-
pacity and conflict misses at the L1 level, when the data is available
at the L2 cache, is denoted by Smiss1. The probability of a co-
herence miss during an update operation is denoted by Cmiss. A
coherence miss involves getting a cache block from other proces-
sors’ cache or the main memory, and has a different latency than
conflict or capacity misses.

Thus we have,

Tcache miss = Smiss1 × LatencyL2

+Smiss2 × Latencymain memory

+Cmiss × Latencycache coherence

3.2.1 Capacity and Conflict Misses
We now individually evaluate the terms Smiss1 and Smiss2. The
total memory requirement of the reduction object and associated
locks is denoted by M . Table 2 shows the factor M under the three
schemes we are evaluating.

The size of a cache block (or line) at the L1 level is Sb1 and the
size of a cache block at the L2 level is Sb2. The total cache size
at levels L1 and L2 is Sc1 and Sc2, respectively. Whenever there
is no scope for ambiguity, we drop the number denoting the cache
level.

The factor p denotes the number of blocks in the cache. We have
p1 = Sc1

Sb1
and p2 = Sc2

Sb2
.

The factor q denotes the number of memory blocks that share the
same cache block in a direct-mapped cache. Clearly, q1 = M

Sc1

and q2 = M
Sc2

. If q ≤ 1, the reduction object completely fits in
the cache and we do not have any capacity or conflict misses at that
level.

Consider two consecutive accesses to the same cache block. q
memory blocks map to the same cache block. The probability of
cache reuse, i.e. the two accesses to the same cache block are to
the same memory block is 1/q. We use this observation to compute
Smiss1 and Smiss2. We first consider the case that M ≤ Sc2,
i.e. the reduction object and locks fit in L2 cache. In this case, we
have Smiss1 = 1 −

1
q1

and Smiss2 = 0.

Next, we consider the case when M ≥ Sc2. Here, we have

Smiss2 = 1 −
1

q2

and

Smiss1 = (
1

q2
) × (1 −

Sc1

Sc2
)

Another complication arises in cache-sensitive locking scheme. As
we mentioned in Section 2.2, we typically use the size of L2 cache
block for implementing the cache-sensitive locking scheme. In
modern machines, the size of L1 cache block is typically smaller.
The ratio between the sizes is Sb1/Sb2. Then, there is a probability
1−Sb1/Sb2 that the reduction element and the lock are in different
L1 cache blocks. In this case, the probability of L1 cache miss is

Smiss1 = (1 −
Sc1

Sc2
) × (

1

q2
+

1

q2
× (1 −

Sb1

Sb2
)+

(1 −
1

q2
) × (1 −

Sb1

Sb2
))

which simplifies to



Memory Cost Number of elements in a cache block
Mf−r = E × Se × t kf−r = Sb

Se

Mo−f−l = E × Se × 2 ko−f−l = Sb

2Se
= kf−r/2

Mcs−l = E×Se

Sb/Se−1
× Sb/Se kcs−l = Sb

Se
− 1 = kf−r − 1

Average number of blocks sharing one cache line

qf−r =
Mf−r

Sc
= E

p×kf−r

qo−f−l =
Mo−f−l

Sc
= 2E

p×kf−r

qcs−l =
Mcs−l

Sc
= E

p×(kf−r−1)

Table 2: The Memory Parameters for Different Strategies

Smiss1 = (1 −
Sc1

Sc2
) × (

1

q2
+ (1 −

Sb1

Sb2
))

In computing cache misses for full replication, the value of M we
use is E × Se, and not E × Se × t. This is because each processor
accesses only its own copy of the reduction object.

3.2.2 Coherence Cache Misses
A coherence cache miss occurs when between a processor’s two
consecutive accesses to the same memory block, another processor
invalidates the cache block. Clearly, there are no coherence cache
misses in the full replication scheme.

