
Why is the Snowflake Schema a Good Data Warehouse Design?

Mark Levene and George Loizou
School of Computer Science and Information Systems

Birkbeck College, University of London
Malet Street, London WC1E 7HX, U.K.

Email: {mark,george}@dcs.bbk.ac.uk

Abstract

Database design for data warehouses is based on the notion of the snowflake schema
and its important special case, the star schema. The snowflake schema represents a
dimensional model which is composed of a central fact table and a set of constituent
dimension tables which can be further broken up into subdimension tables. We formalise
the concept of a snowflake schema in terms of an acyclic database schema whose join tree
satisfies certain structural properties. We then define a normal form for snowflake schemas
which captures its intuitive meaning with respect to a set of functional and inclusion
dependencies. We show that snowflake schemas in this normal form are independent
as well as separable when the relation schemas are pairwise incomparable. This implies
that relations in the data warehouse can be updated independently of each other as long
as referential integrity is maintained. In addition, we show that a data warehouse in
snowflake normal form can be queried by joining the relation over the fact table with the
relations over its dimension and subdimension tables. We also examine an information-
theoretic interpretation of the snowflake schema and show that the redundancy of the
primary key of the fact table is zero.

Key words. Data warehouse design, star and snowflake schema, independent and separable
database schema, acyclic database schema.

1 Introduction

A data warehouse is an integrated and time-varying database primarily used for the support
of management decision making [Inm96, CD97, KRRT98]. A data warehouse often integrates
heterogeneous data from multiple and distributed information sources and contains historical
and aggregated data. As an example, a sales data warehouse may contain information on the
products sold, the time of sale, the place of sale and the sales person. Typically such a data
warehouse will be of orders of magnitude larger than an operational database which does not
contain specific sales data, but rather contains the company details, including details about
product range, outlet locations and personnel.

In terms of data modelling it is beneficial to view a data warehouse in terms of a dimen-
sional model which is composed of a central fact table and a set of surrounding dimension
tables each corresponding to one of the components or dimensions of the fact table. In the
above example the fact table models the actual sales data and each dimension, such as: the

1

product detail, the time of sale, the outlet in which the product was sold and the sales per-
sonnel, is modelled by a separate dimension table. In relational database terms the fact
table contains all the necessary foreign key attributes referencing the primary keys of the
constituent dimension tables. Conceptually this leads to a star-like data structure, which is
called a star schema. According to [KRRT98] dimensional modelling actually predates the
entity-relationship modelling approach, which is the conventional way in which to design a
relational database coupled with normalisation theory [MR92, LL99a]. Star schemas can be
refined into snowflake schemas providing support for attribute hierarchies by allowing the
dimension tables to have subdimension tables. For example, the dimension table storing the
outlet in which the product was sold may have a subdimension table containing demographic
information of the area of sale. There is debate on the benefits of having such subdimension
tables, since it will, in general, slow down query processing, but in some cases it provides
a necessary logical separation of data such as in the case of the demographic information
subdimension [KRRT98].

As a running example, we exhibit in Figure 1 a snowflake schema for a data warehouse
for keeping track of students’ attendance in a college. The fact table of this schema is
ATTENDANCE, and its dimension tables are DATE, ROOM, LECTURER, STUDENT and
COURSE; HOLIDAY is a subdimension of DATE, and DEPARTMENT is a subdimension of
LECTURER, STUDENT and COURSE. For clarity of the figure we have omitted the labels
on edges, which for each edge between two tables is the intersection of their attributes. The
snowflake schema is structured in such a way that the labels of edges represent a foreign to
primary key relationship between the parent table and its child. The meaning of the tables is
self-evident from their attributes, observing that DEPARTMENT represents the department
in which the course is given; we note that this is not necessarily the department to which the
student belongs. Thus lecturer no, student no and course no are only unique in the context
of a particular department.

Although snowflake schemas enjoy a relatively simple structure, they are widely used in
practice [KRRT98] and recommended in all the data warehouse design methodologies we
are aware of to date. The reason for their success is that they are: intuitive and easy to
understand, amenable to query optimisation since arbitrary n-way joins with the fact table
can be evaluated by a single pass through the fact table, can accommodate for aggregate data,
and are easily extensible by adding new attributes to the fact table or to one or more of the
dimension tables and new dimension tables to the schema without interfering with existing
database programs.

There has been some recent research on formalising data warehouses using a graph-
theoretic approach to model snowflake schemas. In [GMR98] it is shown how a snowflake
schema can be derived from an entity-relationship diagram and then modified accordingly
to remove uninteresting attributes. In [LAW98] several normal forms were defined for data
warehouses within a general multidimensional model where functional dependencies induce
attribute hierarchies. More recently, a methodology for deriving a snowflake schema from an
operational database schema has been presented in [HLV00]. Finally, it is worth referring to
[KM00] where the concept of a data webhouse is introduced. A data webhouse is essentially
a data warehouse intended to capture clickstream log data for ecommerce decision making.

