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Enumerative Testing and Embedded Languages
Jonas Duregård

Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

This thesis explores rapid experimental development of programming lan-
guages, with particular emphasis on effective semi-automatic testing. Our
results are actualised in two Haskell libraries: BNFC-meta and Feat.

BNFC-meta is an extension of the BNF Converter (BNFC) tool. As such
it is capable of building a complete compiler front end from a single high
level language specification. We merge this with the practice of embed-
ding languages in Haskell, both by embedding BNFC itself and embed-
ding all languages defined using BNFC-meta. Embedding is carried out
by means of quasi-quotation enabling use of the languages concrete syn-
tax inside Haskell code. A simple extension to the grammar formalism
adds anti-quoting, in turn allowing Haskell code embedded in the concrete
syntax of the embedded languages. The end user can thus seamlessly mix
concrete and abstract syntax. Our automatic approach improve on existing
manually defined Haskell anti-quoters by not polluting the AST datatypes.

Our second major contribution, Feat (Functional Enumeration of Algebraic
Types) automatically enables property based testing on the large AST types
generated by BNFC-meta and such tools, but it is useful more generally for
algebraic types. Feat is based on the mathematical notion of an enumer-
ation as a bijective function from natural numbers to an enumerated set.
This means that unlike previous list-based enumeration methods it is not
intrinsically serial and can be used for both random and exhaustive testing.
We describe a theory of functional enumeration as a simple algebra closed
under sums, products, guarded recursion and bijections. We implement
these ideas in a library and show that it compares favourably to existing
tools when testing AST types.
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Introduction

The traditional view of choosing which programming language to use is
that of general purpose languages competing over being the best program-
ming language. But in reality, all larger software systems involve sev-
eral programming languages to solve different tasks. It is widely accepted
among software professionals that there is no language which is best suited
for all the problems a software engineer faces, no “one language to rule
them all”. It is rather a matter of selecting the right tool for the right job.

The Domain Specific Language (DSL) paradigm shifts focus further away
from the ideal of a monolithic programming language. Instead each do-
main of computable problems has its own set of languages and tools. The
analogy to other engineering problems is clear: there are tools that solve
a very wide range of problems, but a tool that is tailored for the specific
problem at hand is potentially more effective and most likely easier to use.

Understandably this approach has spawned a very large number of lan-
guages. In extreme cases a DSL can even be developed and used exclu-
sively within a single project to solve a frequently recurring problem. Us-
ing DSLs stresses the need for tools that allow programmers to rapidly
prototype, maintain and test new languages.

In this chapter we explain the most fundamental concepts used in the re-
mainder of the thesis and in §4 we give a concise summary of the contri-
butions focusing on motivating examples.

1 Algebraic datatypes

The algebraic datatype (ADT) is one of the foremost tools in a functional
programmers toolkit. Each datatype is defined by a number of construc-
tors. Each constructor is just a label representing a unique method of con-
structing values. Thus each constructor represents a disjoint subset of the
type. In addition to the label, each constructor has a sequence of component
datatypes. To build a value from the constructor its label is combined with
a value from each such component type.

1



2 Introduction

A very simple algebraic datatype is the type of Boolean values. It has
two constructors labelled “False” and “True”, and the constructors have
no additional components so each constructor label is a value in its own.
In Haskell, we define this type by:

data Bool = False | True

We can define pairs of Boolean values as a datatype with a single construc-
tor that has two components of type Bool.

data BoolPair = BP Bool Bool

A pair of booleans can be constructed by applying the label BP to any
two boolean values e.g. BP True False. The BoolPair type demonstrates the
algebraic nature of ADTs: complex types are built by combining simpler
ones. The algebra becomes clearer if we consider the sum of product view
of datatypes: Adding a constructor to a datatype corresponds to addition,
extending a constructor with an additional component type corresponds
to multiplication. Thus Bool could be expressed as True + False and if we
disregard the label for BoolPair we get the following expression: (False +
True) ∗ (False + True). Expanding this using the distributive property as
we would in ordinary arithmetics we get:

False ∗ True + False ∗ False + True ∗ False + True ∗ True

This sum corresponds directly to each of the four existing pairs of boolean
values. Quite frequently the labels are abstracted away altogether and con-
structors with no components are simply expressed as 1 giving BoolPair =
(1+ 1) ∗ (1+ 1). Of course these types contain only a finite number of val-
ues. More generally ADTs capture the notion of recursively defined sets such
as the set of (Peano) natural numbers. Each number is either zero or the
successor of another number. Such types are easily defined by a recursive
datatype:

data Nat = Zero
| Succ Nat

The introduction of recursion makes the algebraic view of datatypes slightly
more complicated. It is higly desirable to have a finite algebraic expression
for datatypes such as Nat. This is usually handled by extending the alge-
bra with a least fixed point operator µ such that Nat = µ n. 1 + n. The
fixed point operator can be extended to enable mutual recursion (cf. poly-
variadic fixed point combinators) although often algebraic representations
of data types used in generic programming do not support this.

Type constructors and regular types A type constructor (not to be con-
fused with the data constructors described above) is a datatype definition
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with variables that when substituted for specific ADTs form a new ADT.
An example is the tuple type (a, b) which is a generalisation of BoolPair
where BoolPair = (Bool, Bool). A larger example is for instance a binary
tree with data in each leaf:

data Tree a = Leaf a
| Branch (Tree a) (Tree a)

The type constructor Tree can be applied to the Nat type to yield the ADT
Tree Nat of trees with natural numbers in their leaves. The combination
of recursive types and type constructors allow types which can not be
expressed as a least fixed point. For instance the type of balanced binary
trees:

data Balanced a = BLeaf a
| BBranch (Balanced (a, a))

These types are referred to as non-regular types and are often not sup-
ported by generic programming tools (such as Jansson and Jeuring (1997))
and other tools that use the algebraic representation of types.

Pattern matching The principal tool for defining functions on algebraic
datatypes, pattern matching breaks a function into cases for each construc-
tor. Each case binds the component values of the matching constructor to
variables. For instance addition of natural numbers:

add Zero m = m
add (Succ n) m = Succ (add n m)

As is often the case with functions on natural numbers, addition has two
interesting cases: either the first operand is zero or it is the successor of
another natural number. In the latter case we bind that number to the
variable n so that we can recursively add it to the second operand.

2 Abstract syntax trees and context free languages

The availability of ADTs and pattern matching has made functional lan-
guages such as Haskell popular choices for implementing compilers and
language technology software.

One reason for this is the close connection between algebraic datatypes and
Abstract Syntax Trees (ASTs) of context free languages. The concrete syntax
of a language is the set of all character strings that it contains. The abstract
syntax is a tree representation of the same information. It is called abstract
because it usually abstracts away from things in the concrete syntax which
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are not important for the semantics of the language e.g. if spaces or tabs
are used or if there are redundant brackets around a number.

For example consider a language of boolean expressions with literals, nega-
tion and conjunction. The concrete syntax of an expression could be remi-
niscent of natural language e.g. "true and not false". We define an alge-
braic datatype to represent the abstract syntax:

data Exp = F
| T
| Not Exp
| And Exp Exp

The abstract syntax of the sentence "true and not false" is And T (Not F).
Abstract syntax trees are not as easy for humans to read and maintain, but
for implementing programs that manipulate or evaluate expressions it is
easier to work with the abstract syntax. For instance to evaluate expres-
sions to a truth-value we only need this tiny program:

eval :: Exp→ Bool
eval F = False
eval T = True
eval (Not e) = not (eval e)
eval (And e1 e2) = eval e1 ∧ eval e2

The BNF Converter The popularity of context free languages in software
engineering is largely due to the Backus-Naur Form (BNF) grammar for-
malism (Naur, 1963). In BNF a language is specified by a set of production
rules, each rule consisting of a category name and a sequence of termi-
nal symbols and non-terminal categories. These production rules describe
how symbols can be combined into sentences in the language: If we start
with a category name and expand it using any production rule, repeating
the process for all resulting non-terminals until only terminal symbols re-
main, then that sequence of symbols is a sentence in the specified language.
Overly simplified the BNF grammar of our little expression language is as
follows:

Exp ::= "true";
Exp ::= "false";
Exp ::= "not" Exp;
Exp ::= Exp "and" Exp;

We implicitly allow whitespace characters between our terminal symbols.
From a language specification such as this it is possible to automatically
derive efficient parsers that convert linear concrete syntax to an abstract
tree structure. Note that each production rule in our grammar corresponds
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to a single constructor in our AST datatype: each category is a datatype
and each of the non-terminals in a rule correspond to a data field in a con-
structor. The only thing missing are the constructor names. The BNF Con-
verter (Forsberg and Ranta, 2003) uses this fact to automatically generate
an AST type definition from a grammar. This requires the BNF formalism
to be extended with a label for each rule, corresponding to the constructor
name. In Labelled BNF, the grammar can be specified as follows:

F. Exp ::= "false";
T. Exp ::= "true";
Not. Exp ::= "not" Exp;
And. Exp ::= Exp "and" Exp;

It is easy to recreate the AST datatype from this description; remove the
non terminals and you are left with the constructor names and compo-
nents. This grammar has a few problems however. Particularly it is am-
biguous. For instance it is not clear how "not false and true" should be
parsed, is it Not (And F T) or And (Not F) T. This problem is solved
by specifying precedence: does conjunction take precedence over negation
or vice versa? Also "false and true and false" can be parsed as either
And F (And T F) or And (And F T) F. This problem is solved by spec-
ifying associativity: is conjunction right or left associative? Regardless of
which answers we choose for these questions, a third question arises: how
can we specify the other meanings of the sentence in our expression lan-
guage? For this we need to add some kind of parentheses in the concrete
syntax, but these are not needed in the abstract syntax where everything
is already in an unambiguous tree form. In BNFC these issues are solved
by two mechanisms:

• Indexed categories are used to distinguish a single abstract category
into several syntactic sub-categories by adding trailing numbers to
category names.

• Syntactic dummies allows users to specify syntactic rules which have
no influence on the abstract syntax type definition, by replacing the
label of the rule with an underscore.

Applying these techniques yields the following grammar for our expres-
sion type:

And. Exp0 ::= Exp0 "and" Exp1;

Not. Exp0 ::= "not" Exp1;
F. Exp1 ::= "false";
T. Exp1 ::= "true";

. Exp1 ::= "(" Exp0 ")";

This parses "not false and true" as And (Not F) T (conjunction takes
precedence) and "not (false and true)" as Not (And F T).
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Given this grammar, BNFC produces source code (in Haskell or any of
several available languages) for three primary components:

• The AST datatype definition.

• A parser that can convert from concrete to abstract syntax (or fail with
a syntax error).

• A pretty printer which takes an abstract syntax tree and converts it to
a concrete syntax string. The output is “pretty” in the sense that it
contains no redundant brackets and has coherent indentation etc.

Together these components form a complete compiler front end. With all
syntactic issues handled in a single self-contained file, the developer is
free to focus on the semantics of the language i.e. writing functions on the
abstract syntax type.

This ability to rapidly go from a high level syntax description to a com-
plete compiler front end has proven valuable in programming language
teaching and research, as well as in some industrial applications (Forsberg
and Ranta, 2004).

Domain Specific Languages General purpose programming languages
such as C, Java and Haskell have been designed to enable programmers
to solve any problem with a computable solution. Domain Specific Lan-
guages (DSLs) on the other hand are designed to solve a much more nar-
row set of problems (called the problem domain). More general problems
might be difficult or even impossible to solve in the DSL. Examples of well
known DSLs include SQL for database queries and HTML for web pages.

The motivation for using DSLs instead of general purpose programming
languages is usually some advantage that the specialization offers at the
cost of more general functionality. For instance domain specific code op-
timisations that work well in the problem domain of the DSL but which
could be detrimental in other contexts.

Embedded Languages The reason that it is so simple to make a function
that evaluates the boolean expression example is that the language is es-
sentially a subset of Haskell. Each construct in the expression language
is simply delegated to the corresponding Haskell function. It is often the
case in DSL design that the language you are designing has a large array
of standard features (such as arithmetic expressions) and a few domain
specific features on top of that.

The principle of embedded languages is that instead of building a DSL
from scratch, the DSL is embedded in a host language. Each program in the
DSL is a program in the host language (but not vice versa). The domain
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specific elements of the language are implemented as a library. The details
of the library are hidden from the user with abstraction features of the
host language, in some sense it becomes a language of its own rather than
a mere library (Hudak, 1996).

3 Property based testing

Verifying the correctness of software is essential to software engineering,
and testing is a major part of virtually any software project. Property based
testing is a semi-automatic approach where developers write predicates
(the properties) that universally quantify over some input set (typically a
datatype). Each predicate is a specification for some part of the software
under test. A testing framework is then used to automatically construct
test cases from the input set and to search for a counter-example to the
tested property. If a counter-example is found there is either a bug in the
program or the specification is incorrect.

Random testing The most well known testing framework for functional
programming is QuickCheck, described by Claessen and Hughes (2000).
One of the foremost merits of QuickCheck is the ease with which prop-
erties are defined and the short trail from a high level specification to an
executable test suite. The simplest predicates are just functions from input
data to booleans. For instance to test the relation between the reverse func-
tion on strings and string concatenation we define the following function:

prop_RevApp :: String→ String→ Bool
prop_RevApp xs ys = reverse (xs ++ ys) == reverse ys ++ reverse xs

All the parameters of the function are implicitly universally quantified.
To verify the correctness of this property we only need to pass it to the
QuickCheck test driver:

Main> quickCheck prop_RevApp

OK! passed 100 tests.

As the output suggest, the property is only partially verified. Specifically
100 pairs of strings were tested without finding a counterexample. The test
data generated by QuickCheck is selected at random. Datatypes are asso-
ciated with default random generator using a type class (called Arbitrary),
and the library includes combinators to build generators for user defined
types.

When writing generators the user must ensure termination and reasonable
size of generated values. The library provides several tools for making this
easier. It is more difficult to assess the statistical coverage of the generator,
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i.e. how likely it is to exercise all relevant parts of the tested code. If a
property passes it is difficult to verify that it is not due to some flaw in
the generator that causes it to avoid generating significant test cases. One
way to mitigate this uncertainty is to simply run more tests, but the library
also provides some tools for manually inspecting the test cases generated
to ensure the tester that good coverage is achieved.

The small scope hypothesis A common observation in software testing
is that if a program fails to meet its specification, there is typically a small
input that exhibits the failure (by some definition of small). The small
scope hypothesis states that it is at least as effective to exhaustively test a
class of smaller values (the small scope) as it is to randomly or manually
select test cases from a much larger scope. The Haskell library SmallCheck
(Runciman, Naylor, and Lindblad, 2008) applies the small scope hypoth-
esis to algebraic datatypes, and argues that most bugs can be found by
exhaustively testing all values below a certain depth limit. The depth of a
value is the largest number of nested constructor applications required to
construct it. So in the ADT for arithmetic expressions, And T (Not F) is of
depth two because the constructor F is nested inside the constructor Not
which in turn is nested in And. Exhaustive testing by depth has at least
two advantages over random generation:

• Generators are mechanically defined. There is usually no thought
involved in writing the enumeration procedure for a datatype, it just
mirrors the definition of the type itself.

• When a property succeeds the testing driver can give a concise and
meaningful description of coverage: the depth limit to which it was
able to exhaustively test.

The disadvantage is that the number of values can grow extremely fast
and exhaustively testing even to a small depth might not be feasible. Even
in our small example the number of values grows as a double exponential
and by depth five there are already 1015 values which is well beyond feasi-
bility for exhaustive search. The SmallCheck library provides combinators
to mitigate this by manually changing the depth cost of selected construc-
tors e.g. make the conjunction operator increase the “depth” of values by
two instead of one. Unfortunately this procedure partly eliminates both
the advantages described above: generator definition is no longer mechan-
ical and it is no longer easy to understand the inclusion criteria of a test
run.

Enumerative combinatorics Mathematically speaking, ADTs are a spe-
cial case of combinatorial structures. As such they are studied in the branch
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of mathematics called combinatorics. There is ample literature on the sub-
ject, and some of this work might have applications in property based
testing. Particularly enumerative combinatorics deals with the problem of
counting the number of structures of a given size. A central concept of
enumerative combinatorics is combinatorial species, first described by Joyal
(1981). Species define structures composed of sums and products, but also
of more complicated structures such as sets and cycles. From each species
several generating functions can be computed and these are used to count
the number of structures of a given size. Yorgey (2010) argues that species
can be used both for random and exhaustive testing of functional pro-
grams.

4 Contributions

Our contributions are divided in two parts, corresponding to the chapters
of this thesis. Each part is also identified by a Haskell library: BNFC-
meta which is a “totally embedded” version of the BNF Converter, and
Feat which is a random-systematic hybrid test case generator which works
well for properties quantifying over Abstract Syntax Trees (but also for
algebraic datatypes in general).

Embedded parser generators Our first paper describes BNFC-meta, a
library that keeps all the benefits of the BNF Converters Haskell Back End
and extends it in three ways:

• Grammars are embedded in Haskell source files rather than kept in a
separate file. Haskell extensions for compile time metaprogramming
replace external generation tools. This makes experimentation and
prototyping even faster because of a shorter and more dependable
tool chain.

• In addition to the parser and the pretty printer, a quasi-quoter (Main-
land, 2007) is constructed for the specified language. This allows
users to write constants in the concrete syntax of the language di-
rectly in Haskell source files and they are statically (at compile time)
expanded to their corresponding abstract syntax.

• The grammar formalism is extended with a simple mechanism for
defining anti-quoting for the generated quasi-quoters. This allows
users to leave “holes” in their quasi-quoted strings which are con-
verted to Haskell variables in the AST values. This gives the pro-
grammer the ability to express functions and patterns in terms of the
concrete syntax.



10 Introduction

The last point may seem to contradict the statement that the abstract syntax
is easier to manipulate than the concrete syntax, and in some way that is
true. Most recursive functions are easier to write on the abstract syntax,
where there is one case for each rule. Some more complex procedures,
particularly program transformations like constant unfolding, are often
easier to express by a pattern on the concrete syntax (Mainland, 2007).