Consider a processor and suppose it accesses a cache block. Let
there be k other accesses to cache blocks before this processor ac-
cesses the same cache block again. k can range from zero to infin-
ity. The probability of having a particular value of k is

(1 −
1

p
)k

×
1

p

When the processor accesses the same cache block again, there is a
probability 1/q that it will be the same memory block it previously
accessed. If this is the case, we have the potential of cache reuse, if
the cache block has not been invalidated by other processors. Oth-
erwise, we get a capacity or conflict cache miss. The probability
that none of the other t − 1 processors updated the same cache
block in the mean time is (1 −

1
pq

)k(t−1).

Putting it together, the probability of cache reuse and no invalida-
tion from other processors is

∞∑

k=0

(1 −
1

p
)k

×
1

p
×

1

q
× (1 −

1

pq
)k(t−1)

This terms simplifies to

1

p

1

q
×

1

1 − (1 − 1/p)(1 − 1/pq)t−1

A coherence miss occurs when we have the possibility of cache
reuse, but one of the other processors has invalidated the cache
block. So, we have

Cmiss =
1

q
−

1

p

1

q
×

1

1 − (1 − 1/p)(1 − 1/pq)t−1

3.3 Cost of TLB misses
In modern computer systems, a translation look-aside buffer (TLB)
facilitates translation of virtual addresses to physical addresses. A
TLB can be viewed as a hardware cache which can hold address
translation information for a fixed number of pages. TLB misses
can be a source of significant overheads for applications that access
a lot of data, and do not have much locality in accesses.

For modeling the cost of TLB misses, we assume that the TLB
is fully associative, as is typically the case in most systems. The
latency of each TLB miss is denoted by Latency tlb and is mea-
sured empirically. As defined in Table 1, the cost per iteration of
TLB misses is Ttlb miss. The probability of a TLB miss during an
update operation is denoted by Ptlb miss. Clearly,

Ttlb miss = Ptlb miss × Latency tlb

We focus on computing Ptlb miss. Note that some processors have
separate TLBs for instruction and data, while others have a com-
mon TLB. We denoted by TLBeffective the total number of TLB
entries that can be used for the elements of the reduction object. If
the size of each page is Sp, the total data whose page translation in-
formation can be stored in a TLB is Sp×TLBeffective. If M is the
total memory requirement of the reduction object, we do not have
any TLB misses (except cold misses) if M ≤ Sp×TLBeffective.
However, if M > Sp × TLBeffective, we have

Ptlb miss =
M − Sp × TLBeffective

M

3.4 Cost of Memory Contention
Contention for memory is a well known factor limiting parallel
performance. In random write reductions, as the elements of in-
put dataset are read and processed, cold cache misses occur. This
effect is already captured when Tperfect is measured. However,
when the size of the reduction object is relatively large, an input
element that is read can displace a reduction element or lock from
the cache. Also, if the reduction object does not fit in L2 cache,
capacity misses occur during update operations. Because reduction
elements are modified in the cache, such cache misses require a
write back operation. A read and write back operation causes sig-
nificant overhead for the memory system in many machines. This
is because the memory subsystem needs some idle cycles between
processing a read cache miss and processing a write back opera-
tion. Thus, we can say that the memory system has a high latency
for processing a read and write back operation, which we denote
as a RWB operation.

In a SMP machine, RWB requests from multiple processors can



cause memory contention. In this subsection, we model memory
contention because of RWB requests. Note that memory con-
tention can also happen because of other factors like coherence
misses, which also have a high latency. However, we do not model
these currently.

Assume that S is the service time of the memory system to process
a RWB operation. S is experimentally measured. We assume
that RWB operations are the dominant part of memory system
utilization. We model the memory systems as a M/D/1 queue
with fixed service time S. Let the probability that a loop iteration
requires a RWB operation be PRWB .