Despite the wide use of snowflake schemas, to our knowledge, no theoretical underpin-
ning has been given to date which may point to its tangible benefits. Moreover, traditional

2

holiday_key
holiday_name
religion_flag
civil_flag

time_key
date
time
holiday_key

room_key
building
location
capacity

dept_key
dept_name
dept_address
no_of_staff

student_no
student_name
student_address
student_degree
year_of_study
dept_key

course_no
course_name
dept_key

lecturer_no
employee_ID
lecturer_name
dept_key

student_no
course_no
lecturer_no
dept_key
time_key
room_key

DATE

ATTENDANCE

ROOM

HOLIDAY LECTURER STUDENT COURSE

DEPARTMENT

Figure 1: A snowflake schema for a student attendance data warehouse

relational database design theory is a rich area with many theoretical and practical results
[MR92, LL99a], which may benefit data warehouse design. To remedy this situation we
define a normal form for data warehouses, called Snowflake Schema Normal Form (SSNF),
which captures the intuition behind the snowflake schema by building on relevant concepts
from relational database design theory. (See also Extended Snowflake Schema Normal Form
(ESSNF).)

The said definition of SSNF imposes a natural syntactic restriction on the database schema
R that it be acyclic, thus inducing a join tree structure on R [BFMY83, Fag83]. (The precise
subclass of join trees we are interested in is given in Definition 3.1; we note that a star schema
is a special case of a snowflake schema having a join tree whose height is one.) In addition,
we require that the intersection of any two relation schemas in R, which labels an edge in the
join tree, be a foreign key of one relation schema referencing the primary key of the other.
Further conditions on a database schema in SSNF are that the hierarchical structure of the
join tree induces its integrity constraints in terms of Functional Dependencies (FDs) and a
restricted class of Inclusion Dependencies (INDs). Finally, the root of the join tree, whose
relation schema corresponds to the fact table, must be in BCNF. (The precise formulation of
SSNF is given in Definition 3.3.)

Our definition of SSNF captures the intuition behind data warehouse design and our

3

results provide semantic justification for the definition of SSNF. To motivate these results
we briefly describe the concepts of independent [Sag83, AC91, Sag91] and separable [CM87]
database schemas R with respect to a set of integrity constraints Σ consisting of FDs and INDs
over R. Given a database d over R, independence implies that maintaining local consistency
of the relations in d, i.e. ensuring that d satisfies the INDs in Σ and that the relations
in d satisfy the FDs in Σ, is sufficient to ensure global consistency, i.e. the existence of a
representative instance over the set of all attributes U in R that satisfies the set F of FDs
(see Definition 2.14). The reason the representative instance is an important concept is that
it provides us with a means of testing the satisfaction of interrelational constraints, which
may hold in the join of several relations in d. Separability is an extension of independence,
which, in addition, implies that updates to relations in d are independent in the sense that
we cannot deduce additional tuples in any relation in d via a join of several relations in the
database d. We show that when R is in SSNF with respect to Σ then it is independent, and
if, in addition, the relation schemas in R are incomparable then it is also separable. Thus for
database schemas in SSNF integrity maintenance in the presence of updates is easily enforced.
We also show that tuples in the representative instance over U , i.e. tuples over the fact table
extended with the relevant information in the constituent dimension tables, can be computed
via the snowflake join (cf. star join [OG95]). This implies that the results of queries over a
data warehouse which is in SSNF maintain their consistency, i.e. satisfy the induced set of
FDs over their schema.

We also examine an information-theoretic interpretation of the snowflake schema following
the work of [Mal86, CP87, Lee87, Mal88], which allows us to accommodate probabilistic
information in the data warehouse. This is especially important, since decision making often
involves probabilistic reasoning [Lin85]. We show that the redundancy in the snowflake join of
the primary key of the fact table is zero, i.e. it is minimal. Against this measure of redundancy,
which is the standard evaluation criterion for assessing relational database schemas, SSNF is
optimal.

In summary the paper establishes a theoretical underpinning for data warehouse design by
building upon an acyclic structure and utilising the notions of independence and separability.
Since, to our knowledge, there is no formal definition of the concept of a snowflake schema
to be found in the data warehousing literature it is not possible to give a formal proof of the
equivalence of SSNF and the intuitive concept of a snowflake schema. The best we can offer is
a “concept of proof” in the sense that all examples of snowflake schemas we have encountered
in the literature satisfy SSNF.