Motivating example Suppose we have a small language with Java-like
syntax. The complete grammar for the example is presented in table 1.
Using the abstract syntax of the language we define a function that takes
an expression and builds a complete program that prints the result of eval-
uating the expression.

printing :: Expr→ Prog
printing e = Fun TInt (Ident "main") [SFunApp (Ident "print") [e ] ]

To apply this function to the expression 5 + 5 we declare a value print10:

print10 :: Prog
print10 = printing (EPlus (EInt 5) (EInt 5))

Evaluating print10 in an interpreter (GHCI) gives the following output:

Main> print10

Fun TInt (Ident "main")

[SFunApp (Ident "print") [EPlus (EInt 5) (EInt 5)]]

A more readable output is produced using the pretty printer provided by
BNFC-meta (as well as by BNFC):

Main> putStrLn (printTree print10)

int main () {

print (5 + 5);

}

This division of syntax into illegible abstract syntax and legible concrete
syntax raises the following question: why are we using the illegible syntax
in our definitions?

Some would argue that the definitions above can be improved greatly
using the ordinary abstraction tools of Haskell (factoring out code, type
classes, infix operators etc.). This is correct to some extent but it does
require some work and in the end the programmer has to keep two pro-
gramming languages in mind: the actual concrete syntax of the language
and the syntax of what is essentially an embedded language for the ab-
stract syntax. With some effort you can bend Haskell into making these
languages very similar, but not so similar that knowledge of the concrete
syntax is sufficient to define values in the abstract syntax.
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import Language.LBNF (lbnf, dumpCode, bnfc)

bnfc [lbnf |
Fun. Prog ::= Typ Ident "(" ")" "{" [Stm ] "}";
SDecl. Stm ::= Typ Ident ";";
SAss. Stm ::= Ident "=" Expr ";";
SIncr. Stm ::= Ident "++" ";";
SWhile. Stm ::= "while" "(" Expr ")" "{" [Stm ] "}";
SFunApp. Stm ::= Ident "(" [Expr ] ")" ";";

. Stm ::= Stm ";";
ELt. Expr0 ::= Expr1 "<" Expr1;
EPlus. Expr1 ::= Expr1 "+" Expr2;
ETimes. Expr2 ::= Expr2 "*" Expr3;
EVar. Expr3 ::= Ident;
EInt. Expr3 ::= Integer;
$. Expr3 ::= "$" Ident;
[ ]. [Stm ] ::=;
(:). [Stm ] ::= Stm [Stm ];
separator Expr ",";

. Expr ::= Expr0;

. Expr0 ::= Expr1;

. Expr1 ::= Expr2;

. Expr2 ::= Expr3;

. Expr3 ::= "(" Expr ")";
TInt. Typ ::= "int";
TVoid. Typ ::= "void";
| ]

Table 1: A complete executable definition of a small Javalette-like language
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In BNFC-meta we get a quasi-quoter for each datatype (i.e. for each gram-
mar category) for free, so the definition of print10 can be changed to:

print10 :: Prog
print10 = printing [expr | 5 + 5 | ]

This is only a minor improvement, and we cannot use the quasi-quoter for
Prog directly to define the body of printing since it contains the free variable
e. However, by adding a simple anti-quoting rule to the grammar we can
enable expressions with variables:

$. Expr3 ::= "$" Ident;

The label is replaced by $ which indicates that the non-terminal on the
right hand side is parsed as Haskell code. We add a terminal "$" to dis-
tinguish Haskell variables from Javalette variables. Now we can define a
version of printing in terms of the concrete syntax:

printing′ :: Expr→ Prog
printing′ e = [prog |

int main () {
print ($e);
} | ]

The type of printing′ is automatically inferred if we omit it. In fact after
the quasi-quotation is resolved at compile time, the Haskell code from this
meta-program is completely identical to the abstract syntax definition of
printing.

Functional Enumeration of Algebraic Datatypes Our second paper is
about Feat: a theory of efficient functional enumerations and a library
based on this theory. The motivation was initially to test code produced
by BNFC-meta and other applications involving large Abstract Syntax Tree
types, but it may be applicable in a wider field of testing and perhaps for
other purposes that benefit from quick access enumerated data.

Given the prominent position of testing and verification in the software
engineering process, no development tool can be called complete without
taking testing into account. With BNFC-meta intended for rapid proto-
typing, and with the popularity of test driven development strategies it
seems essential to provide facilities for equally fast test suite prototyping.
It turns out that Abstract Syntax Trees, although a very popular applica-
tion of Haskell, is a bit of a blind spot for existing tools. Particularly we
identify two main issues that we overcome with our approach:

• Writing random generators by hand for large systems of types is
painstaking, and so is verifying their statistical soundness.
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• The small scope hypothesis does not apply directly to large ADTs.

The first issue is exacerbated by the use of BNFC-meta as a prototype tool.
Writing and verifying test data generators for large types is particularly
bothersome if the AST type is constantly undergoing changes.

The second issue is demonstrated in the paper. Applying SmallCheck to
properties that quantify over a large AST (in our case that of Haskell itself
with some extensions) proved improductive for the purpose of finding
bugs. The reason is the extreme growth of the test space as depth increases,
which practically prevents SmallCheck from reaching deep enough to find
bugs.

To overcome these problems we provide functional enumerations. We con-
sider an enumeration as a sequence of values. In serial enumerations
this sequence is typically represented by a lazy infinite list starting with
small elements and moving to progressively larger ones. For example
the enumeration of the values in our expression type might start with
[F, T, Not F, Not T, And F F, And F T, ....

A functional enumeration is instead characterised by an efficient indexing
function that computes the value at a specified index of the sequence, es-
sentially providing random access to enumerated values. The difference is
best demonstrated by an example:

Main> index (10^100) :: Exp

Not (And (And (And (And (Not T) (And (And T T) T))

...

(And (Not T) F))) F)

Here we access the value at position 10100 in the enumeration of the Exp
type (with ten lines of additional data cut away). Clearly accessing this
position in a serial enumeration is not practical.

This “random access” allows Functional enumerations to be used both for
SmallCheck-style exhaustive testing of small scopes and QuickCheck-style
random testing with a statistical guarantee of uniform distribution over
a well specified subset of the type. We show in a case study that this
flexibility helps discover bugs that can not practically be reached by the
serial enumeration provided by SmallCheck.

Motivating example Returning to the example with the Java-like lan-
guage. Suppose we want to test some property of the language, for in-
stance the print-parse-cycle which states that composing the parser with
the pretty-printer yields the identity function (if this is not the case there
is a bug in either the pretty-printer or the parser). We can formalise this as
the following predicate:
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prop_cycle :: Prog→ Bool
prop_cycle a = err (const False) (fmap (a ==)
(pExpr (tokens (printTree a))))

Using err (const False) means we consider parse errors as failures. We
can test properties like these with QuickCheck, provided that the type of
the function argument is an instance of the Arbitrary type class. There is
no such instance for Prog, and writing one by hand is difficult and error
prone. In Feat there is a Template Haskell metaprogram for automatically
constructing an instance of the Enumerable type class (part of Feat), and
from that we can easily construct an instance of arbitrary. The code to
construct the Enumerable instances is simple:

deriveEnumerable ”Prog
deriveEnumerable ”Stm
deriveEnumerable ”Expr
deriveEnumerable ”Typ

Although it is convenient to use the Template Haskell script, the generated
code is manageable. For instance this is the generated instance for Expr:

instance Enumerable Expr where
enumerate = consts
[unary (funcurry ELt)
, unary (funcurry EPlus)
, unary (funcurry ETimes)
, unary EVar
, unary EInt
]

Without explaining the semantics of unary, the pattern is still simple: for
a constructor with k + 1 components we apply funcurry k times (there is a
special function nullary for constructors with no components). Now we can
use the function uniform :: Enumerable a ⇒ Int → Gen a together with the
QuickCheck function sized to construct an Arbitrary instance:

instance Arbitrary Prog where
arbitrary = sized uniform

This gives a random generator that given a size bound n (by QuickCheck)
chooses a value uniformly at random from the set of value of size n or less.
The result of a test run:

Main> quickCheck prop_cycle

*** Failed! Falsifiable (after 15 tests):

Fun TInt (Ident "a")

[SWhile (ETimes (EInt (-1)) (EVar (Ident "a’"))) []]
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As is typically the case with random testing, this is not a minimal failing
example. The usual method to get one is to define a shrinking function,
and it is possible to derive one automatically if needed (Duregård, 2009).
Feat offer an alternative approach however, since we can enumerate values
exhaustively as well as randomly. Doing so for all values of size 15 or less,
starting with the smallest yields the following result:

Main> ioAll 15 (showReport prop_cycle)

Main> main2

--- Testing 0 values at size 0

--- Testing 0 values at size 1

--- Testing 0 values at size 2

--- Testing 0 values at size 3

--- Testing 10 values at size 4

--- Testing 0 values at size 5

--- Testing 0 values at size 6

--- Testing 50 values at size 7

--- Testing 150 values at size 8

--- Testing 300 values at size 9

--- Testing 370 values at size 10

Failed: Fun TInt (Ident "a") [SAss (Ident "a") (EInt (-1))]

The concrete syntax of this is int a () {a = −1; } and it is not parseable,
indicating a lexical error at −1. Investigations show that the BNFC built-in
type Integer is indeed intended to parse only non-negative integers, so this
is arguably a “bug” in the generated AST type. Specifically the AST typ
is too “wide” i.e. it contains values that are not represented by any con-
crete sentence in the language. This kind of imprecision is very common
in AST types and there needs to be a method of flagging these as false
positives. One way to ignore the error is by altering the property to pass
for any value with a negative literal. This method has the problem that
it generates and discards many values which are not in the language, at
great computational cost. The ratio of discarded values typically grows
as the size of expressions grows. Instead we modify the definition of the
enumeration and make it enumerate only non-negative numbers. This is
done by providing a bijective function from another enumerated type to
the set of non-negative integers. One simple bijection is from the integers
themselves, mapping negative numbers to odd numbers and positive to
even:

toNat :: Integer→ Integer
toNat n = if n < 0 then abs (n ∗ 2 + 1) else n ∗ 2

To modify the enumeration we simply change the instance of Enumerable Expr
above, replacing unary EInt with unary (EInt ◦ toNat). Rerunning the test
immediately yields a reassuring answer from QuickCheck:
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Main> quickCheck prop_cycle

+++ OK, passed 100 tests.

Significantly slower, we can enumerate all values with 14 or fewer con-
structors:

Main> main2

--- Testing 0 values at size 0

--- Testing 0 values at size 1

...

--- Testing 1870 values at size 11

--- Testing 10340 values at size 12

--- Testing 16480 values at size 13

--- Testing 39930 values at size 14

--- Done. Tested 69500 values
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Embedded Parser Generators

This chapter was originally published in the proceedings of the 2011 Haskell
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Embedded Parser Generators

Jonas Duregård, Patrik Jansson

Abstract

We present a novel method of embedding context-free grammars in
Haskell, and to automatically generate parsers and pretty-printers from
them. We have implemented this method in a library called BNFC-
meta (from the BNF Converter, which it is built on). The library builds
compiler front ends using metaprogramming instead of conventional
code generation. Parsers are built from labelled BNF grammars that
are defined directly in Haskell modules. Our solution combines fea-
tures of parser generators (static grammar checks, a highly specialised
grammar DSL) and adds several features that are otherwise exclusive
to combinatory libraries such as the ability to reuse, parameterise and
generate grammars inside Haskell.

To allow writing grammars in concrete syntax, BNFC-meta pro-
vides a quasi-quoter that can parse grammars (embedded in Haskell
files) at compile time and use metaprogramming to replace them with
their abstract syntax. We also generate quasi-quoters so that the lan-
guages we define with BNFC-meta can be embedded in the same
way. With a minimal change to the grammar, we support adding anti-
quotation to the generated quasi-quoters, which allows users of the de-
fined language to mix concrete and abstract syntax almost seamlessly.
Unlike previous methods of achieving anti-quotation, the method used
by BNFC-meta is simple, efficient and avoids polluting the abstract
syntax types.

1 Introduction

The underlying motivation of this paper is to support rapid development
of, and experimentation with, Domain Specific Languages (DSLs). Espe-
cially if the desired syntax of the DSL makes it difficult or impossible to
embed it in a general purpose language using conventional methods (as
a combinator library). We aim to eliminate the “barrier” associated with
employing a parser generator such as the BNF Converter (Forsberg and
Ranta, 2003), and make it as easy to use as a parser combinator library.
The title of this paper is deliberately ambiguous about what is embedded,
referring both to the parser generators and the generated parsers.

Embedded (parser generators) Like the original BNF Converter on which
it is built, BNFC-meta builds compiler front ends (abstract syntax types,
parsers, lexers and pretty-printers) from grammar descriptions. Unlike
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the BNF Converter: 1) BNFC-meta is a metaprogram and 2) our grammar
descriptions are embedded as Haskell values.

By “metaprogram” we mean that it is a Haskell function from grammars to
abstract Haskell code. This abstract code can be “spliced” by the compiler
using the non-standard language extension Template Haskell (Sheard and
Jones, 2002). Shortening the compilation tool chain in this way has many
practical advantages, including faster and simpler compilation. Embed-
ding the language definitions also allow users to define their own functions
in the same module as the parser.

The fact that grammars are embedded in the target language (i.e. Haskell)
is a major advantage of our approach. This lends BNFC-meta features
which are typically reserved for combinator parsers, namely the possi-
bility of building grammar definitions using all the abstraction features
of a functional language. This can drastically reduce the complexity of
code, enabling features such as reusable grammars, parameterised gram-
mars and programmer defined grammar transformations. Even though
BNFC-meta grammars are embedded in Haskell rather than defined in
separate files, users can still write grammars in the same concrete syn-
tax as in BNFC. This is achieved using another metaprogramming facility
called quasi-quoting, which essentially provides programmer defined syn-
tax extensions to Haskell. Users can mix concrete and abstract grammar
syntax depending on which is most suited for the task at hand.

(Embedded parser) generators The alternative interpretation of the title
(that the generated parsers are embedded) highlights another innovation
in BNFC-meta. By embedded we mean that any language defined with
BNFC-meta (an object language) can be used as a syntactic extension to
Haskell, and the compiler will statically parse the concrete syntax of the
object language into its corresponding abstract syntax. This is achieved
using the same technique as when we embed our grammar definitions; we
automatically generate quoters for the object language. As indicated by
their name, a quoter allow the object language to be used in a syntactically
defined scope (a quote).

Quotes can be used to define both patterns and expression, but in order
to define useful patterns we need to be able to bind variables. In general
we want to have “holes” in our quotes that are filled with Haskell values.
This is called anti-quoting, and it is what separates a quasi-quoter from
just a quoter. In BNFC-meta we provide built in support for defining anti-
quotation.

The embedded parsers generated by BNFC-meta enables the programmer
to “mix and match” abstract and concrete syntax of the object language
seamlessly, reducing code size and increasing readability for several com-
mon language processing tasks.
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Paper contents The remainder of this paper is structured as follows. In
§2 we present the tools on which BNFC-meta is built and give some ex-
amples of using it. In §3 we present the details of embedding BNFC into
a Haskell library. We also argue that this method is not only useful for
BNFC, but can be applied in several other contexts. In §4 we explain
the quasi-quoting mechanisms generated by BNFC-meta, and explain why
these are a natural consequence of embedding BNFC as a library. In §5 we
show some performance results and a large scale example. We conclude
in §6 with a discussion of related and future work.

2 Preliminaries

BNF, LBNF and BNFC The Backus-Naur Form (BNF) is a notation for
context free grammars. The notation is widely used in computer language
processing, mainly due to the fact that efficient parsers can be automati-
cally constructed from BNF grammars. There are many variants of BNF
but they all have production rules which are combined to form sentences:

Foo ::= "Foo!" Foo
| Bar

Bar ::= "Bar."

The category Foo (also called a non-terminal, as opposed to the terminal
strings) represents all sentences on the form “Foo!Foo! ... Foo!Bar.”. In
this paper we use a variant of BNF called Labelled BNF (LBNF). In LBNF
each production rule represents a single production (there is no vertical
bar operator) and each production rule carries a descriptive label. The
grammar above can be expressed as:

FooCons. Foo ::= "Foo!" Foo;
FooNill. Foo ::= Bar;
BarDot. Bar ::= "Bar.";

The primary advantage of LBNF is that a system of algebraic datatypes
can be extracted from the rules by using categories as types and labels as
constructors. These types capture the abstract syntax tree of the specified
language. In our example:

data Foo = FooCons Foo | FooNill Bar
data Bar = BarDot

The BNF Converter (BNFC) is a program that uses LBNF grammars to
generate complete compiler front ends. This includes abstract syntax tree
types, a lexical analyser (lexer), a parser and a pretty printer. BNFC is
written in Haskell but can generate parser code for many target languages,
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including Haskell, C/C++ and Java. BNFC-meta does not support any
target language other than Haskell. When we refer to the BNFC in the
remainder of this paper we actually mean only its Haskell back end. The
LBNF grammar formalism has many features which are not described in
this paper (see (Forsberg and Ranta, 2003) for details).

Template Haskell and Quasi-quoters Template Haskell is a non-standard
metaprogramming extension to Haskell, first described by (Sheard and
Jones, 2002). The only compiler that currently supports the extension is
the Glasgow Haskell Compiler. The features of Template Haskell relevant
to this paper include:

• A library of datatypes for the abstract syntax of Haskell, including
types for declarations, expressions, patterns etc. We call values of
these types metaprograms.

• A language extension for “splicing” the metaprograms into Haskell
source code at compile time.