If the reduction object does not fit into L2 cache, and if l input
elements share one cache block, we have

PRWB =
1

l
+ Smiss2

Let U denote the utilization of the memory system. In a parallel
machine with t threads operating on t processors, we have

U =
arrival rate

service rate
=

t/(Taverage × PRWB)

1/S

=
S × t

Taverage × PRWB

Using the standard result for M/D/1 queues, we have

Tmemory contention =
US

2(1 − U)

By solving the resulting quadratic equation and making some ap-
proximations, we have

Tmemory contention =
S2

× PRWB × t

2(α − S × t × PRWB)

where,

α = Tperfect + Tcache misses + Ttlb misses + Twait

Note that the above expression for computing Tmemory contention

includes the term Twait. Similarly, the expression we derived for
Twait earlier includes
Tmemory contention. Ideally, the two equations should be solved
simultaneously to get the values of Tmemory contention and Twait.
However, our experience shows that there are no cases where the
values of both of these factors are significant. Waiting time is non-
negligible only when the number of reduction elements is small,
whereas memory contention is significant only when the reduction
object does not fit in L2 cache.

For computing Taverage from Tperfect, we first compute Tcache miss

and Ttlb. Both these factors can be computed independent of all
other factors. We then compute Twait assuming that
Tmemory contention is zero. Finally, we compute
Tmemory contention.

4. EXPERIMENTAL RESULTS
In this section, we focus on validating our performance model by
comparing the predicted execution times against execution times
measured on two different real SMP machines. Initially, we de-
scribe the SMP machines we conducted our experiments on and
the micro-benchmarking experiments we did to evaluate various
machine parameters.

4.1 Experimental Platforms and Experimen-
tal Design

We used two different SMP machines for our experiments.

The first machine used for our experiments is a 24 processor Sun
Fire 6800. Each processor in this machine is a 64 bit, 750 MHz
Sun UltraSparc III. Each processor has a 64 KB L1 cache and a 8
MB L2 cache. The total main memory available is 24 GB. The Sun
Fireplane interconnect provides a bandwidth of 9.6 GB per second.
This configuration represents a state-of-the-art server machine.

The second machine is a Sun Microsystem Ultra Enterprise 450,
with 4 250MHz Ultra-II processors and 1 GB of 4-way interleaved
main memory. The size of L1 cache is 16 KB and the size of L2
cache is 1 MB. This configuration represents a common SMP ma-
chine available as a desk-top or as part of a cluster of SMP work-
stations.

We have conducted experiments with three major goals. They are:
1) Evaluating how well our performance model predicts the perfor-
mance with 1 thread, as the size of the reduction object is scaled.
Here, the focus is on determining the model’s effectiveness in cap-
turing the impact of memory hierarchy. 2) Evaluating how well
our model predicts the speedups achieved by the three techniques.
Here, we focus on determining the efficacy in modeling waiting
time for locks, coherence cache misses, and contention for mem-
ory, and 3) Evaluating how successful the model is in predicting
when a parallelization technique outperforms others, i.e, can our
model we used as a basis for choosing a parallelization technique.

4.2 Micro-benchmarking
We now describe the micro-benchmarking experiments we did and
the machine parameters we obtained. The parameters we obtained
are shown in Table 3.

To measure the size and miss penalty of L1 and L2 cache, we used
the LMbench tool-set [14]. To measure the size and miss penalty
associated with the TLB, we used the method described by Saave-
dra et al. [16]. The key idea in this method is to measure the time
required for accessing arrays of increasing size, accessed using a
stride that equals the page size.

For computing cache coherence miss latency, we use a method sim-
ilar to the one described by Hristea et al. [9]. Finally, we also
computed the service time of the memory system in processing a
read and write back (RWB) request. The method we used is again
similar to the one developed by Hristea et al. [9]. Our experience
with random write reductions showed that memory contention is
insignificant on Sun Fire 6800. Therefore, the RWB service time
was evaluated only for Sun Enterprise 450.