Suppose we have defined a few metaprograms (in this case simple code
fragments) in a module MyTemplates. The following program is possible:

{-# LANGUAGE TemplateHaskell #-}
import Language.Haskell.TH (Q, Dec, Exp)
import MyTemplates (myDeclarations, -- :: Q [Dec]

myExpression) -- :: Q Exp

-- Top-level Haskell declaration splice
myDeclarations

-- Expression splice
splicedExpression = $(myExpression)

In this example the expression myDeclarations is used in place of a sequence
of declarations at the top level. The compiler will evaluate it, splice in the
resulting declarations in its place and continue to compile the resulting
code. In expression contexts splices must be indicated by a $ but the idea
is the same: evaluate, splice in, re-compile. Note that the Q monad can
perform IO actions so even this simple example could potentially splice
“dynamic” code e.g. by reading a description from a file or base the par-
ticular code on the architecture of the compiling machine.

Quasi-quotes The term quasi-quotation is not used entirely consistently
in the functional programming community. In a broader linguistic setting,
the term quasi-quote was coined by W. V. Quine in 1940 as a means of for-
mally distinguishing metavariables from surrounding text. In computer
languages such as Lisp, the term quasi-quote is almost synonymous with



2. PRELIMINARIES 23

template metaprogram (Bawden, 1999) i.e. a metaprogram that may con-
tain “holes” for the programmer to fill. This type of quasi-quotes are also
in the original Template Haskell design. Understanding exactly how this
kind of quasi-quoter works is not essential for this paper, but we show a
(somewhat contrived) example of how it can be used:

sharedPair :: Q Exp→ Q Exp
sharedPair e = [ | let x = $e in (x, x) | ]

The [ | initiates the quote, which means that the Haskell code within it is
a metaprogram. The dollar sign marks holes in the metaprogram, where
e is the parameter of sharedPair. The general term for dollar sign is anti-
quotation operator, since it escapes from the quoted context into the sur-
rounding metalanguage.

The QuasiQuotes extension to Haskell, introduced in (Mainland, 2007),
offers a generalisation of quasi-quotes where any object language can reside
in a quote. The Lisp and Template Haskell quasi-quotes are the special
case where the object language is the same as the enclosing language.

These general quasi-quoters are often used to embed domain specific lan-
guages, which have an established concrete syntax. Often Haskell’s syn-
tax is enough to embed at least an approximation of the DSL as a com-
binator library. But there are cases when such approximations are not
close enough. Also combinators are not useful when pattern matching.
In both these cases, quasi-quoters enable programmers to insert program
fragments written in the concrete syntax of the DSL, and the compiler will
translate these into Haskell expressions or patterns.

Haskell quasi-quoters are functions that provide the translation from text
to code. As such they are first class citizens of the language. Since multiple
quoters can be in scope at any given quotation site, each quote is labelled
with the name of the quasi-quoter to use. If q is quasi-quoter, then we can
write the declaration x = [q | φ | ] and the compiler applies the translation
function in q to the String containing the text φ. This produces a metapro-
gram of type Q Exp which is spliced by Template Haskell, replacing the
quasi-quote. Note that this generalised type of quoters does not have a
universal anti-quotation operator like the built in Template Haskell quasi-
quoter does. Instead the programmer of each quasi-quoter must define the
syntax for anti-quotation and the proper translation of the anti-quoted text
into Haskell expressions and patterns. Many Haskell quasi-quoters don’t
support anti-quotation at all, meaning they are really only quoters (and not
actually “quasi”). In the rest of this paper we use the term quasi-quoters
to refer to any quoters regardless their anti-quotation support.



24 Embedded Parser Generators

{-# LANGUAGE QuasiQuotes, TemplateHaskell #-} 1

import Language.LBNF 2

bnfc [ lbnf | 3

RAlt. Reg1 ::= Reg1 "|" Reg2; 4

RSeq. Reg2 ::= Reg2 Reg3; 5

RStar. Reg3 ::= Reg3 "*"; 6

REps. Reg3 ::= "eps"; 7

RChar. Reg3 ::= Char; 8

. Reg ::= Reg1; 9

. Reg1 ::= Reg2; 10

. Reg2 ::= Reg3; 11

. Reg3 ::= "(" Reg ")"; 12

| ] 13

example :: Reg 14

example = RStar (RAlt (RChar ’a’) (RChar ’b’)) 15

Figure 1.1: Basic usage of the Language.LBNF module

2.1 Running example

In this section we demonstrate the use of BNFC-meta, and explain how
this differs from the original BNF Converter. Our object language repre-
sents regular expressions (it is actually a subset of the regular expression
syntax of LBNF). Henceforth we refer to this language as Reg and it is used
as a running example in the rest of the paper. The language has six syntac-
tic constructs: choice, concatenation, repetition (Kleene star), empty string
(epsilon), single characters and parentheses. These constructs all reside in
a single grammar category, that we also call Reg. Since there are infix bi-
nary operators (choice and concatenation) we need to indicate precedence
and associativity. In LBNF this is done by using indexed categories. Fig-
ure 1.1 (lines 4–12) shows the grammar of Reg, divided into three levels
of precedence indexed 1,2 and 3 (the subscripting is just for readability, in
the actual source the indices are plain text). We label the first five syntactic
constructs (RAlt, RSeq, RStar, REps and RChar). The other rules (including
the parenthesis rule) have no semantic importance and are not labelled; an
underscore is placed instead of a label to indicate this.

Note that in Figure 1.1, we have embedded the grammar into a Haskell
module using a quasi-quoter (named lbnf) and the value produced by the
quoter is passed to the metaprogram bnfc. The end result is that the code
produced by bnfc is spliced by the compiler, replacing the grammar defi-
nition. The details of this embedding are covered in §3. With the original
BNF Converter, we would need to put the grammar in a .cf file and run
the BNFC tool instead. Doing so would produce a lexer module, a parser
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module, a printing module and an abstract syntax module (each module
in a separate output file). The module we have defined, on the other hand,
can be loaded into the GHC interpreter just like any other module and the
generated tools for Reg are readily available:

Ok, modules loaded: Main.

*Main> :i Reg

data Reg = RAlt Reg Reg | RSeq Reg Reg

| RStar Reg | REps | RChar Char

instance Eq Reg

instance Ord Reg

instance Show Reg

instance Print Reg

The datatype Reg is the abstract syntax type extracted by BNFC-meta. Note
that all the indices are ignored for the purpose of building the AST types,
so the different levels of precedence are not reflected here. As shown in
Figure 1.1 we can also write code that uses this abstract syntax directly
in the module (in the definition of example). The Print instance for Reg
(indicated above) provides a pretty printer:

*Main> printTree example

"(’a’ | ’b’)*"

There is also a lexer for the grammar and a parser for each category. The
name of the parser is the name of the category prefixed by the letter p and
the name of the lexer is tokens:

*Main> pReg (tokens "’a’ | ’b’ *")

Ok (RAlt (RChar ’a’) (RStar (RChar ’b’)))

Quoters for free Apart from the embedding itself, the major addition in
BNFC-meta compared to the original BNFC is the automatic generation of
quasi-quoters. This feature generates a quasi-quoter for each category of
the grammar (the name of the quasi-quoter is the name of the category,
but with initial lowercase, so in our example we have a quoter named reg).
Abstract values in the language may thus be specified using the concrete
syntax. Because of the Template Haskell stage restrictions, we can not
use the quasi-quoters directly in the same module. But if we import the
module in which we defined the grammar we can write code like this:

r1, r2 :: Reg
r1 = [reg | ’a’ ∗ ’b’ ∗ ’c’∗ | ]
r2 = RSeq (RSeq (RStar (RChar ’a’))

(RStar (RChar ’b’)))
(RStar (RChar ’c’))
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Here r1 and r2 are exactly equal, but r1 is defined using concrete syntax
whereas r2 uses abstract. Note that the parsing of the regular expression
syntax occurs at compile time, so there is no run time overhead and no
risk of run time errors.

Anti-quoting We can also generate patterns with the reg quoter:

isEps1, isEps2 :: Reg→ Bool
isEps1 [reg | eps | ] = True
isEps1 = False

isEps2 REps = True
isEps2 = False

As you can see the beautification we saw in the expression example is
absent here, in fact the value of using a quoter at all for this function is
very questionable. The reason for this is that we can only generate closed
expressions or patterns with the reg quoter, so we can only build constant
patterns that do not bind any variables. It is difficult to think of a useful
constant pattern which is more advanced than the one in isEps. In fact we
cannot even make a corresponding function that checks if the argument is
a choice (RAlt) without binding variables.

To express patterns with variable bindings, or expressions that use vari-
ables, there needs to be a facility to inject Haskell code into the generated
expressions. In other words we need to extend the quasi-quoters with
anti-quoting. To add anti-quoting to Reg we need to determine a syntax
which does not clash with our other syntactic constructs. For instance we
can use % as the anti-quoting operator for single identifiers, so that %x
is translated into the Haskell identifier x. In a pattern context this means
that x becomes bound to a value, and in an expression context it references
which ever x is in scope at the quotation site. This anti-quotation allows
definitions like these:

plus :: Reg→ Reg
plus r = [reg | %r %r∗| ]
xs :: Reg
xs = plus [reg | ’x’ | ]

where xs evaluates to the abstract syntax of the Reg expression ’x’ ’x’∗.
To express anti-quotation in the grammar, we introduce a special label for
grammar rules in BNFC-meta: $. We can use this together with the built
in Ident category1 to add anti-quotation to Reg:

$. Reg3 ::= "%" Ident;

1Ident is a predefined LBNF-category for identifiers. We could also roll our own identifiers
or use any other category to syntactically define allowed Haskell expressions.
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Grammar

LBNF Parser

Code Generator

Quasi-quoter (lbnf)

Metaprogram (bnfc)

Parser

trans

BNFC BNFC-meta

Figure 1.2: A comparative overview of BNFC and BNFC-meta. The anno-
tation trans indicates programmer defined transformations

This adds exactly the anti-quotation mode we want to the Reg parser and
the example above works as intended. Replacing the label with the dollar
sign indicates to BNFC-meta that this is an anti-quotation rule. When
the quasi-quoter parses using this rule, the concrete syntax of the Ident is
sent to a Haskell parser and the resulting expression (or pattern) is used
instead of an abstract syntax expression. Adding this anti-quotation does
not change the parser pReg nor does it change the abstract syntax type Reg.

3 Embedding BNFC

This section discusses the process of elevating BNFC from a command line
tool into a metaprogram, and the advantages of doing so. We also show
that the process can be generalised and applied to any tool that satisfies
certain criteria. Figure 1.2 gives an overview of the basic changes in BNFC-
meta compared to BNFC. The benefits of embedding BNFC into Haskell
are:

• Libraries that use BNFC-meta do not depend on any installed appli-
cations other than the Haskell compiler, hence they do not require
custom install scripts. An alternative way to achieve this is to in-
clude the BNFC-generated code in the library; but that is generally
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bad practice because it makes the source more difficult to under-
stand and it invites collaborators to edit the generated code directly,
as opposed to properly changing the source grammar.

• Like with any other embedding, the features of the host language
(Haskell) are available to the embedded one. Since the Grammar type
is exported by Language.LBNF it is possible to write functions that
combine, manipulate or analyse grammars at compile time, before
they are spliced by the bnfc function.

While the importance of the first feature should not be underestimated, it
has no groundbreaking impact on the process of defining languages. The
second one has more substantial benefits and is the focus of the remainder
of this section.

3.1 Parser generators and combinators

Traditionally, parser generators are the dominating software tools for defin-
ing parsers. Most parser generators use some domain specific language
for defining grammars, and from such definitions they produce a much
more verbose parser implementation in a particular language (the target
language). Sometimes a parser generator can use the same grammar to
generate parsers in several different target languages. Parser generators
can also generate other useful language tools such as pretty-printers and
abstract syntax tree types, if the grammar DSL carries enough information
(Ranta, 2004; Forsberg and Ranta, 2003).

In functional programming there is a compelling alternative to parser gen-
erators, known as parser combinators. Here the grammar DSL is em-
bedded in the target language, using ordinary language features such as
higher order functions to construct parsers by combining simpler ones.
Major advantages of parser combinators include the familiarity to the pro-
grammer (the parser is written in the same language as the code that uses
it) and the comfort with which parsers can be developed (no need to gen-
erate code between test-runs). Also all the features of the target language
are available when defining the parsers so general patterns for eliminating
code duplication can be applied, which might not be possible in a stand-
alone grammar DSL. But parser combinators also have several downsides
compared to parser generators:

• A parser generator (especially one that is limited to context free ob-
ject languages) can analyse grammars and detect ambiguities and
other anomalies statically. With parser combinators these errors are
either detected at runtime, or not detected at all (resulting in unpre-
dictable behaviour).
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• Combinator parsing has generally lower performance compared to
parser generators, often relying heavily on backtracking or requiring
the user to perform manual optimisations.

• Since combinator libraries usually rely on the recursion mechanism
of the target language, they typically can’t deal with left recursive
grammars (which causes an infinite expansion and subsequently fail-
ure to terminate). Most grammars for real object languages rely on
left recursion at some point, but any grammar with left recursion
can be rewritten into an equivalent form without it (Moore, 2000).
The rewriting might not be obvious though, and may impair the
readability of the grammar considerably.

• Sometimes parser combinator libraries have a significant syntactic
overhead compared to the streamlined grammar DSLs used by parser
generators.

While BNFC-meta is definitely a parser generator (the parsers are gener-
ated Haskell code), it has several of the advantages of parser combinators.
Like parser combinators it is available as a library instead of an appli-
cation, thus it does not require any other tools than the compiler. More
importantly, grammars are almost first class citizens of the target language
(Haskell). We write almost first class because the grammars are only val-
ues at compile time, and sometimes this kind of values are referred to as
second class citizens. This means that users can apply arbitrary Haskell
functions to the grammar after parsing it with lbnf but before splicing it
with bnfc. In Figure 1.2 this is indicated by the “trans” annotation in the
flow chart. In practice this means you can write code like this:

import OtherModule (f) -- f :: Grammar→ Grammar

bnfc (f [ lbnf | Γ | ])

The Template Haskell stage restrictions prevent f from being defined (at
top level) in the same module as the splice. Note that f is evaluated at
compile time so if it fails then a compile time error is raised (see §4.4 for
a discussion on error messages). In this case the type of f indicates that
it is a grammar transformer but one could also have functions that do not
take an existing grammar as an argument (i.e. constant grammars) or one
that takes some other parameter like a list of operators and constructs a
grammar from that (i.e. parameterised grammars).

Example: grammar reuse In the original BNF Converter, the only way
to extend an existing grammar is to copy the file and add the required
rules. This procedure is very pervasive from a maintenance perspective.
In BNFC-meta on the other hand, grammars are Haskell values (at com-
pile time) and can thus be manipulated using all the features of Haskell
(including a rich module system).
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module RegexGrammars where
import Language.LBNF
import Language.LBNF.Grammar

combine :: Grammar→ Grammar→ Grammar
combine (Grammar i) (Grammar j) = Grammar (i ++ j)

minimal, extended :: Grammar
minimal = [ lbnf |

RAlt. Reg1 ::= Reg1 "|" Reg2;
RSeq. Reg2 ::= Reg2 Reg3;
RStar. Reg3 ::= Reg3 "*";
REps. Reg3 ::= "eps";
RChar. Reg3 ::= Char;

.Reg ::= Reg1;

.Reg1 ::= Reg2;

.Reg2 ::= Reg3;

.Reg3 ::= "(" Reg ")";
| ]

extended = combine minimal [ lbnf |
RPlus. Reg3 ::= Reg3 "+";
ROpt. Reg3 ::= Reg3 "?";
| ]

Figure 1.3: Grammar reuse
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Suppose that we want to create an extended version of our Reg grammar
(from Figure 1.1) that has the postfix operators + (non empty repetition)
and ? (optional). First we factor the grammar out of the module in which
it is defined into a new module. Then, instead of applying bnfc to the
grammar, we give it a top level name. Thus bnfc [ lbnf | Γ | ] becomes
minimal = [ lbnf | Γ | ]. The type of minimal is Grammar which is just a
wrapper around a list of grammar rules. Figure 1.3 demonstrates how we
exploit this fact to create a crude function for combining two grammars,
and how this function is used to define the extended grammar in terms of
the original one.

The extended parser is defined by importing RegexGrammars and splicing
in bnfc extended. If we still want to use the original language we can splice
bnfc minimal. Both languages can not be spliced into the same module
however, since they define datatypes and values with overlapping names.
In §4 we will come back to the combine function to add anti-quotation
support to our extended grammar (see Figure 1.5).

3.2 A general method for embedding compilers

The principle behind the embedding is remarkably simple. Like most com-
pilers BNFC has two distinct components:

• A front end, corresponding to a function of type String → Grammar,
where the string is the grammar written by the user (the concrete
syntax) which is parsed into a value of type Grammar (an abstract
syntax tree).

• Several back ends, each producing a parser written in a specific pro-
gramming language. The Haskell back end can (somewhat simpli-
fied) be thought of as a function Grammar → String which takes the
grammar of the parser and produces concrete Haskell syntax.

Conveniently, the front end corresponds exactly to the lbnf quasi-quoter.
All that is needed to construct lbnf is a function that converts a Grammar
into a Haskell expression of type ExpQ, such that the expression evaluates
to the given grammar value. The function is trivial but a bit verbose. One
method of doing this automatically for any type (using generic program-
ming) was presented by Mainland (2007).

Likewise, the back end corresponds exactly to the bnfc function. The only
difference is that BNFC produces concrete Haskell syntax (String) whereas
we need abstract syntax (DecsQ). The quickest way of coding this conver-
sion from concrete to abstract syntax is to plug in a Haskell parser. A more
elegant way might be to alter the BNFC back end.

This simple technique can be generalised to embed any compiler under
the conditions that 1) the target language of the compiler is Haskell and
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2) the compiler is implemented in Haskell. The first requirement enables
Template Haskell to splice the resulting code into a Haskell module. The
second requirement means that the code from the original application can
be put directly into a library. Note that it is not required to have sep-
arated front and back-ends. If the application only provides a function
α :: String→ String we can just consider the abstract syntax tree type to be
String. The front end quoter may then be built from the identity function,
and the back end may be built from α. If we have no distinction between
front and back ends we do not get the programmer defined transformation
however (since these are applied after front end processing but before back
end processing).

Embedding BNFC and friends In practice it proved complicated to use
the general method for BNFC because the back end does not only produce
Haskell code. BNFC also produces intermediate code for the Happy parser
generator and the Alex lexer generator, violating the first condition for
applying our method. When using BNFC this means that after processing
your grammar with BNFC, you will need to process parts of the output
with Happy and parts of it with Alex. This is not desirable in a library
setting, especially since avoiding external software is one of the perks of
the embedding.

The generality of our approach enabled us to overcome this problem, by
embedding Alex and Happy in much the same way as we embedded
BNFC. Alex and Happy 1) both produce Haskell code and 2) are both
written in Haskell, so they satisfy the criteria for embedding. The result of
applying the embedding method to these programs are two new libraries:
happy-meta and alex-meta. Similar to BNFC-meta, these libraries allow
users to write Happy and Alex syntax directly into Haskell modules us-
ing quasi-quoters, and splice the result into the module using Template
Haskell. As a by-product, they provide the functions necessary to adapt
BNFC to the first condition (by composing the back end of BNFC with the
front ends of Alex and Happy). Although we used the “quick and dirty”
approach (parsing code we have generated ourselves) this is only a perfor-
mance issue at compile time, the produced code is essentially identical to
the code produced by the original tools. We have made the three result-
ing libraries (BNFC-meta, happy-meta and alex-meta) available through
Hackage.

4 Quasi-quoters

In this section we explain in more detail how the quasi-quoters are gener-
ated by BNFC-meta and what separates them from previous methods of
specifying quasi-quoters.
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4.1 Where do quoters come from?

All quasi-quoters, like reg and lbnf, are of the type QuasiQuoter which is a
record type containing at least an expression and a pattern quoter (recent
versions of the Template Haskell library also include type and declaration
quoters).

data QuasiQuoter = QuasiQuoter
{quoteExp :: String→ Q Exp
, quotePat :: String→ Q Pat
}

The quote [q | φ | ] is equivalent to splicing the expression produced by
quoteExp q φ if the quote is in an expression context, or quotePat q φ in a
pattern context. To explain the basic quoters (that only generate abstract
syntax trees) we can restrict ourselves to this tiny subset of the Template
Haskell library API:

mkName :: String→ Name

data Exp
= ConE Name -- Constructors
| AppE Exp Exp -- Application
| LitE Lit
| ...

data Pat
= ConP Name [Pat ] -- Constructor application
| LitP Lit
| ...

data Lit = CharL Char | ...

With these definitions we can simply “lift” a parsed value into an expres-
sion that evaluates back to the given value, or a pattern that matches only
the given value. For instance "’a’" is parsed to RChar ’a’, which as an
expression is

AppE (ConE (mkName "RChar")) (LitE (CharL ’a’))

and as a pattern

ConP (mkName "RChar") [LitP (CharL ’a’) ]

Lifting values in this way is a completely mechanical task, and Mainland
(2007) defines datatype generic functions that perform the lift automati-
cally (for any AST type that is a member of the Data typeclass).
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Figure 1.4: A comparative overview of BNFC and BNFC-meta. Dashed
lines indicate bootstrapping capability

4.2 Anti-quoting

The obvious use of anti-quotation in our Reg example is to allow any
subexpression to be replaced by a snippet of Haskell code. In our example
in §2.1 we introduced a quasi-quoting operator for single identifiers. For
this example we choose to allow a slightly larger subset of Haskell, with
function applications and identifiers in the anti-quoted expressions. We
encapsulate all anti-quoted code in curly brackets. This allows us to write
expressions like [reg | { f r}∗| ] that translate into RStar (f r).

The standard method for adding anti-quoting was introduced by Main-
land (2007). The method consists of changing the parser of the language
to support the anti-quoting syntax, and then using the same kind of lift-
ing from values to metaprograms as we do for the basic quoters. In our
case this would mean changing the grammar in much the same way as in
our earlier anti-quoting example (in §2.1), but without using the special
anti-quoting label:

RegAQ. Reg3 ::= "{" [ Ident ] "}";

Now we can parse Regs with anti-quoted code, but there are two problems:

• When lifting parsed values to expressions or patterns we must add
a special case for the constructor RegAQ. These values should not be
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lifted, instead the list of Idents should be translated into a function
application (or a constructor application in a pattern context).

• The abstract syntax for Reg now contains a constructor that can hold
Haskell expressions. Functions that operate on the Reg type must
now assume that this constructor is never used at run time, or handle
it appropriately if it does.

The first issue is solved by Mainland (2007) by extending the generic lifting
functions with type-specific exceptions for anti-quoting. The second issue
is more difficult. Without access to open datatypes there is no way of
reusing the abstract syntax and parser without compromising type safety.

In BNFC-meta we solve this issue by generating two parsers from each
grammar category. One for run time parsing directly to a specific AST
type (pReg in our example) and one for compile time parsing to a generic
QuasiAST datatype (named qReg in our example). The vital part of the
type is defined like this:

data QuasiAST
= AstConApp Name [QuasiAST ] -- Constructor app.
| AstLit Lit -- Litteral values
| AstAnti (Q Exp) (Q Pat) -- Anti-quotation

This is essentially a common subset of the Exp and Pat types, and it can
be converted into either. Since BNFC-meta only generates abstract syntax
types, the first two constructors are sufficient to express any expression
or pattern that we may generate with the basic quoters. The AstAnti con-
structor allows the injection of arbitrary code by supplying it both as a
pattern and an expression (although only one of these are evaluated de-
pending on the context of the quote). When our grammar is compiled,
qReg :: String→ QuasiAST is automatically generated. It is trivial to define
a function toQuoter :: (String → QuasiAST) → QuasiQuoter, and this gives
us the definition of the quoter for the Reg category: reg = toQuoter qReg.

Now we can explain the semantics of the special anti-quoting label ($). As
before, just replacing the label of our rule will magically do what we want:

$ . Reg3 ::= "{" [ Ident ] "}";

More generally, the $ is followed by an optional identifier and omitting the
identifier as above is equivalent to this:

$ printAq. Reg3 ::= ...

The identifier must be a function of type ∆1 ... ∆n → QuasiAST where ∆k is
the AST type of the k:th non terminal in the right hand side of the rule (so
in our case [ Ident ]→ QuasiAST). The function has much the same purpose
as the type specific exceptions in the generic programming approach from
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topdown :: (Reg→ Reg)→ Reg→ Reg
topdown f rx = case f rx of
[reg | %e1 % e2 | ]→ [reg | {r e1} {r e2} | ]
[reg | %e1 | % e2 | ]→ [reg | {r e1} | {r e2} | ]
[reg | %e1 ∗ | ]→ [reg | {r e1} ∗ | ]
[reg | %e1 + | ]→ [reg | {r e1}+ | ]
[reg | %e1 ? | ]→ [reg | {r e1} ? | ]
e → e
where r = topdown f

transform :: Reg→ Reg
transform = topdown step where

step rx = case rx of
[reg | %e | eps | ]→ [reg | %e ? | ]
[reg | %e1 % e2 ∗ | ]
| e1 ≡ e2 → [reg | %e1 + | ]
| otherwise → rx

e → e

Figure 1.5: Implementing a program transformation on regular expres-
sions

Mainland (2007), it specifies how a parsed value can be translated into
Haskell code. The difference here is that the [ Ident ] is never placed in the
abstract syntax tree, which means that the abstract syntax type Reg and
the original parser pReg are totally unaffected by the introduction of the
anti-quotation syntax.

The default anti-quotation function takes the result of pretty printing the
non-terminal on the right hand side, and parses it with a Haskell parser:

printAq :: Print a⇒ a→ QuasiAST
printAq = stringAq ◦ printTree

stringAq :: String→ QuasiAST
stringAq s = AstAnti (parseExp s) (parsePat s)

Although we use a very restricted subset of Haskell in this example we
could just as well accept a superset, e.g. by defining a grammar category
for strings starting with ’{’ and ending with ’}’. Defining this category
in LBNF involves making a custom lexical token, which we do not cover
in this paper. Using a Haskell superset also moves some syntax error
handling from our parser to the Haskell parser used for anti-quotes.

In Figure 1.5 we use both our anti-quotation operators to 1) define a gen-
eral top-down traversal function on regexps and 2) use the function to
transform regular expressions that do not make use of + and ? into equiv-
alent ones that do. Note that the entire module is written without as-
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suming anything about the abstract syntax other than the existence of a
category named Reg. Thus, the names of constructors and other grammar
details can be freely changed as long as the concrete syntax remains the
same. This appeals to the saying that concrete syntax is more abstract than
abstract syntax.

Bootstrapping The original BNF Converter is bootstrapped, “eating its
own dog food”. By this we mean that it generates its own front end: the
syntax of LBNF is specified as an LBNF grammar, and feeding this gram-
mar to BNFC produces the front end modules of the BNFC implementa-
tion. The addition of automatically generated quasi-quoters preserves this
property2: the quasi-quoter lbnf can be automatically generated by pro-
cessing the grammar for LBNF in BNFC-meta. Just like BNFC can generate
a complete front end for a traditional compiler, BNFC-meta can generate a
front end for an embedded one. Figure 1.4 shows a comparison between
the components of BNFC and BNFC-meta, and the dotted lines indicate
the bootstrapping capacity of each.

4.3 Example: Monadic quoters

A very frequent situation when dealing with abstract syntax is to traverse
a syntax tree in a monadic computation, e.g. carrying an environment or a
state. In a non-monadic setting we can define a recursive case of a trans-
formation on Reg in a simple way:

transform :: Reg→ Reg
transform [reg | {r1} {r2} | ] = [reg | {transform r1} {transform r2} | ]

If we carry an environment the transformation becomes much more ver-
bose, and we can not make use of the fact that we allow function applica-
tion in anti-quotes:

transform :: Reg→ Env Reg
transform [reg | {r1} {r2} | ] = do

r′1 ← transform r1
r′2 ← transform r2
return [reg | {r′1} {r′2} | ]

The problem here is that an expression such as λr → [reg | {r}∗| ] has
type Reg → Reg but we want to lift it to Monad m ⇒ m Reg → m Reg. In
general it is not possible to lift a given quasi-quoter like this because we can
not separate the monadic components from non-monadic in the resulting

2The concept of bootstrapping is slightly misleading in a library context, since libraries
cannot depend on previous versions of themselves. In BNFC-meta this is solved by adding a
small bootstrapping utility that flushes the produced code into a file instead of splicing it.
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expression. The QuasiAST type on the other hand, supplies exactly this
distinction: all the anti-quoted values are monadic and the rest are non-
monadic. A completely generic function for building monadic quoters
can be written as follows (note that the monadic nature of the code is not
reflected in the type signatures here, the change is only in the type of the
generated code):

toMonQuoter :: (String→ QuasiAST)→ QuasiQuoter
toMonQuoter f = QuasiQuoter {

quoteExp = toMonExp ◦ f, -- Monadic expr. lifting
quotePat = toPat ◦ f -- Ordinary pattern lifting
}

toMonExp :: QuasiAST→ Q Exp
toMonExp q = case q of

AstConApp con qs→ foldl mAppE
(returnE (conE con))
(map toMonExp qs)

AstAnti e → e -- We assume e is monadic
AstLit l → returnE (litE l)

returnE :: Q Exp→ Q Exp
returnE e = [ | return ($e) | ]

-- Monadic function application
mAppE :: Q Exp→ Q Exp→ Q Exp
mAppE mf ma = [ | ($mf)>>= flip liftM ($ma) | ]

We can now define mReg = toMonQuoter qReg and the new quoter mReg
has exactly the property we needed.

4.4 Error handling

Using metaprogramming in general, and quasi-quoters in particular, adds
a new dimension to compile time error handling. There are no problems
with errors “slipping through” to run time: all parsing is performed at
compile time and the generated code is type checked after it is spliced.
What can be problematic is the precision of the error messages, with re-
gards to source location. The compiler will automatically indicate which
quasi-quote the error occurred in, anything beyond that has to be provided
by the programmer of the quasi-quoter. Because BNFC uses the Alex lexer
generator, source locations are already included in the lexer result. This
means that when a syntax error occurs, BNFC-meta quasi-quoters can au-
tomatically present accurate source locations and show the concrete syntax
of the code that causes the error.

The situation is worse for type errors. With the basic quoters type errors
can not occur unless there is a bug in BNFC-meta. In the presence of anti-
quoting however, the user is free to introduce any imaginable type errors in
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the generated code. BNFC-meta has little control over the error messages
in these situations, and they will be presented without an accurate source
position and in terms of the generated code. As an example, consider the
monadic quoters we introduced in §4.3. It relies on the type inference sys-
tem to determine which monad to use. A constant value is polymorphic:
[mReg | eps | ] :: Monad m ⇒ m Reg. When anti-quoting the monad type
is determined by the type of the anti-quoted code. If non-monadic code is
accidentally used, a no-instance error arises and the error message informs
us that it occurs in the second argument of >>=, leaking the generated code
to the user. This is a problem for quasi-quoters in general and not specific
to BNFC-meta.

5 Performance and scalability

This section provides some examples and experimental results. All tests
where performed on a 3.0 GHz Intel Xeon processor. Version 6.12.1 of the
Glasgow Haskell Compiler was used, with optimisation level -O2.

5.1 Performance analysis

When using the quasi-quoters generated by BNFC-meta, performance is
not a major issue (since the parsers are only used at compile time, when
quasi-quotes are resolved). For applications that use the parsers at runtime
there may be some requirements though. Since BNFC-meta is based on
Alex and Happy the performance should be comparable to that of hand
written parsers using them, which is usually considered good.

There are not many reliable performance comparisons between parser gen-
erators and parser combinators, possibly because it is difficult to make a
fair comparison when the choice of object language and the amount of
work put into each parser is very relevant to end performance. The general
understanding seems to be that parser generators are faster. Parsec (Leijen
and Meijer, 2001) is considered a fast parser combinator library and it is
seeing heavy use in the Haskell community.

For this reason we decided to compare the performance of Parsec and
BNFC-meta. In order to avoid bias in the choice of object language or im-
plementation of the Parsec parser we decided to use an existing one and
write an equivalent LBNF grammar for comparison. There are a num-
ber of examples included in the distribution of Parsec 2, some of them
where excluded because they do not have context free syntax and as such
can not be implemented in BNFC-meta. From the remaining, the largest
example language was chosen and it proved to be a language called Mon-
drian. The source code for the Parsec parser (and abstract syntax) is a few
hundred lines of Haskell code and the BNFC-meta implementation we
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Figure 1.6: Average CPU usage when parsing a Mondrian file

wrote is around 50 lines of Haskell/LBNF code. The two implementations
were considered “similar enough” to be comparable when the BNFC-meta
parser could parse all the examples that the Parsec parser could, and the
level of detail of the abstract syntax types seemed equivalent in a quick
inspection. Figure 1.6 shows the relative CPU time usage. The times are
measured using the criterion benchmark tool. A very large Mondrian file
(1 MB) was used in the test to ensure measurable time consumption. Ini-
tially we speculated that the time difference was caused by a difference in
memory usage and specifically by garbage collection (GC), but this was
not confirmed by measurements which showed only a slightly increased
GC activity for Parsec.

Compilation time Since BNFC-meta does compile time calculations it
is reasonable to assume that the compilation time should be somewhat
greater than for Parsec. Also the amount of code that BNFC-meta produces
can be quite big and the compiler needs to process and optimise it, which
could increase compilation times further. This hypothesis is confirmed by
our test results (see Figure 1.7), with the BNFC-meta parser taking twice
as long to compile as the Parsec one.
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Figure 1.7: Compilation time of a Mondrian parser

5.2 Expressiveness

When comparing to flexible parser generators and combinator libraries
such as Parsec and hand written Alex+Happy code it is important to note
that BNFC-meta is limited to defining the same set of object languages as
the original BNFC. This set is essentially all context-free languages and
some context sensitive extensions like a limited kind of layout syntax (by
automatic preprocessing). This means that it is difficult to capture many
real world languages exactly using LBNF.

The fact that BNFC generates a lexer automatically and that this lexer does
not distinguish newlines from white spaces imposes some further restric-
tions. Specifically it is not trivial to implement object languages with sig-
nificant newline characters, which is a common feature. In principle it
should be possible to give the user stronger control over the lexer without
sacrificing the simplicity in cases where this is not needed. In spite of these
limitations LBNF is not limited to “toy languages”, as we will demonstrate
below.

5.3 A large scale example

In order to fit a complete definition, the running example in this article is
very simple (only a single grammar category Reg). Nonetheless, the appli-
cations can scale up to fully equipped real world languages. To demon-
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strate this, we applied BNFC-meta to the grammar of (pre-processed) ANSI
C available from the BNFC webpage. The grammar is roughly 250 LBNF
rules so the module is too large to include in this paper, but not much
larger than an average Haskell module. By default BNFC-meta generates
quasi-quoters for all entry point categories (or for all categories if no entry
point is specified in the grammar). In this case it means we are given quasi-
quoters for C programs, statements and expressions. Using the program
quoter we can define a C program using concrete syntax:

p :: Program
p = [program |
int main () {

printf ("Hello World");
return 0;
}
| ]

The “least pretty equivalent” to this definition (which only uses the ab-
stract syntax constructors) looks like this:

p :: Program
p = Progr [Afunc (NewFunc [Type Tint ] (NoPointer
(OldFuncDec (Name (Ident "main")))) (ScompTwo
[ExprS (SexprTwo (Efunkpar (Evar (Ident "printf"))
[Estring "Hello World" ])), JumpS (SjumpFive
(Econst (Eoctal (Octal "0")))) ])) ]

Anti-quoting There is an existing open source quasi-quoter library for
C, called language-c-quote (Mainland, 2009). It offers a kind of “typed”
anti-quotation where expressions like

[cexp | $int : a + $exp : b | ]

means that a and b must be Haskell identifiers. Furthermore a must be an
integer (i.e. of type Int) and b must be a C expression (i.e. of the same type
as the quote).