4.3 Results on the Large SMP Machine
We now present experimental results on Sun Fire 6800. We were
able to experiment with up to 12 threads. In all experiments, the



Sun Fire 6800 Sun Enterprise 450

L1 Cache size 64KB 16KB
miss penalty 18 ns 40 ns

L2 Cache size 8MB 1MB
miss penalty 273 ns 267 ns

Main Memory page size 8KB 8KB
RWB service time n/a 122 ns

TLB num. of entries 512-I&D 64-D
miss penalty 127 ns 167 ns

Cache Coherency miss penalty 355 ns 406 ns

Table 3: Parameters Extracted from Micro-Benchmarking Experiments
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Figure 3: Predicting performance with 1 thread as reduc-
tion object size is scaled: all 3 techniques, Sun Fire 6800
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Figure 4: Speedup of full replication with small reduction
object sizes, Sun Fire 6800

size of the input data set was 1 GB, comprising 128 million ele-
ments.

As we stated earlier, we compute the term Tperfect by executing the
loop on a small reduction object that fits in L1 cache. Sequential
execution times when the reduction object sizes are larger are pre-
dicted by adding the overheads because of cache misses and TLB
misses. In Figure 3, we evaluate the effectiveness of our model in
predicting sequential execution times for all three techniques. We
show measured (denoted by m) and predicted (denoted by p) ex-
ecution times for full replication (denoted by fr), optimized full
locking (denoted by ofl) and cache sensitive locking (denoted by
csl). By sequential execution, here we mean execution with a sin-
gle thread where locking is still used. The reduction object size is
varied from 16 KB to 32 MB. Note that the amount of computa-
tion in the loop does not change as the reduction object is changed,
because it only depends upon the size of the input dataset.

The model is very accurate in predicting performance when the re-
duction object fits in L2 cache. When that is not the case, the model
still predicts the performance within 20%. An important observa-
tion is that the model accurately predicts the relative performance
of the three techniques. With a single thread, full replication is al-
ways the winner, because it involves no memory or computational
overheads associated with locks. When the overhead of memory hi-
erarchy is not significant, optimized full locking outperforms cache
sensitive locking. This is because cache sensitive locking requires

more computation in finding the address of the lock. However,
when the overhead of memory hierarchy is significant, cache sensi-
tive locking performs marginally better than optimized full locking.

We next focus on evaluating the model’s accuracy in predicting per-
formance with more than 1 thread. Two graphs are presented for
each technique, one with small reduction objects (up to 8 KB) and
another with larger reduction objects (16 KB to 32 MB). The re-
sults from full replication are presented in Figures 4 and 7, those
from optimized full locking are presented in Figure 5 and 8, and
those from cache sensitive locking are presented in Figure 6 and 9.
All figures show measured and predicted times with 1, 2, 4, 8, and
12 threads.

When the size of the reduction object is small, the overheads of co-
herence misses and waiting for locks are large. Therefore, the lock-
ing schemes only achieve relatively low speedups, i.e., less than 6
on 12 threads. Our model does a good job in predicting this. Pre-
dicted parallel execution times are lower than the measured times,
showing that our model is underestimating the parallelization over-
heads. With up to 8 threads, the disparity is at most 20%. The
measured performance with 12 threads on cache sensitive locking
is quite different from the predicted performance, particularly on
1 KB, 2 KB, and 5 KB reduction objects. We believe that when a
large number of threads share such a small reduction object, the ma-
chine behavior is hard to explain or capture in an analytical model.
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Figure 5: Speedup of optimized full locking with small re-
duction object sizes, Sun Fire 6800
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Figure 6: Speedup of cache sensitive locking with small re-
duction object, Sun Fire 6800
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Figure 7: Speedup of full replication with large reduction
object sizes, Sun Fire 6800
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Figure 8: Speedup of optimized full locking with large re-
duction object sizes, Sun Fire 6800

As the size of reduction object increases, the probabilities of co-
herence misses and waiting for locks reduce. Higher speedups are
seen from all schemes. Again, this is predicted very well by our
model.