We want to add a more liberal quotation syntax that allows more advanced
Haskell expressions (not just single identifiers) in the quotes. We chose to
have two anti-quotation modes for each category:

• An explicitly typed mode where [C : h: ] is a member of the category C
for any Haskell expression h of type C (h may not contain the string
":]" and may not contain nested quasi-quotes). Note the syntactic
similarity with quasi-quoters.
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import C

zeroFill :: Integer→ [ Ident ]→ Stm
zeroFill n arrs = [stm |
{

int tmp;
for (tmp = 0; tmp < [ Integer : n: ]; tmp++) {
[ :map zeroOneSlot arrs: ]
}
}
| ]

zeroOneSlot :: Ident→ Stm
zeroOneSlot arr = [stm |
[ Ident : arr: ] [tmp ] = 0;
| ]

Figure 1.8: Using the C grammar with anti-quoting

• An implicitly typed mode where the category name is dropped mean-
ing [ :h: ] is a member of all categories.

Figure 1.8 demonstrates how these are used to define a program that is
parameterised over an array length n and a list of identifiers (names of
arrays), such that the produced C program fills each array with n zeroes.
Note that the program deals only with the abstract syntax of C at run-
time, so the Haskell type system statically guarantees that the program
will produce syntactically correct code independent of the arguments to
zeroFill. The second anti-quotation mode is controversial because it in-
troduces massive ambiguities in the grammar. For instance if we have a
quasi-quoted C statement [stm | [ :h: ] | ] then the anti-quote may refer to
a statement, an expression or even an integer. The decision is made by
the parser generator (automatically resolving ambiguities) but the user is
warned of the ambiguities. In most cases assuming the wrong category
will simply incur a type error, but if h is polymorphic there may be seri-
ous problems. One solution is to avoid the implicitly typed mode if the
expression is polymorphic.

Observe that we describe the anti-quotation without mentioning that C is
our object language. In fact this description of anti-quotation is expressed
only in general terms of the existing grammar categories and as such it
can be applied to any grammar. This has a tremendous potential for code
reuse: instead of adding this mode of anti-quotation to the C grammar
(and write a hundred or so grammar rules by hand) we can define a gram-
mar transformation that adds this anti-quotation mode to any grammar.
We can even parameterise the grammar transformation over the exact syn-
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tax of the anti-quotes; how quotes are initiated, what delimits the optional
category name from the Haskell expression and how quotes are ended.
The grammar transformation is thus a function:

antiquote :: String→ String→ String→ Grammar→ Grammar

And to add the desired anti-quotation to the C grammar we simply in-
terpose this function between the quasi-quoter front end and the splicing
back-end:

bnfc $ antiquote "[" ":" ":]" $ [ lbnf |
... the C Grammar ...
| ]

5.4 Implementing a general anti-quotation mode

The implementation of antiquote adds two things to the grammar: a lexical
token (which is a grammar category built from a regular expression) and
two anti-quotation rules for each category. The individual rules contain the
start string "[" and optionally the name of the category, the token matches
the delimiter ":" an arbitrary string and the ending string ":]". The LBNF
rules for a single category C looks something like this:

$ g ::= "[C" AntiQuotingToken;
$ f ::= "[" AntiQuotingToken;

where AntiQuotingToken is the shared anti-quotation token. The functions
g and f need to do the appropriate pruning of the matched string before
the Haskell expression is parsed. Defining these rules is a simple task of
collecting the categories of the original grammar, defining a set of new
rules from these and adding this set to the original grammar.

While we would not go so far as to say that the generated quasi-quoters
are identical to the ones provided by the language-c-quote library (such
an analysis would not be practical), they are certainly quite similar. The
most striking difference is the simplicity of the BNFC-meta implementa-
tion. Where language-c-quote has several hundred or even a few thou-
sand lines of code, our implementation has a single Haskell source file
with a readable and syntax-directed grammar definition. We also obtain
a reusable pattern for anti-quoting and even for this single example the
definition of this reusable pattern is shorter than the manual changes we
would otherwise have needed.

6 Discussion

The closest predecessor to our work is the Quasi-quoting paper by Main-
land (2007) where he gives the basic infrastructure to support user-defined
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generalized quasi-quoting in GHC. We build on this work by demonstrat-
ing how essential quasi-quotation is when converting a utility program (in
our case BNFC, Alex and Happy) to a metaprogram because it allows the
syntax of the original tool to be preserved completely. We also show that
limiting quoters to generate ASTs of context free languages has several
advantages over the general quoters:

• They can be given general anti-quotation operators.

• They can be transformed into variant quoters, including but not lim-
ited to monadic quoters.

We derive much of the strength of our tool from the implementation of the
BNF Converter (Forsberg and Ranta, 2003). We internalise BNFC (+ Happy
and Alex for parsing and lexing) and add general support for anti-quoting.

In his recent tutorial on combinator parsing Swierstra (2009) writes “Parser
combinators occupy a unique place in the field of parsing: they make
it possible to write expressions which look like grammars, but actually
describe parsers for these grammars.” In this paper we retain this property
but also allow “off-line” parser generators to be used at compile time.

There is a long history of metaprogramming in the Lisp and Scheme com-
munity, starting already in the sixties. Twenty years ago META for Com-
mon Lisp used metaprogramming to construct parsers (Baker, 1991). The
more recent survey of lexer and parser generators in Scheme (Owens et al.,
2004) shows several examples and cites several Scheme-based generators.

From the C++ world, Spirit (Guzman and Kaiser, 2011) is a set of libraries
(part of The Boost Initiative (2009)) that can build recursive descent parsers,
using an embedded grammar DSL. It uses template metaprogramming to
generate parsers.

The comparison of DSL implementations by (Czarnecki et al., 2003) looks
at the meta-programming support of MetaOCaml, Template Haskell, and
C++. All of those systems have the meta-programming strength to sup-
port compile time parser generation, but currently only Template Haskell
supports quasi-quoting.

There are several attempts at bridging the gap between parser genera-
tors and combinators by improving combinator libraries. Devriese and
Piessens (2011) attempt to limit the problems related to left recursive gram-
mars in parser combinator libraries. They use Template Haskell to perform
some grammar transformation at compile time. In (Rendel and Oster-
mann, 2010) a technique for getting “pretty-printers for free” from a parser
combinator library is described.
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6.1 Future work

While working on BNFC-meta we have found several interesting directions
for future work. One direction is to work closely on the interface to and the
implementation of Template Haskell. Here we would like to allow more
control over error messages, especially when the following static checks on
the generated code fail. We have also seen the need for generating not just
declaration lists, but also module headers, including import and export
lists. This would be helpful to avoid exporting some “junk” datatypes
produced by Happy. Currently the only way to avoid polluting the name
space of the module is to generate definitions in local where or let blocks,
which is bad for error messages. Also we are not sure if the compiler
responds well to a two-thousand-lines where-clause.

It might be interesting to make a more thorough performance analysis of
BNFC-meta and a more conclusive comparison to other parsing frame-
works.

Another direction we aim to pursue is to apply BNFC-meta to ongoing
DSL projects (the Feldspar (Axelsson et al., 2010) backend, GPGPU pro-
gramming with Obsidian (Svensson, Claessen, and Sheeran, 2010), lan-
guage based security, etc.)

Finally we would also like to embed more libraries and tools in the same
way as BNFC, Happy and Alex: candidates include the dependently typed
language Agda and the Foreign Function Interface tool hsc2hs.

6.2 Conclusions

We use metaprogramming both to embed parser generators and to gener-
ate embedded parsers. There is a natural connection between these tasks:
the latter provide a suitable front end for the first. This is evident from the
bootstrapping ability of BNFC-meta.

As far as we know, BNFC-meta is the only system that provides both em-
bedded parser generation and generation of embedded parsers in a single
library.



Paper II

Feat: Functional Enumeration of Algebraic Types

This chapter is an extended version of a paper originally published in the
proceedings of the 2012 Haskell Symposium under the same title.
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Feat: Functional Enumeration of Algebraic Types

Jonas Duregård, Patrik Jansson, Meng Wang
Abstract

In mathematics, an enumeration of a set S is a bijective function from
(an initial segment of) the natural numbers to S. We define “functional
enumerations” as efficiently computable such bijections. This paper
describes a theory of functional enumeration and provides an algebra
of enumerations closed under sums, products, guarded recursion and
bijections. We partition each enumerated set into numbered, finite
subsets.

We provide a generic enumeration such that the number of each
part corresponds to the size of its values (measured in the number
of constructors). We implement our ideas in a Haskell library called
testing-feat, and make the source code freely available. Feat pro-
vides efficient “random access” to enumerated values. The primary
application is property-based testing, where it is used to define both
random sampling (for example QuickCheck generators) and exhaus-
tive enumeration (in the style of SmallCheck). We claim that functional
enumeration is the best option for automatically generating test cases
from large groups of mutually recursive syntax tree types. As a case
study we use Feat to test the pretty-printer of the Template Haskell
library (uncovering several bugs).

1 Introduction

Enumeration is used to mean many different things in different contexts.
Looking only at the Enum class of Haskell we can see two distinct views:
the list view and the function view. In the list view succ and pred let us
move forward or backward in a list of the form [start . . end ]. In the func-
tion view we have bijective function toEnum :: Int → a that allows direct
access to any value of the enumeration. The Enum class is intended for
enumeration types (types whose constructors have no fields), and some
of the methods (fromEnum in particular) of the class make it difficult to
implement efficient instances for more complex types.

The list view can be generalised to arbitrary types. Two examples of such
generalisations for Haskell are SmallCheck (Runciman, Naylor, and Lind-
blad, 2008) and the less well-known enumerable package. SmallCheck im-
plements a kind of enumToSize :: N → [a ] function that provides a finite
list of all values bounded by a size limit. Enumerable instead provides only
a lazy [a ] of all values.

Our proposal, implemented in a library called Feat, is based on the func-
tion view. We focus on an efficient bijective function indexa :: N→ a, much
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like toEnum in the Enum class. This enables a wider set of operations to
explore the enumerated set. For instance we can efficiently implement
enumFrom :: N → [a ] that jumps directly to a given starting point in the
enumeration and proceeds to enumerate all values from that point. Seeing
it in the light of property-based testing, this flexibility allows us to generate
test cases that are beyond the reach of the other tools.

As an example usage, imagine we are enumerating the values of an ab-
stract syntax tree for Haskell (this example is from the Template Haskell
library). Both Feat and SmallCheck can easily calculate the value at posi-
tion 105 of their respective enumerations:

*Main> index (10^5) :: Exp

AppE (LitE (StringL "")) (CondE (ListE []) (ListE [])

(LitE (IntegerL 1)))

But in Feat we can also do this:

*Main> index (10^100) :: Exp

ArithSeqE (FromR (AppE (AppE (ArithSeqE (FromR (ListE [])))

... -- and 20 more lines!

Computing this value takes less than a second on a desktop computer. The
complexity of indexing is (worst case) quadratic in the size of the selected
value. Clearly any simple list-based enumeration would never reach this
far into the enumeration.

On the other hand QuickCheck (Claessen and Hughes, 2000), in theory, has
no problem with generating large values. However, it is well known that
reasonable QuickCheck generators are really difficult to write for mutually
recursive datatypes (such as syntax trees). Sometimes the generator grows
as complex as the code to be tested! SmallCheck generators are easier to
write, but fail to falsify some properties that Feat can.

We argue that functional enumeration is the only available option for au-
tomatically generating useful test cases from large groups of mutually re-
cursive syntax tree types. Since compilers are a very common application
of Haskell, Feat fills an important gap left by existing tools.

For enumerating the set of values of type a we partition a into numbered,
finite subsets (which we call parts). The number associated with each part
is the size of the values it contains (measured in the number of construc-
tors). We can define a function for computing the cardinality for each part
i.e. carda :: Part→N. We can also define selecta :: Part→N→ a that maps
a part number p and an index i within that part to a value of type a and
size p. Using these functions we define the bijection that characterises our
enumerations: indexa :: N→ a.

We describe (in §2) a simple theory of functional enumeration and pro-
vide an algebra of enumerations closed under sums, products, guarded
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recursion and bijections. These operations make defining enumerations
for Haskell datatypes (even mutually recursive ones) completely mechan-
ical. We present an efficient Haskell implementation (in §3).

The efficiency of Feat relies on memoising (of meta information, not val-
ues) and thus on sharing, which is illustrated in detail in §3 and §4.

We discuss (in §5) the enumeration of datatypes with invariants, and show
(in §6) how to define random sampling (QuickCheck generators) and ex-
haustive enumeration (in the style of SmallCheck) and combinations of
these. In §7 we show results from a case study using Feat to test the
pretty-printer of the Template Haskell library and some associated tools.

2 Functional enumeration

For the type E of functional enumerations, the goal of Feat is an efficient
indexing function index :: E a → N → a. For the purpose of property-
based testing it is useful with a generalisation of index that selects values
by giving size and (sub-)index. Inspired by this fact, we represent the
enumeration of a (typically infinite) set S as a partition of S, where each part
is a numbered finite subset of S representing values of a certain size. Our
theory of functional enumerations is a simple algebra of such partitions.

Definition 1 (Functional Enumeration). A functional enumeration of the
set S is a partition of S that is

• Bijective, each value in S is in exactly one part (this is implied by the
mathematical definition of a partition).

• Part-Finite, every part is finite and ordered.

• Countable, the set of parts is countable.

�

The countability requirement means that each part has a number. This
number is (slightly simplified) the size of the values in the part. In this
section we show that this algebra is closed under disjoint union, Cartesian
product, bijective function application and guarded recursion. In Table 2.2
there is a comprehensive overview of these operations expressed as a set of
combinators, and some important properties that the operations guarantee
(albeit not a complete specification).

To specify the operations we make a tiny proof of concept implementa-
tion that does not consider efficiency. In §3 and §4 we show an efficient
implementation that adheres to this specification.
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Enumeration combinators:

empty :: E a

singleton :: a→ E a

(⊕) :: E a→ E b→ E (Either a b)

(⊗) :: E a→ E b→ E (a, b)

biMap :: (a→ b)→ E a→ E b

pay :: E a→ E a

Properties:

index (pay e) i ≡ index e i

(index e i1 ≡ index e i2) ≡ (i1 ≡ i2)

pay (e1 ⊕ e2) ≡ pay e1 ⊕ pay e2

pay (e1 ⊗ e2) ≡ pay e1 ⊗ e2
≡ e1 ⊗ pay e2

fix pay ≡ empty

biMap f (biMap g e) ≡ biMap (f ◦ g) e

singleton a⊗ e ≡ biMap (a, ) e
e⊗ singleton b ≡ biMap (, b) e

empty⊕ e ≡ biMap Right e
e⊕ empty ≡ biMap Left e

Table 2.2: Operations on enumerations and selected properties
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Representing parts The parts of the partition are finite ordered sets. We
first specify a datatype Finite a that represents such sets and a minimal set
of operations that we require. The datatype is isomorphic to finite lists,
with the additional requirement of unique elements. It has two consumer
functions: computing the cardinality of the set and indexing to retrieve a
value.

cardF :: Finite a→N

(!!F) :: Finite a→N→ a

As can be expected, f !!F i is defined only for i < cardF f. We can convert
the finite set into a list:

valuesF :: Finite a→ [a ]
valuesF f = map (f!!F) [0 . . cardF f − 1 ]

The translation satisfies these properties:

cardF f ≡ length (valuesF f)
f !!F i ≡ (valuesF f) !! i

For constructing Finite sets, we have disjoint union, product and bijective
function application. The complete interface for building sets is as follows:

emptyF :: Finite a
singletonF :: a→ Finite a
(⊕F) :: Finite a→ Finite b→ Finite (Either a b)
(⊗F) :: Finite a→ Finite b→ Finite (a, b)
biMapF :: (a→ b)→ Finite a→ Finite b

The operations are specified by the following simple laws:

valuesF emptyF ≡ [ ]

valuesF (singletonF a) ≡ [a ]

valuesF (f1 ⊕F f2) ≡ map Left (valuesF f1) ++ map Right (valuesF f2)

valuesF (f1 ⊗F f2) ≡ [ (x, y) | x← valuesF f1, y← valuesF f2 ]

valuesF (biMapF g f) ≡ map g (valuesF f)

To preserve the uniqueness of elements, the operand of biMapF must be
bijective. Arguably the function only needs to be injective, it does not need
to be surjective in the type b. It is surjective into the resulting set of values
however, which is the image of the function g on f.

A type of functional enumerations Given the countability requirement,
it is natural to define the partition of a set of type a as a function from
N to Finite a. For numbers that do not correspond to a part, the function
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returns the empty set (emptyF is technically not a part, a partition only has
non-empty elements).

type Part = N

type E a = Part→ Finite a

empty :: E a
empty = const emptyF

singleton :: a→ E a
singleton a 0 = singletonF a
singleton = emptyF

Indexing in an enumeration is a simple linear search:

index :: E a→N→ a
index e i0 = go 0 i0 where

go p i = if i < cardF (e p)
then e p !!F i
else go (p + 1) (i− cardF (e p))

This representation of enumerations always satisfies countability, but care
is needed to ensure bijectivity and part-finiteness when we define the op-
erations in Table 2.2.

The major drawback of this approach is that we can not determine if an
enumeration is finite, which means expressions such as index empty 0 fail to
terminate. In our implementation (§3) we have a more sensible behaviour
(an error message) when the index is out of bounds.

Bijective-function application We can map a bijective function over an
enumeration.

biMap f e = biMapF f ◦ e

Part-finiteness and bijectivity are preserved by biMap (as long as it is al-
ways used only with bijective functions). The inverse of biMap f is biMap f−1.

Disjoint union Disjoint union of enumerations is the pointwise union of
the parts.

e1 ⊕ e2 = λp→ e1 p⊕F e2 p

It is again not hard to verify that bijectivity and part-finiteness are pre-
served. We can also define an “unsafe” version using biMap where the
user must ensure that the enumerations are disjoint:

union :: E a→ E a→ E a
union e1 e2 = biMap (either id id) (e1 ⊕ e2)
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Guarded recursion and costs Arbitrary recursion may create infinite parts.
For example in the following enumeration of natural numbers:

data N = Z | S N deriving Show
natEnum :: E N
natEnum = union (singleton Z) (biMap S natEnum)

All natural numbers are placed in the same part, which breaks part-finite-
ness. To avoid this we place a guard called pay on (at least) all recursive
enumerations, which pays a “cost” each time it is executed. The cost of
a value in an enumeration is simply the part-number associated with the
part in which it resides. Another way to put this is that pay increases the
cost of all values in an enumeration:

pay e 0 = emptyF
pay e p = e (p− 1)

This definition gives fix pay ≡ empty. The cost of a value can be specified
given that we know the enumeration from which it was selected.

cost :: E t→ t→N

cost (singleton ) ≡ 0
cost (a⊕ b) (Left x) ≡ cost a x
cost (a⊕ b) (Right y) ≡ cost b y
cost (a⊗ b) (x, y) ≡ cost a x + cost b y

cost (biMap f e) x ≡ cost e (f −1x)
cost (pay e) x ≡ 1 + cost e x

We modify natEnum by adding an application of pay around the entire
body of the function:

natEnum = pay (union (singleton Z) (biMap S natEnum))

Now because we pay for each recursive call, each natural number is as-
signed to a separate part:

*Main> map valuesF (map natEnum [0 . . 3 ])
[ [ ], [Z ], [S Z ], [S (S Z) ] ]

Cartesian product Product is slightly more complicated to define. The
specification of cost allows a more formal definition of part:

Definition 2 (Part). Given an enumeration e, the part for cost p (denoted
as Pp

e ) is the finite set of values in e such that

(v ∈ Pp
e )⇔ (coste v ≡ p)

�
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The specification of cost says that the cost of a product is the sum of the
costs of the operands. Thus we can specify the set of values in each part of
a product: Pp

a⊗b =
⋃p

k=0 Pk
a×Pp−k

b . For our functional representation this
gives the following definition:

e1 ⊗ e2 = pairs where
pairs p = concatF (conv (⊗F) e1 e2 p)

concatF :: [Finite a ]→ Finite a
concatF = foldl unionF emptyF

conv :: (a→ b→ c)→ (N→ a)→ (N→ b)→ (N→ [c ])
conv (�) fx fy p = [ fx k� fy (p− k) | k← [0 . . p ] ]

For each part we define pairs p as the set of pairs with a combined cost of
p, which is the equivalent of Pp

e1⊗e2
. Because the sets of values “cheaper”

than p in both e1 and e2 are finite, pairs p is finite for all p. For sur-
jectivity: any pair of values (a, b) have costs ca = coste1 a and cb =
coste2 b. This gives (a, b) ∈ (e1 ca⊗F e2 cb). This product is an element of
conv (⊗F) e1 e2 (ca + cb) and as such (a, b) ∈ (e1⊗ e2) (ca + cb). For injec-
tivity, it is enough to prove that pairs p1 is disjoint from pairs p2 for p1 6≡ p2
and that (a, b) appears once in pairs (ca+ cb). Both these properties follow
from the bijectivity of e1 and e2.

3 Implementation

The implementation in the previous section is thoroughly inefficient; the
complexity is exponential in the cost of the input. The cause is the compu-
tation of the cardinalities of parts. These are recomputed on each indexing
(even multiple times for each indexing). In Feat we tackle this issue with
memoisation, ensuring that the cardinality of each part is computed at most
once for any enumeration.

Finite sets First we implement the Finite type as specified in the previous
section. Finite is implemented directly by its consumers: a cardinality and
an indexing function.

type Index = Integer
data Finite a = Finite {cardF :: Index

, (!!F) :: Index→ a
}

Since there is no standard type for infinite precision natural numbers in
Haskell, we use Integer for the indices. All combinators follow naturally
from the correspondence to finite lists (specified in §2). Like lists, Finite is
a monoid under append (i.e. union):
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(⊕F) :: Finite a→ Finite a→ Finite a
f1 ⊕F f2 = Finite car ix where

car = cardF f1 + cardF f2
ix i = if i < cardF f1

then f1 !!F i
else f2 !!F (i− cardF f1)

emptyF = Finite 0 (λi→ error "Empty")

instance Monoid (Finite a) where
mempty = emptyF
mappend = (⊕F)

It is also an applicative functor under product, again just like lists:

(⊗F) :: Finite a→ Finite b→ Finite (a, b)
(⊗F) f1 f2 = Finite car sel where

car = cardF f1 ∗ cardF f2
sel i = let (q, r) = (i ‘divMod‘ cardF f2)

in (f1 !!F q, f2 !!F r)

singletonF :: a→ Finite a
singletonF a = Finite 1 one where

one 0 = a
one = error "Index out of bounds"

instance Functor Finite where
fmap f fin = fin {(!!F) = f ◦ (fin!!F)}

instance Applicative Finite where
pure = singletonF
f 〈∗〉 a = fmap (uncurry ($)) (f ⊗F a)

For indexing we split the index i < c1 ∗ c2 into two components by divid-
ing either by c1 or c2. For an ordering which is consistent with lists (s.t.
valuesF (f 〈∗〉 a) ≡ valuesF f 〈∗〉 valuesF a) we divide by the cardinality of the
second operand. Bijective map is already covered by the Functor instance,
i.e. we require that the argument of fmap is a bijective function.

Enumerate As we hinted earlier, memoisation of cardinalities (i.e. of Finite
values) is the key to efficient indexing. The remainder of this section is
about this topic and implementing efficient versions of the operations spec-
ified in the previous section. A simple solution is to explicitly memoise the
function from part numbers to part sets. Depending on where you apply
such memoisation this gives different memory/speed tradeoffs (discussed
later in this section).

In order to avoid having explicit memoisation we use a different approach:
we replace the outer function with a list. This may seem like a regression
to the list view of enumerations, but the complexity of indexing is not ad-
versely affected since it already does a linear search on an initial segment
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of the set of parts. Also the interface in the previous section can be recov-
ered by just applying (!!) to the list. We define a datatype Enumerate a for
enumerations containing values of type a.

data Enumerate a = Enumerate {parts :: [Finite a ]}

In the previous section we simplified by supporting only infinite enumera-
tions. Allowing finite enumerations is practically useful and gives an algo-
rithmic speedups for many common applications. This gives the following
simple definitions of empty and singleton enumerations:

empty :: Enumerate a
empty = Enumerate [ ]

singleton :: a→ Enumerate a
singleton a = Enumerate [singletonF a ]

Now we define an indexing function with bounds-checking:

index :: Enumerate a→ Integer→ a
index = index′ ◦ parts where

index′ [ ] i = error "index out of bounds"

index′ (f : rest) i
| i < cardF f = f !!F i
| otherwise = index′ rest (i− cardF f)

This type is more useful for a propery-based testing driver (see §6) because
it can detect with certainty if it has tested all values of the type.

Disjoint union Our enumeration type is a monoid under disjoint union.
We use the infix operator (♦) = mappend (from the library Data.Monoid)
for both the Finite and the Enumerate union.

instance Monoid (Enumerate a) where
mempty = empty
mappend = union

union :: Enumerate a→ Enumerate a→ Enumerate a
union a b = Enumerate $ zipPlus (♦) (parts a) (parts b)

where
zipPlus :: (a→ a→ a)→ [a ]→ [a ]→ [a ]
zipPlus f (x : xs) (y : ys) = f x y : zipPlus f xs ys
zipPlus xs ys = xs ++ ys -- one of them is empty

It is up to the user to ensure that the operands are really disjoint. If they
are not then the resulting enumeration may contain repeated values. For
example pure True♦ pure True type checks and runs but it is probably not
what the programmer intended. If we replace one of the Trues with False
we get a perfectly reasonable enumeration of Bool.
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Cartesian product and bijective functions First we define a Functor in-
stance for Enumerate in a straightforward fashion:

instance Functor Enumerate where
fmap f e = Enumerate (fmap (fmap f) (parts e))

An important caveat is that the function mapped over the enumeration
must be bijective in the same sense as for biMap, otherwise the resulting
enumeration may contain duplicates.

Just as Finite, Enumerate is an applicative functor under product with sin-
gleton as the lifting operation.

instance Applicative Enumerate where
pure = singleton
f 〈∗〉 a = fmap (uncurry ($)) (prod f a)

Similar to fmap, the first operand of 〈∗〉 must be an enumeration of bi-
jective functions. Typically we get such an enumeration by lifting or par-
tially applying a constructor function, e.g. if e has type Enumerate a then
f = pure (, ) 〈∗〉 e has type Enumerate (b → (a, b)) and f 〈∗〉 e has type
Enumerate (a, a).

Two things complicate the computation of the product compared to its
definition in §2. One is accounting for finite enumerations, the other is
defining the convolution function on lists.

A first definition of conv (that computes the set of pairs of combined cost
p) might look like this (with mconcat equivalent to foldr (⊕F) emptyF):

badConv :: [Finite a ]→ [Finite b ]→ Int→ Finite (a, b)
badConv xs ys p = mconcat (zipWith (⊗F) (take p xs)

(reverse (take p ys)))

The problem with this implementation is memory. Specifically it needs
to retain the result of all multiplications performed by (⊗F) which yields
quadratic memory use for each product in an enumeration.

Instead we want to perform the multiplications each time the indexing
function is executed and just retain pointers to e1 and e2. The problem
then is the reversal. With partitions as functions it is trivial to iterate an
inital segment of the partition in reverse order, but with lists it is rather
inefficient and we do not want to reverse a linearly sized list every time
we index into a product. To avoid this we define a function that returns
all reversals of a given list. We then define a product funtion that takes
the parts of the first operand and all reversals of the parts of the second
operand.
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reversals :: [a ]→ [ [a ] ]
reversals = go [ ] where

go [ ] = [ ]
go rev (x : xs) = let rev′ = x : rev

in rev′ : go rev′ xs

prod :: Enumerate a→ Enumerate b→ Enumerate (a, b)
prod e1 e2 = Enumerate $ prod′ (parts e1) (reversals (parts e2))

prod′ :: [Finite a ]→ [ [Finite b ] ]→ [Finite (a, b) ]

In any sensible Haskell implementation evaluating an inital segment of
reversals xs uses linear memory in the length of the segment, and con-
structing the lists is done in linear time.

We define a version of conv where the second operand is already reversed,
so it is simply a concatenation of a zipWith.

conv :: [Finite a ]→ [Finite b ]→ Finite (a, b)
conv xs ys = Finite card index

where card = sum $ zipWith (∗) (map cardF xs) (map cardF ys)
index i = mconcat (zipWith (⊗F) xs ys) !!F i

The worst case complexity of this function is the same as for the conv
that reverses the list (linear in the list length). The best case complexity is
constant however, since indexing into the result of mconcat is just a linear
search. It might be tempting to move the mconcat out of the indexing
function and use it directly to define the result of conv. This is semantically
correct but the result of the multiplications are never garbage collected.
Experiments show an increase in memory usage from a few megabytes to
a few hundred megabytes in a realistic application.

For specifying prod′ we can revert to dealing with only infinite enumera-
tions i.e. assume prod′ is only applied to “padded” lists:

parts = let rep = repeat emptyF in Enumerate $
prod′ (parts e1 ++ rep) (reversals (parts e2 ++ rep))

Then we define prod′ as:

prod′ xs rys = map (conv xs) rys

Analysing the behaviour of prod we notice that if e2 is finite then we even-
tually start applying conv xs on the reversal of parts e2 with a increasing
chunk of emptyF prepended. Analysing conv reveals that each such emptyF
corresponds to just dropping an element from the first operand (xs), since
the head of the list is multiplied with emptyF. This suggest a strategy of
computing prod′ in two stages, the second used only if e2 is finite:
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prod′ xs@( : xs′) (ys : yss) = goY ys yss where
goY ry rys = conv xs ry : case rys of
[ ] → goX ry xs′

(ry′ : rys′)→ goY ry′ rys′

goX ry = map (flip conv ry) ◦ tails
prod′ = [ ]

If any of the enumerations are empty the result is empty, otherwise we
map over the reversals (in goY) with the twist that if the list is depleted
we pass the final element (the reversal of all parts of e2) to a new map
(goX) that applies conv to this reversal and every suffix of xs. With a bit
of analysis it is clear that this is semantically equivalent to the padded
version (except that it produces a finite list if both operands are finite),
but it is much more efficient if one or both the operands are finite. For
instance the complexity of computing the cardinality at part p of a product
is typically linear in p, but if one of the operands is finite it is max p l where
l is the length of the part list of the finite operand (which is typically very
small). The same complexity argument holds for indexing.

Assigning costs So far we are not assigning any costs to our enumera-
tions, and we need the guarded recursion operator to complete the imple-
mentation:

pay :: Enumerate a→ Enumerate a
pay e = Enumerate (emptyF : parts e)

To verify its correctness, consider that parts (pay e) !! 0 ≡ emptyF and
parts (pay e) !! (p + 1) ≡ parts e !! p. In other words, applying the list
indexing function on the list of parts recovers the definition of pay in the
previous section (except in the case of finite enumerations where padding
is needed).

Examples Having defined all the building blocks we can start defining
enumerations:

boolE :: Enumerate Bool
boolE = pay $ pure False♦ pure True

blistE :: Enumerate [Bool ]
blistE = pay $ pure [ ]

♦ ((:) 〈$〉 boolE 〈∗〉 blistE)

A simple example shows what we have at this stage:

*Main> take 16 (map cardF $ parts blistE)
[0, 1, 0, 2, 0, 4, 0, 8, 0, 16, 0, 32, 0, 64, 0, 128 ]
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*Main> valuesF (parts blistE !! 5)
[ [False, False ], [False, True ], [True, False ], [True, True ] ]

We can also very efficiently access values at extremely large indices:

*Main> length $ index blistE (101000)
3321

*Main> foldl1 xor $ index blistE (101000)
True

*Main> foldl1 xor $ index blistE (101001)
False

Computational complexity Analysing the complexity of indexing, we
see that union adds a constant factor to the indexing function of each part,
and it also adds one to the generic size of all values (since it can be con-
sidered an application of Left or Right). For product we choose between p
different branches where p is the cost of the indexed value, and increase
the generic size by one. This gives a pessimistic worst case complexity of
p ∗ s where s is the generic size. If we do not apply pay directly to the
result of another pay, then p 6 s which gives s2. This could be improved to
s log p by using a binary search in the product case, but this also increases
the memory consumption (see below).

The memory usage is (as always in a lazy language) difficult to measure
exactly. Roughly speaking it is the product of the number of distinguished
enumerations and the highest part to which these enumerations are eval-
uated. This number is equal to the sum of all constructor arities of the
enumerated (monomorphic) types. For regular ADTs this is a constant, for
non-regular ones it is bounded by a constant multiplied with the highest
evaluated part.

Sharing As mentioned, Feat relies on memoisation and subsequently
sharing for efficient indexing. To demonstrate this, we move to a more re-
alistic implementation of the list enumerator which is parameterised over
the underlying enumeration.

listE :: Enumerate a→ Enumerate [a ]
listE aS = pay $ pure [ ]

♦ ((:) 〈$〉 aS 〈∗〉 listE aS)

blistE2 :: Enumerate [Bool ]
blistE2 = listE boolE

This simple change causes the performance of blistE2 to drop severely com-
pared to blistE. The reason is that every evaluation of listE aS creates a
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separate enumeration, even though the argument to the function has been
used previously. In the original we had blistE in the tail instead, which is
a top level declaration. Any clever Haskell compiler evaluates such decla-
rations at most once throughout the execution of a program (although it is
technically not required by the Haskell language report). We can remedy
the problem by manually sharing the result of the computation with a let
binding (or equivalently by using a fix point combinator):

listE2 :: Enumerate a→ Enumerate [a ]
listE2 aS = let listE = pay $ pure [ ]

♦ ((:) 〈$〉 aS 〈∗〉 listE)
in listE

blistE3 :: Enumerate [Bool ]
blistE3 = listE2 boolE

This is efficient again but it has one major problem, it requires the user to
explicitly mark recursion. This is especially painful for mutually recursive
datatypes since all members of a system of such types must be defined in
the same scope:

data Tree a = Leaf a | Branch (Forest a)
newtype Forest a = Forest [Tree a ]

treeE = fst ◦ treesAndForests
forestE = snd ◦ treesAndForests
treesAndForests :: Enumerate a→ (Enumerate (Tree a)

, Enumerate (Forest a))
treesAndForests eA =

let eT = pay $ (Leaf 〈$〉 eA)♦ (Branch 〈$〉 eF)
eF = pay $ Forest 〈$〉 listE2 eT

in (eT, eF)

Also there is still no sharing between different evaluations of treeS and
forestS in other parts of the program. This forces everything into the same
scope and crushes modularity. What we really want is a class of enumer-
able types with a single overloaded enumeration function.

class Enumerable a where
enumerate :: Enumerate a

instance Enumerable Bool where
enumerate = boolE

instance Enumerable a⇒ Enumerable (Tree a) where
enumerate = pay ((Leaf 〈$〉 enumerate)♦ (Branch 〈$〉 enumerate))

instance Enumerable a⇒ Enumerable [a ] where
enumerate = listE2 enumerate

instance Enumerable a⇒ Enumerable (Forest a) where
enumerate = pay (Forest 〈$〉 enumerate)
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This solution performs well and it is modular. The only potential problem
is that there is no guarantee of enumerate being evaluated at most once for
each monomorphic type. We write potential problem because it is difficult
to determine if this is a problem in practice. It is possible to provoke GHC
into reevaluating instance members, and even if GHC mostly does what we
want other compilers might not. In the next section we discuss a solution
that guarantees sharing of instance members.