Our final goal in developing analytical model of performance was
to predict when a parallelization technique will outperform other.
In Figure 3, we compared the measured and predicted performance
for the three techniques when 1 thread is used. In Figure 10, we
compare the measured and predicted performance for optimized
full locking and cache sensitive locking when 12 threads are used.
With the reduction object sizes we have used, the replicated reduc-
tion object does not exceed main memory even with 12 threads.
Therefore, full replication always gives the best performance. Our
model is able to predict this. Therefore, we focus on comparing
optimized full locking and cache sensitive locking. The locking
schemes outperform the full replication scheme when the size of
the replicated reduction object exceeds the available main memory,
as we have shown in our previous work [11]. Our performance
model currently does not include the overheads of memory thrash-

ing. So, we have not done experiments with cases where the repli-
cated reduction object is out-of-core.

In Figure 10, we show measured and predicted times for the two
schemes with 12 threads, and for 12 different reduction object sizes.
Approximately 20% difference is seen between predicted and mea-
sured execution times. However, in 9 out of 12 cases, the model
accurately predicts which scheme is the winner. When the com-
bined size of reduction object and locks doesn’t exceed L2 cache,
optimized full locking is the winner. This is because cache sen-
sitive locking requires more computation in finding the address of
the lock. When the reduction object takes 4 MB, cache sensitive
locking becomes the winner. This is because the number of pages
required for the reduction object and the locks exceeds the TLB
size with optimized full locks, but not with cache sensitive locking.
Our model accurately predicts this transition. However, when the
size of the reduction object is 8 MB, 16 MB, or 32 MB, our model
doesn’t accurately predict which scheme is the winner. Our model
shows that optimized full locking will have lower execution time,
whereas the measurements show that cache sensitive locking does
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Figure 9: Speedup of cache sensitive locking with large re-
duction object sizes, Sun Fire 6800

10
1

10
2

10
3

10
4

10
5

6

6.5

7

7.5

8

8.5

9

Size(KB)

T
im

e(
S

ec
on

d)

m−ofl
p−ofl
m−csl
p−csl

Figure 10: Comparing optimized full locking and cache sen-
sitive locking, 12 threads, Sun Fire 6800

better. We believe this is because our model underestimates the
overheads associated with memory hierarchy.

4.4 Results on the Small SMP Machine
We next present the validation results we obtained on a four pro-
cessor Sun Enterprise 450. All of our experiments were done using
a 512 MB input dataset comprising 64 million elements. We were
able to use up to 3 threads for our experiments.

Figure 11 shows measured and predicted performance with 1 thread,
as the size of the reduction object is increased. The size of reduc-
tion object is varied from 16 KB to 16 MB. The predicted per-
formance is within 5% of the measured performance in all cases.
Moreover, the model is also very successful in predicting the rela-
tive performance of the three schemes. This shows that our model
and micro-benchmarking have been effective in capturing the mem-
ory hierarchy of this machine.

Figures 12, 13, and 14 show parallel performance with reduc-
tion objects of size 1 KB to 8 KB using full replication, optimized
full locking, and cache sensitive locking, respectively. As there are
no waiting costs or coherence misses in this scheme, full replica-
tion gives perfect speedups. Because of the small reduction object,
speedups from the locking schemes are limited. The difference
between measured and predicted performance is relatively large
(consistently around 20%) with 3 threads. We believe that the
large number of coherence cache misses in this case cause bus con-
tention. While we capture coherence cache misses in our model,
the resulting bus contention is not captured.

Figures 15, 16, and 17 show the measured and predicted parallel
performance with reduction objects of size 16 KB to 16 MB using
full replication, optimized full locking, and cache sensitive lock-
ing, respectively. With larger reduction objects, the probability of
coherence misses and waiting for locks decreases. As a result, all
techniques have high speedups. The predicted performance is at
most 15% different from the measured performance.

5. RELATED WORK
The area of performance modeling, prediction, and measurement
of parallel programs is a very broad one. It is not possible for us
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Figure 17: Speedup of cache sensitive locking with large reduc-
tion object sizes, Sun Enterprise 450

to list all efforts. A variety of approaches have been taken and a
number of different system factors have been modeled.

Analytical modeling of shared memory machines has been a pop-
ular topic. Recently, researchers have focused on modeling shared
memory systems with ILP processors [2, 18]. In comparison, our
work focuses on analyzing parallelization techniques for a specific
type of programs, but develops a more detailed model, including
waiting for locks, coherence misses, and TLB misses. Karlsson et
al. have developed an analytical model for memory hierarchy per-
formance in decision-support systems [12]. They model cold and
capacity cache misses for data intensive applications. Again, our
model is significantly more detailed in modeling multiple layers of
memory hierarchy, locking overheads, and contention for memory.

The LogP model employs parameterized cost models of the appli-
cation characteristics and system overheads to model performance
on distributed memory machines [4]. This model has also been ex-
tended to model the effects of contention [6]. A variant of LogP
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Figure 11: Predicting performance with 1 thread as reduc-
tion object size is scaled: All 3 techniques, Sun Enterprise
450
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Figure 12: Speedup of full replication with small reduction
object sizes, Sun Enterprise 450
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Figure 13: Speedup of optimized full locking with small re-
duction object, Sun Enterprise 450
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Figure 14: Speedup of cache sensitive locking with small
reduction object sizes, Sun Enterprise 450

(LogGP) has been very successfully applied for predictive analysis
of a wavefront application [19].

Micro-benchmarking is a popular technique used as a basis for
performance prediction. The initial work in this area focused on
sequential programs and did not consider memory hierarchy [17].
The work has been since then been extended for parallel machines [16,
22]. We combine micro-benchmarking with probabilistic models
to capture the effects of memory hierarchy, contention and locking.
We have used several ideas from Hristea et al. [9] and Saavendra et
al. [16] in our micro-benchmarking work.

Detailed analytical models of cache have been developed. Agarwal
et al. reported an analytical model for uniprocessor cache [1]. In
comparison, we model a two-level cache and coherence misses, but
focus on a limited application class and do not model associativity.
Tsai and Agarwal model data reference patterns to predict cache
misses on a cache-coherent multiprocessor [20]. Our treatment of
coherence cache misses is specialized for random-write reductions.

Static analysis of cache misses is another well-studied topic [3, 7].
In comparison, we include coherence misses and TLB misses, but
again are considerably restricted in the set of programs we model.

6. CONCLUSIONS
In this paper, we have identified a new application for parallel per-
formance prediction. We have developed a detailed analytical model
for predicting performance and choosing the best parallelization
strategy. Within a uniprocessor, the model captures the impact of
memory hierarchy, including a two-level cache and TLB. For pre-
dicting parallel performance, we model the overheads because of
coherence cache misses, memory contention, and waiting for locks.
We are not aware of any previous work on analytical modeling that
includes all of the above factors. In our performance prediction ap-
proach, memory hierarchy and parallelization overheads are added
to the average execution time obtained when the problem fits in
first-level cache. This approach alleviates the need for modeling
instruction-level parallelism, which can be very complicated.
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Figure 15: Speedup of full replication with large reduction
object sizes, Sun Enterprise 450
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Figure 16: Speedup of optimized full locking with large re-
duction object sizes, Sun Enterprise 450

We have validated our model on two different SMP machines. Our
results show that our model effectively captures the impact of mem-
ory hierarchy (two-level cache and TLB) as well as the factors that
limit parallelism (contention for locks, memory contention, and co-
herence cache misses). The difference between predicted and mea-
sured performance is within 20% in almost all cases. Moreover,
the model is quite accurate in predicting the relative performance
of the three parallelization techniques.
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