4 Instance sharing

Our implementation relies on memoisation for efficient calculation of car-
dinalities. This in turn relies on sharing; specifically we want to share the
instance methods of a type class. For instance we may have:

instance Enumerable a⇒ Enumerable [a ] where
enumerate = pay $ pure [ ]

♦ ((:) 〈$〉 enumerate 〈∗〉 enumerate)

The typical way of implementing Haskell type classes is using dictionaries,
and this essentially translates the instance above into a function similar to
enumerableList :: Enumerate a → Enumerate [a ]. Determining exactly when
GHC or other compilers recompute the result of this function requires sig-
nificant insight into the workings of the compiler and its runtime system.
Suffice it to say that when re-evaluation does occur it has a significant
negative impact on the performance of Feat. In this section we present a
practical solution to this problem.

A monad for type-based sharing The general formulation of this prob-
lem is that we have a value x :: C a⇒ f a, and for each monomorphic type
T we want x :: f T to be shared, i.e. to be evaluated at most once. The most
direct solution to this problem seems to be a map from types to values i.e.
Bool is mapped to x :: f Bool and () to x :: f (). The map can then either be
threaded through a computation using a state monad and updated as new
types are discovered or updated with unsafe IO operations (with careful
consideration of safety). We have chosen the former approach here.

The map must be dynamic, i.e. capable of storing values of different types
(but we still want a type safe interface). We also need representations of
Haskell types that can be used as keys. Both these features are provided
by the Typeable class.

We define a data structure we call a dynamic map as an (abstract) datatype
providing type safe insertion and lookup. The type signatures of dynInsert
and dynLookup are the significant part of the code, but the full implemen-
tation is provided for completeness.
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import Data.Dynamic (Dynamic, fromDynamic, toDyn)
import Data.Typeable (Typeable, TypeRep, typeOf)
import Data.Map as M

newtype DynMap = DynMap (M.Map TypeRep Dynamic)
deriving Show

dynEmpty :: DynMap
dynEmpty = DynMap M.empty

dynInsert :: Typeable a⇒ a→ DynMap→ DynMap
dynInsert a (DynMap m) =

DynMap (M.insert (typeOf a) (toDyn a) m)

To associate a value with a type we just map its type representation to the
dynamic (type casted) value.

dynLookup :: Typeable a⇒ DynMap→ Maybe a
dynLookup (DynMap m) = hlp run ⊥ where

hlp :: Typeable a⇒ (TypeRep→ Maybe a)→ a→ Maybe a
hlp f a = f (typeOf a)
run tr = M.lookup tr m >>= fromDynamic

Lookup is also easily defined. The dynamic library provides a function
fromDynamic :: Dynamic → Maybe a. In our case the M.lookup function has
already matched the type representation against a type stored in the map,
so fromDynamic is guaranteed to succeed (as long as values are only added
using the insert function).

Using this map type we define a sharing monad with a function share that
binds a value to its type.

type Sharing a = State DynMap a

runSharing :: Sharing a→ a
runSharing m = evalState m dynEmpty

share :: Typeable a⇒ Sharing a→ Sharing a
share m = do

mx← gets dynLookup
case mx of

Just e → return e
Nothing→ mfix $ λe→ do

modify (dynInsert e)
m

Note that we require a monadic fixpoint combinator to ensure that recur-
sive computations are shared. If it had not been used (i.e. if the Nothing
case had been m >>= modify ◦ dynInsert) then any recursively defined m
would eventually evaluate share m and enter the Nothing case. Using the fix
point combinator ensures that a reference to the result of m is added to the
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map before m is computed. This makes any evaluations of share m inside m
end up in the Just case which creates a cyclic reference in the value (exactly
what we want for a recursive m). For example in x = share (liftM pay x)
the fixpoint combinator ensures that we get runSharing x ≡ fix pay instead
of ⊥.

Self-optimising enumerations Now we have a monad for sharing and
one way to proceed is to replace Enumerate a with Sharing (Enumerate a)
and re-implement all the combinators for that type. We don’t want to lose
the simplicity of our current type though and it seems a very high price to
pay for guaranteeing sharing which we are used to getting for free.

Our solution extends the enumeration type with a self-optimising routine,
i.e. all enumerations have the same functionality as before but with the
addition of an optimiser record field:

data Enumerate a = Enumerate
{parts :: [Finite a ]
, optimiser :: Sharing (Enumerate a)
} deriving Typeable

The combinator for binding a type to an enumeration is called eShare.

eShare :: Typeable a⇒ Enumerate a→ Enumerate a
eShare e = e {optimiser = share (optimiser e)}

We can resolve the sharing using optimise.

optimise :: Enumerate a→ Enumerate a
optimise e = let e′ = runSharing (optimiser e) in

e′ {optimiser = return e′}

If eShare is used correctly, optimise is semantically equivalent to id but pos-
sibly with a higher degree of sharing. But using eShare directly is po-
tentially harmful. It is possible to create “optimised” enumerations that
differ semantically from the original. For instance λe → eShare t e yields
the same enumerator when applied to two different enumerators of the
same type. As a general rule the enumeration passed to eShare should be a
closed expression to avoid such problems. Luckily users of Feat never have
to use eShare, instead we provide a safe interface that uses it internally.

An implication of the semantic changes that eShare may introduce is the
possibility to replace the Enumerable instances for any type throughout
another enumerator by simply inserting a value in the dynamic map before
computing the optimised version. This could give unintuitive results if
such enumerations are later combined with other enumerations. In our
library we provide a simplified version of this feature where instances can
be replaced but the resulting enumeration is optimised, which makes the
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replacement completely local and guarantees that optimise still preserves
the semantics.

The next step is to implement sharing in all the combinators. This is simply
a matter of lifting the operation to the optimised enumeration. Here are
some examples where ... is the original definitions of parts.

fmap f e = e { ...
optimiser = fmap (fmap f) $ optimiser e}

f 〈∗〉 a = Enumerate { ...
optimiser = liftM2 (〈∗〉) (optimiser f) (optimiser a)}

pure a = Enumerate { ...
optimiser = return (pure a)}

The only noticeable cost of using eShare is the reliance on Typeable. Since
almost every instance should use eShare and consequently require type
parameters to be Typeable and since Typeable can be derived by GHC, we
chose to have it as a superclass and implement a default sharing mecha-
nism with eShare.

class Typeable a⇒ Enumerable a where
enumerate :: Enumerate a

shared :: Enumerable a⇒ Enumerate a
shared = eShare enumerate

optimal :: Enumerable a⇒ Enumerate a
optimal = optimise shared

The idiom is that enumerate is used to define instances and shared is used
to combine them. Finally optimal is used by libraries to access the contents
of the enumeration (see §6).

Non-regular enumerations The sharing monad works very well for enu-
merations of regular types, where there is a closed system of shared enu-
merations. For non-regular enumerations (where the number of enumer-
ations is unbounded) the monadic computation may fail to terminate. In
these (rare) cases the programmer must ensure termination.

Free pairs and boilerplate instances There are several ways to increase
the sharing further, thus reducing memory consumption. Particularly we
want to share the cardinality computation of every sequenced application
(〈∗〉). To do this we introduce the FreePair datatype which is just like a pair
except constructing one carries no cost i.e. the cost of the pair is equal to
the total costs of its components.

data FreePair a b = FreePair a b deriving (Show, Typeable)
instance (Enumerable a, Enumerable b)⇒ Enumerable (FreePair a b)

where enumerate = FreePair 〈$〉 shared 〈∗〉 shared
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Since the size of FreePair a b is equal to the sum of the sizes of a and b, we
know that for these functions:

f :: a→ b→ c

g :: FreePair a b→ c
g (FreePair a b) = f a b

We have f 〈$〉 shared 〈∗〉 shared isomorphic to g 〈$〉 shared but in the latter
case the product of the enumerations for a and b are always shared with
other enumerations that require it (because shared :: FreePair a b is always
shared. In other words deep uncurrying functions before applying them to
shared often improve the performance of the resulting enumeration. For
this purpose we define a function which is equivalent to uncurry from the
Prelude but that operates on FreePair.

funcurry :: (a→ b→ c)→ FreePair a b→ c
funcurry f (FreePair a b) = f a b

Now in order to make an enumeration for a data constructor we need one
more function:

unary :: Enumerable a⇒ (a→ b)→ Enumerate b
unary f = f 〈$〉 shared

Together with pure for nullary constructors, unary and funcurry can be used
to map any data constructor to an enumeration. For instance pure [ ] and
unary (funcurry (:)) are enumerations for the constructors of [a ]. In order
to build a new instance we still need to combine the enumerations for all
constructors and pay a suitable cost. Since pay is distributive over ♦, we
can pay once for the whole type:

consts :: [Enumerate a ]→ Enumerate a
consts xs = pay $ foldl (♦) mempty xs

This gives the following instance for lists:

instance Enumerable a⇒ Enumerable [a ] where
enumerate = consts [pure [ ], unary (funcurry (:)) ]

5 Invariants

Datatype invariants are a major challenge in property-based testing. An
invariant is just a property on a datatype, and one often wants to test that it
holds for the result of a function. But we also want to test other properties
only with input that is known to satisfy the invariant. In random testing
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this can sometimes be achieved by filtering: discarding the test cases that
do not satisfy the invariant and generating new ones instead, but if the
invariant is an arbitrary boolean predicate finding test data that satisfies
the invariant can be as difficult as finding a bug. For systematic testing
(with SmallCheck or Feat) this method is slightly more feasible since we
do not repeat values which guarantees progress, but filtering is still a brute
force solution.

With QuickCheck programmers can manually define custom test data gen-
erators that guarantee any invariant, but it may require a significant pro-
grammer effort and analysing the resulting generator to ensure correctness
and statistical coverage can be difficult. Introducing this kind of complex-
ity into testing code is hazardous since complex usually means error prone.

In Feat the room for customised generators is smaller (corresponding to
the difference between monads and applicative functors). In theory it is
possible to express any invariant by providing a bijection from a Haskell
datatype to the set of values that satisfy the invariant (since functional
enumerations are closed under bijective function application). In practice
the performance of the bijection needs to be considered because it directly
affects the performance of indexing.

A simple and very common example of an invariant is the non-empty list.
The function uncurry (:) is a bijection into non-empty lists of a from the
type (a, [a ]). The preferred way of dealing with these invariants in Feat
is by defining a newtype for each restricted type, and a smart constructor
which is the previously mentioned bijection and export it instead of the
data constructor.

newtype NonEmpty a = MkNonEmpty {nonEmpty :: [a ]}
deriving Typeable

mkNonEmpty :: a→ [a ]→ NonEmpty a
mkNonEmpty x xs = MkNonEmpty (x : xs)

instance Enumerable a⇒ Enumerable (NonEmpty a) where
enumerate = consts [unary (funcurry mkNonEmpty) ]

To use this in an instance declaration, we only need the nonEmpty record
function. In this example we look at the instance for the datatype Type
from the Template Haskell abstract syntax tree which describes the syn-
tax of (extended) Haskell types. Consider the constructor for universal
quantification:

ForallT :: [TyVarBndr ]→ Cxt→ Type→ Type

This constructor must not be applied to the empty list. We use nonEmpty
to ensure this:
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instance Enumerable Type where
enumerate = consts [ ...

, funcurry $ funcurry $ ForallT ◦ nonEmpty ]

Here ForallT ◦ nonEmpty has type:

NonEmpty TyVarBndr→ Cxt→ Type→ Type

The only change from the unrestricted enumeration is post-composition
with nonEmpty.

Enumerating Sets of natural numbers Another fairly common invariant
is sorted lists of unique elements i.e. Sets. It is not obvious that sets can be
built from our basic combinators. We can however define a bijection from
lists of natural numbers to sets of natural numbers: scanl (((+) ◦ (1+)).
For example the list [0, 0, 0 ] represents the set [0, 1, 2 ], the list [1, 1, 0 ] repre-
sents [1, 3, 4 ] and so on. We can define an enumerator for natural numbers
using a bijection from Integer.

newtype Nat = Nat {nat :: Integer}
deriving (Show, Typeable, Eq, Ord)

mkNat :: Integer→ Nat
mkNat a = Nat $ abs $ a ∗ 2− if a > 0 then 1 else 0
instance Enumerable Nat where

enumerate = unary mkNat

Then we define sets of naturals:

newtype NatSet = MkNatSet {natSet :: [ Integer ]}
deriving Typeable

mkNatSet :: [Nat ]→ NatSet
mkNatSet = MkNatSet ◦ scanl1 ((+) ◦ (1+)) ◦map nat

Generalising to sets of arbitrary types Sets of naturals are useful but
what we really want is a datatype Set a = MkSet {set :: [a ]} and a bijection
to this type from something which we can already enumerate. Since we
just defined an enumeration for sets of naturals, an efficient bijective map-
ping from natural numbers to a is all we need. Since this is the definition
of a functional enumeration, we appear to be in luck.

mkSet :: Enumerate a→ NatSet→ Set a
mkSet e = MkSet ◦map (index e) ◦ natSet

instance Enumerable a⇒ Enumerable (Set a) where
enumerate = unary (mkSet optimal)

This implementation works but it is slightly simplified, it doesn’t use the
cardinalities of a when determining the indices to use. This distorts the
cost of our sets away from the actual size of the values.
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6 Accessing enumerated values

This section discusses strategies for accessing the values of enumerations,
especially for the purpose of property-based testing. The simplest function
values is simply all values in the enumeration partitioned by size. We
include the cardinalities as well because this is often useful e.g. to report to
the user how many values are in a part before initiating testing on values.
For this reason we give values type Enumerate a→ [ (Integer, [a ]) ].

Given that Feat is intended to be used primarily with the Enumerable type
class, we have implemented the library functions to use class members,
but provide non-class versions of the functions that have the suffix With:

type EnumL a = [(Integer, [a ]) ]

values :: Enumerable a⇒ [ (Integer, [a ]) ]
values = valuesWith optimal

valuesWith :: Enumerate a→ [ (Integer, [a ]) ]
valuesWith = map (λf → (cardF f, valuesF f)) ◦ parts

Parallel enumeration A generalisation of values is possible since we can
“skip” an arbitrary number of steps into the enumeration at any point. The
function striped takes a starting index and a step size n and enumerates
every nth value after the initial index in the ordering. As a special case
values = striped 0 0 1. One purpose of this function is to enumerate in
parallel. If n processes execute uncurry striped k n where k is a process-
unique id in the range [0 . . n− 1 ] then all values are eventually evaluated
by some process and, even though the processes are not communicating,
the work is evenly distributed in terms of number and size of test cases.

stripedWith :: Enumerate a→ Index→ Integer→ EnumL a
stripedWith e o0 step = stripedWith′ (parts e) o0 where

stripedWith′ (Finite crd ix : ps) o =
(max 0 d, thisP) : stripedWith′ ps o′

where
o′ = if space 6 0 then o− crd else step−m− 1
thisP = map ix (genericTake d $ iterate (+step) o)
space = crd− o
(d, m) = divMod space step

Bounded enumeration Another feature afforded by random-access in-
dexing is the ability to systematically select manageable portions of gigan-
tic parts. Specifically we can devise a function bounded :: Integer→ EnumL a
such that each list in bounded n contains at most n elements. If there are
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more than n elements in a part we systematically sample n values that are
evenly spaced across the part.

samplePart :: Integer→ Finite a→ (Integer, [a ])
samplePart m (Finite crd ix) =

let step = crd % m
in if crd 6 m

then (crd, map ix [0 . . crd− 1 ])
else (m, map ix [ round (k ∗ step)

| k← map toRational [0 . . m− 1 ] ])

boundedWith :: Enumerate a→ Integer→ EnumL a
boundedWith e n = map (samplePart n) $ parts e

Random sampling A noticeable feature of Feat is that it provides ran-
dom sampling with uniform distribution over a size-bounded subset of a
type. This is not just nice for compatibility with QuickCheck, it is genuinely
difficult to write a uniform generator even for simple recursive types with
the tools provided by the QuickCheck library.

The function uniform :: Enumerable a ⇒ Part → Gen a generates values of
the given size or smaller.

uniformWith :: Enumerate a→ Int→ Gen a
uniformWith = uni ◦ parts where

uni :: [Finite a ]→ Int→ Gen a
uni [ ] = error "uniform: empty enumeration"

uni ps maxp = let (incl, rest) = splitAt maxp ps
fin = mconcat incl

in case cardF fin of
0 → uni rest 1
→ do i← choose (0, cardF fin− 1)

return (fin !!F i)

Since we do not make any local random choices, performance is favourable
compared to hand written generators. The typical usage is sized uniform,
which generates values bounded by the QuickCheck size parameter. In
Table 2.3 we present a typical output of applying the function sample from
the QuickCheck library to the uniform generator for [ [Bool ] ]. The function
drafts values from the generator using increasing sizes from 0 to 20.

7 Case study: Enumerating the ASTs of Haskell

As a case study, we use the enumeration technique developed in this pa-
per to generate values of Haskell ASTs, specifically the abstract syntax of
Template Haskell, taken from the module Language.Haskell.TH.Syntax.
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*Main> sample (sized uniform :: Gen [ [Bool ] ])
[ ]
[ [ ] ]
[ [ ], [ ] ]
[ [True ] ]
[ [False ], [ ], [ ] ]
[ [ ], [False, False, True ] ]
[ [False, True, False, True, True ] ]
[ [False ], [ ], [ ], [ ] ]
[ [True ], [True ], [ ], [False, True ] ]
[ [False ], [False, True, False, False, True ] ]

Table 2.3: Randomly chosen values from the enumeration of [ [Bool ] ]

data Exp = VarE Name | CaseE Exp [Match ] | ... -- 18 Cons.
data Match = Match Pat Body [Dec ]

data Body = GuardedB [ (Guard, Exp) ] | NormalB Exp

data Dec = FunD Name [Clause ] | ... -- 14 Cons.
data Clause = Clause [Pat ] Body [Dec ]

data Pat = LitP Lit | ViewP Exp Pat | ... -- 14 Cons.

Table 2.4: Parts of the Template Haskell AST type. Note that all the types
are mutually recursive. The comments indicate how many constructors
there are in total of that type

We use the generated ASTs to test the Template Haskell pretty-printer.
The background is that in working with BNFC-meta (Duregård and Jans-
son, 2011), which relies heavily on meta programming, we noticed that
the TH pretty printer occasionally produced un-parseable output. BNFC-
meta also relies on the more experimental package haskell-src-meta that
forms a bridge between the haskell-src-exts parser and Template Haskell.
We wanted to test this tool chain on a system-level.

The AST types We limited ourselves to testing expressions, but following
dependencies and adding a few newtype wrappers this yielded a system
of almost 30 datatypes with 80+ constructors. A small part is shown in
Table 2.4.

We excluded a few non-standard extensions (e.g. bang patterns) because
the specification for these are not as clear (especially the interactions be-
tween different Haskell extensions).
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Comparison to existing test frameworks We wanted to compare Feat
to existing test frameworks. For a set of mutual-recursive datatypes of
this size, it is very difficult to write a sensible QuickCheck generator. We
therefore excluded QuickCheck from the case study.

On the other hand, generators for SmallCheck and Feat are largely boil-
erplate code. To avoid having the results skewed by trying to generate
the large set of strings for names (and to avoid using GHC-internal names
which are not printable), we fix the name space and regard any name as
having size 1. But we do generate characters and strings as literals (and
found bugs in these).

Test case distribution The result shows some interesting differences be-
tween Feat and SmallCheck on the distribution of the generated values.
We count the number of values of each part (depth for SmallCheck and
size for Feat) of each generator.

Size 1 2 3 4 5 6 . . . 20

SmallCheck 1 9 951 × × × . . . ×
Feat 0 1 5 11 20 49 . . . 65072965

Table 2.5: The number of test cases below a certain size

It is clear that for big datatypes such as ASTs, SmallCheck quickly hits a
wall: the number of values below a fixed size grows aggressively, and we
are not able to complete the enumeration of size 4 (given several hours of
execution time). In the case of Feat, the growth in the number of values in
each category is more controlled, due to its more refined definition of size.

We looked more closely into the values generated by SmallCheck by sam-
pling the first 10000 values of the series on depth 4. A count revealed that
the maximum size in this sample is 35, with more than 50% of the values
having a size more than 20. Thus, contrary to the goal of generating small
values, SmallCheck is actually generating pretty large values from early
on.

Testing the TH PrettyPrinter The generated AST values are used as test
cases to find bugs in Template Haskell’s prettyprinter (Language.Haskell.
TH.Ppr). We start with a simple property: a pretty-printed expression
should be syntactically valid Haskell. We use haskell-src-exts as a test oracle:

prop_parses e =
case parse $ pprint (e :: Exp) :: ParseResult Exp of

ParseOk → True
ParseFailed s→ False
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After a quick run, Feat reports numerous bugs, some of which are no doubt
false positives. A small example of a confirmed bug is the expression
[Con.. ]. The correct syntax has a space after the constructor name (i.e.
[Con .. ]). As we can see, this counterexample is rather small (having size
6 and depth 4). However, after hours of testing SmallCheck is not able to
find this bug even though many much larger (but not deeper) values are
tested. Given a very large search space that is not exhaustible, SmallCheck
tends to get stuck in a corner of the space and test large but similar values.
The primary cause of SmallCheck’s inability to deal with ASTs is that the
definition of “small” as “shallowly nested” means that there are very many
small values but many types can practically not be reached at all. For
instance generating any Exp with a where-clause seems to require at least
depth 8, which is far out of reach.

Comparatively, the behaviour of Feat is much better. It advances quickly
to cover a wider range of small values, which maximises the chance of
finding a bug. The guarantee “correct for all inputs with 15 constructors
or less” is much stronger than “correct for all values of at most depth 3

and a few million of depth 4”. When there is no bug reported, Feat reports
a more meaningful portion of the search space that has been tested.

It is worth mentioning that SmallCheck has the facility of performing
“depth-adjustment”, that allows manual increment of the depth count of
individual constructors to reduce the number of values in each category.
For example, instead counting all constructors as 1, one may choose to
count a binary constructor as having depth 2 to reflect the fact that it may
create a larger value than a unary one (similar to our pay function). In our
opinion, this adjustment is a step towards an imprecise approximation of
size as used in our approach. Even if we put time into manually adjusting
the depth it is unclear what kind of guarantee testing up to depth 8 im-
plies, especially when the definition of depth has been altered away from
generic depth.

Testing round trip properties We also tested an extension of this prop-
erty that does not only test the syntactic correctness but also that the in-
formation in the AST is preserved when pretty printing. We tested this
by making a round trip function that pretty prints the AST, parses it with
haskell-src-exts and converts it back to Template Haskell AST with haskell-
src-meta. This way we could test this tool chain on a system level, finding
bugs in haskell-src-meta as well as the pretty printer. The minimal example
of a pretty printer error found was StringL "\n" which is pretty printed to
"", discarding the newline character. This error was not found by Small-
Check partly because it is too deep (at least depth 4 depending on the
character generator), and partly because the default character generator of
SmallCheck only tests alphabetical characters. Presumably an experienced
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SmallCheck tester would use a newtype to generate more sensible string
literals.

Refuting the small scope hypothesis SmallCheck is based on the small
scope hypothesis which states that it is sufficient to exhaustively test a small
part of the input set to find most bugs. SmallCheck in particular makes the
assumption that it is sufficient to test all values bounded by some depth.
As we have shown, this assumption does not hold for testing the Template
Haskell pretty printer and other properties that quantify over ASTs: al-
though there where several bugs, none where found within feasible range
of a depth-bounded search.

Although Feat is not limited to exhaustive search, we found that using Feat
to implement size-bounded search is sufficient to find bugs in the Template
Haskell example. In other words we did not have to rely on the random
access our enumerators provide, the difference between partitioning by
depth and size seemed sufficient to find bugs. This raises the question of
whether the small scope hypothesis is valid for the scope of size-bounded
values, and ultimately if there is any practical value in the ability to select
larger values by random or systematic sampling.

To test this we made an additional experiment where we disabled individ-
ual constructors from being generated until we where not able to find any
errors in the first few million values of our exhaustive search. This is an
abbreviated output from our test run:

* Testing 0 values at size 0

* Testing 0 values at size 1

* Testing 1 values at size 2

...

* Testing 984968 values at size 16

In less than a minute we where able to exhaustively search to size 16 with-
out finding any new bugs. We then tested a systematic sampler that se-
lected at most 10000 values of each size up to size 100 and saw if it found
any additional errors.

* Testing 0 values at size 0

...

* Testing 4583 values at size 11

* Testing 10000 values at size 12

...

* Testing 10000 values at size 24

Failure!

Conrete Syntax: \’\NUL’ -> let var :: [forall var . []] in []

Abstract Syntax: LamE [LitP (CharL ’\NUL’)] (LetE [SigD var

(AppT ListT (ForallT [PlainTV var] [] ListT))] (ListE []))
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This appears to be an error in our reference parser, which expects brackets
around the forall type even when it is inside a list constructor. Regardless of
where the error lies, it is a counterexample that is not found by exhaustive
testing but which is found using systematic sampling.

This method does not guarantee a minimal counterexample and indeed
it is possible to remove parts of the example above and still get the same
error. The smallest size of a program exhibiting this bug turned out to be
17. We where able to find this bug using exhaustive search by letting it
run for a few more minutes. For this reason we are reluctant to consider
the outcome as a proper refutation of the small scope hypothesis and we
see this part of our experiment as inconclusive.

8 Related Work

SmallCheck, Lazy SmallCheck and QuickCheck Our work is heavily in-
fluenced by the property based testing frameworks QuickCheck (Claessen
and Hughes, 2000) and SmallCheck (Runciman, Naylor, and Lindblad,
2008). The similarity is greatest with SmallCheck and we improve upon
it in two distinct ways:

• (Almost) Random access times to enumerated values. This presents a
number of possibilities that are not present in SmallCheck, including
random or systematic sampling of large values (too large to exhaus-
tively enumerate) and overhead-free parallelism.

• A definition of size which is closer to the actual size. Especially for
testing abstract syntax tree types and other “wide” types this seems
to be a very important feature (see §7).

Since our library provides random generation as an alternative or com-
plement to exhaustive enumeration it can be considered a “best of two
worlds” link between SmallCheck and QuickCheck. We provide a genera-
tor which should ease the reuse of existing QuickCheck properties.

SmallCheck systematically tests by enumerating all values bounded by
depth of constructor nestings. In a sense this is also a partitioning by size.
The major problem with SmallCheck is that the number of values in each
partition grows too quickly, often hitting a wall after a few levels of depth.
For AST’s this is doubly true; the growth is proportional to the number of
constructors in the type, and it is unlikely you can ever test beyond depth
4 or so. This means that most constructors in an AST are never touched.

Lazy SmallCheck can cut the number of tests on each depth level by using
the inherent laziness of Haskell. It can detect if a part of the tested value
is evaluated by the property and if it is not it refrains from refining this
value further. In some cases this can lead to an exponential decrease of the
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number of required test cases. In the case of testing a pretty printer (as we
do in §7) Lazy SmallCheck would offer no advantage since the property
fully evaluates its argument every time.

After the submission of this paper, a package named gencheck was up-
loaded to Hackage (Uszkay and Carette, 2012). GenCheck is designed to
generalise both QuickCheck and SmallCheck, which is similar to Feat in
goal. This initial release has very limited documentation, which prevents
a more comprehensive comparison at the moment.

EasyCheck In the functional logic programming language Curry (Hanus
et al., 2006), one form of enumeration of values comes for free in the form
of a search tree. As a result, testing tools such as EasyCheck (Christiansen
and Fischer, 2008) only need to focus on the traversal strategy for test case
generation. It is argued in (Christiansen and Fischer, 2008) that this sepa-
ration of the enumeration scheme and the test case generation algorithm
is particularly beneficial in supporting flexible testing strategies.

Feat’s functional enumeration, with its ability to exhaustively enumerate
finite values, and to randomly sample very large values, lays an excellent
groundwork for supporting various test case generation algorithms. One
can easily select test cases of different sizes with a desired distribution.

AGATA AGATA (Duregård, 2009) is the previous work of Jonas Duregård.
Although it is based entirely on random testing it is a predecessor of Feat
in the sense that it attempts to solve the problem of testing syntactic prop-
erties of abstract syntax trees. It is our opinion that Feat subsumes AGATA
in this and every other aspect.

Generating (Typed) Lambda Terms To test more aspects of a compiler
other than the libraries that perform syntax manipulation, it is more desir-
able to generate terms that are type correct.

In (Yakushev and Jeuring, 2009), well-typed terms are enumerated accord-
ing to their costs—a concept similar to our notion of size. Similar to Small-
Check, the enumeration in (Yakushev and Jeuring, 2009) adopts the list
view, which prohibits the sampling of large values. On the other hand,
the special-purpose QuickCheck generator designed in (Pałka et al., 2011),
randomly generates well-typed terms. Unsurprisingly, it has no problem
with constructing individual large terms, but falls short in systematicness.

It is shown (Wang, 2005) that well-scoped (but not necessarily well-typed)
lambda terms can be uniformly generated. The technique used in (Wang,
2005) is very similar to ours, in the sense that the number of possible terms
for each syntactic constructs are counted (with memoization) to guide the
random generation for a uniform distribution. This work can be seen as
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a special case of Feat, and Feat can indeed be straightforwardly instru-
mented to generate well-scoped lambda terms.

Feat is at present not able to express complicated invariants such as type
correctness of the enumerated terms. One potential solution is to adopt
more advanced type systems as in (Yakushev and Jeuring, 2009), so that
the type of the enumeration captures more precisely its intended range.

Combinatorial species In mathematics a combinatorial species is an endo-
functor on the category of finite sets and bijections. Each object A in this
category can be described by its cardinality n and a finite enumeration of
its elements: f : Nn → A. In other words, for each n there is a canoncial
object (label set) Nn. Each arrow phi : A → B in this category is between
objects of the same cardinality n, and can be described by a permutation of
the set Nn. This means that the object action S0 of an endofunctor S maps a
pair (n, f) to a pair S0 (n, f) whose first component is the cardinality of the
resulting set (we call it card n). (The arrow action S1 maps permutations
on Nn to permutations on Ncard n.)

In the species Haskell library (decribed by Yorgey (2010)) there is a function
enumerate : Enumerable f ⇒ [a ] → [ f a ] which takes a (list representation
of) an object a to all (f a)-structures obtained by the S0 map. The key to
comparing this with our paper is to represent the objects as finite enumer-
ations Nn → a instead of as lists [a ]. Then enumerate′ : Enumerable f ⇒
(Nn → a) → (Ncard n → f a). We can further let a be Np and define
sel p = enumerate′ id : Ncard p → f Np. The function sel is basically an inef-
ficient version of the indexing function in the Feat library. The elements in
the image of g for a particular n are (defined to be) those of weight n. The
union of all those images form a set (a type). Thus a species is roughly a
partition of a set into subsets of elements of the same size.

The theory of species goes further than what we present in this paper, and
the species library implements quite a bit of that theory. We cannot (yet)
handle non-regular species, but for the regular ones we can implement the
enumeration efficiently.

Boltzmann samplers A combinatorial class is basically the same as what
we call a “functional enumeration”: a set C of combinatorial objects with
a size function such that all the parts Cn of the induced partitioning are fi-
nite. A Boltzmann model is a probability distribution (parameterized over a
small real number x) over such a class C, such that a uniform discrete prob-
ability distribution is used within each part Cn. A Boltzmann sampler is (in
our terminology) a random generator of values in the class C following the
Boltzmann model distribution. The datatype generic Bolztmann sampler
defined in (Duchon et al., 2004) follows the same structure as our generic
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enumerator. We believe a closer study of that paper could help defining
random generators for ASTs in a principled way from our enumerators.

Decomposable combinatorial structures. The research field of enumer-
ative combinatorics has worked on what we call “functional enumeration”
already in the early 1990:s and Flajolet and Salvy (1995) provide a short
overview and a good entry point. They define a grammar for “decompos-
able” combinatorial structures including constructions for (disjoint) union,
product, sequence, sets and cycles (atoms or symbols are the implicit base
case). The theory (and implementation) is based on representing the count-
ing sequences {Ci} as generating functions as there is a close correspon-
dance between the grammar constructs and algebraic operations on the
generating functions. For decomposable structures they compute generat-
ing function equations and by embedding this in a computer algebra system
(Maple) the equations can be symbolically manipulated and sometimes
solved to obtain closed forms for the GFs. What they don’t do is consider
the pragmatic solution of just tabulating the counts instead (as we do).
They also don’t consider complex algebraic datatypes, just universal (un-
typed) representations of them. Complex ASTs can perhaps be expressed
(or simulated) but rather awkwardly. They also don’t seem to implement
the index function into the enumeration (only random generation). Nev-
ertheless, their development is impressive, both as a mathematical theory
and as a computer library and we want to explore the connection further
in future work.

9 Conclusions and Future work

Since there are now a few different approaches to property-based testing
available for Haskell it would be useful with a library of properties to
compare the efficiency of the libraries at finding bugs. The library could
contain “tailored” properties that are constructed to exploit weaknesses
or utilise strengths of known approaches, but it would be interesting to
have naturally occurring bugs as well (preferably from production code).
It could also be used to evaluate the paradigm of property-based testing
as a whole.

Instance (dictionary) sharing Our solution to instance sharing is not per-
fect. It divides the interface into separate class functions for consuming
and combining enumerations and it requires Typeable.

A solution based on stable names (Peyton Jones, Marlow, and Elliot, 1999)
would remove the Typeable constraint but it is not obvious that there is
any stable name to hold on to (the stable point is actually the dictionary
function, but that is off-limits to the programmer). Compiler support is
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always a possible solution (i.e. by a flag or a pragma), but should only be
considered as a last resort.

Enumerating functions For completeness, Feat should support enumer-
ating function values. We argue that in practice this is seldom useful for
property-based testing because non trivial higher order functions often
have some requirement on their function arguments, for instance the ∗By
functions in Data.List need functions that are total orderings, a parallel fold
needs an associative function etc. This can not be checked as a precondi-
tion, thus the best bet is probably to supply a few manually written total
orderings or possibly use a very clever QuickCheck generator.

Regardless of this, it stands to reason that functional enumerations should
have support for functions. This is largely a question of finding a suitable
definition of size for functions, or an efficient bijection from an algebraic
type into the function type.

Invariants The primary reason why enumeration can not completely re-
place the less systematic approach of QuickCheck testing is invariants.
QuickCheck can always be used to write a generator that satisfies an in-
variant, but often with no guarantees on the distribution or coverage of the
generator.

The general understanding seems to be that it is not possible to use sys-
tematic testing and filtering to test functions that require e.g. type correct
programs. Thus QuickCheck gives you something, while automatic enu-
meration gives you nothing. The reason is that the ratio type correct/syn-
tactically correct programs is so small that finding valid non-trivial test
cases is too time consuming.

It would be worthwhile to try and falsify or confirm the general under-
standing for instance by attempting to repeat the results of (Pałka et al.,
2011) using systematic enumeration.

Invariants and costs We have seen that any bijective function can be
mapped over an enumeration, preserving the enumeration criterion. This
also preserves the cost of values, in the sense that a value x in the enumer-
ation fmap f e costs as much as f −1x.

This might not be the intention, particularly this means that a strong size
guarantee (i.e. that the cost is equal to the number of constructors) is typi-
cally not preserved. As we show in §7 the definition of size can be essential
in practice and the correlation between cost and the actual number of con-
structors in the value should be preserved as far as possible. There may be
useful operations for manipulating costs of enumerations.
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Conclusions We present an algebra of enumerations, an efficient imple-
mentation and show that it can handle large groups of mutually recursive
datatypes. We see this as a step on the way to a unified theory of test data
enumeration and generation. Feat is available as an open source package
from the HackageDB repository:
http://hackage.haskell.org/package/testing-feat

http://hackage.haskell.org/package/testing-feat
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