The layout of the rest of the paper is as follows. In Section 2 we present the background
in relational database theory necessary for the rest of the paper. In Section 3 we formalise the
notion of a snowflake schema, define SSNF and present our results concerning the beneficial
properties of snowflake schemas. In Section 4 we consider an extension of the formalisation
presented in Section 3 in order to include a broader class of snowflake schemas. In Section 5 we
analyse the snowflake schema from an information-theoretic point of view and show that its
entropy has a particularly simple form. Finally, in Section 6 we give our concluding remarks.

4

2 Relations and Data Dependencies

We now present the background material necessary for the development of the ideas in the
paper; see [LL99a] for additional details on relational database theory.

We use the notation |S| to denote the cardinality of a set S. If S is a subset of T we write S
⊆ T and if S is a proper subset of T we write S ⊂ T. Furthermore, S and T are incomparable
if S 6⊆ T and T 6⊆ S. We often denote the singleton {A} simply by A, and the union of two
sets S, T, i.e. S ∪ T, simply by ST.

Definition 2.1 (Database schema and database) Let U be a finite set of attributes. A
relation schema R is a finite sequence of distinct attributes from U .

A database schema over U is a finite set R = {R0, R1, . . . , Rn}, such that each Ri ∈ R is
a relation schema and

⋃
i Ri = U .

We assume a countably infinite domain of values, D, partially ordered; without loss of
generality we assume that D is an antichain, i.e. ∀c1, c2 ∈ D, c1 ≤ c2 if and only if c1 = c2.
The domain of R, denoted as DOM(R), is defined as the Cartesian product D × . . .×D (|R|
times). An R-tuple (or simply a tuple whenever R is understood from context) is a member
of DOM(R).

A relation r over R is a finite (possibly empty) set of R-tuples. A database d over R is a
family of n + 1 relations {r0, r1, . . . , rn} such that each ri ∈ d is over Ri ∈ R.

From now on we let R = {R0, R1, . . . , Rn} be a database schema over U and d =
{r0, r1, . . . , rn} be a database over R. Furthermore, we let r ∈ d be a relation over a re-
lation schema R ∈ R. As usual uppercase letters (which may be subscripted) from the end of
the alphabet such as X, Y, Z will be used to denote sets of attributes, while those from the
beginning of the alphabet such as A, B, C will be used to denote single attributes or singleton
sets of attributes.

Definition 2.2 (Projection) The projection of an R-tuple t onto a set of attributes Y ⊆
R, denoted by t[Y], is the restriction of t to Y. The projection of a relation r over R onto Y
⊆ R, denoted as πY(r), is defined by πY(r) = {t[Y] | t ∈ r}. The projection of a relation s
over U onto R, denoted as πR(s), is the database {πR0(s), πR1(s), . . . , πRn(s)}.

Definition 2.3 (Natural join) The natural join (or simply the join), 1, of two relations r1

over R1 and r2 over R2 is a relation r over R = R1 ∪R2 defined by

r1 1 r2 = {t | ∃t1 ∈ r1 and ∃t2 ∈ r2 such that t[R1] = t1 and t[R2] = t2}.

Definition 2.4 (Join dependency) A Join Dependency (or simply a JD) for a database
schema R is a statement of the form 1[R]. A JD 1[R] is said to be trivial if one of its
components is U .

A JD 1[R] is satisfied in a relation r over U , (alternatively, R is a lossless join decompo-
sition of U), denoted by r |= 1[R], if

r = πR0(r) 1 πR1(r) 1 . . . 1 πRn(r).

5

Definition 2.5 (Functional dependency) A Functional Dependency over U (or simply an
FD) is a statement of the form X → Y, where X, Y ⊆ U are sets of attributes. An FD of the
form X → Y is said to be trivial if Y ⊆ X.

An FD X → Y is satisfied in a relation r ∈ d over R, denoted by r |= X → Y, whenever
XY ⊆ R and ∀t1, t2 ∈ r, if t1[X] = t2[X] then t1[Y] = t2[Y]. A relation r ∈ d satisfies a set F
of FDs over U , if for all α ∈ F, r |= α.

From now on we let F be a set of FDs over U .

Definition 2.6 (Closure) The set of FDs that are logically implied by F is denoted by F+.
A set of FDs G over U is a cover of F if G+ = F+.

The closure of a set of attributes X ⊆ U with respect to F, denoted by CF(X), is the set
of attributes {A | X → A ∈ F+}.

Definition 2.7 (Embedded FDs and dependency preservation) The projection of F
onto a relation schema R, denoted by F+|R, is the set of FDs X → Y ∈ F+ such that XY ⊆
R. An FD X → Y is embedded in R if XY ⊆ R.

A database schema R is dependency preserving with respect to F (alternatively R preserves
F) if there is a cover G of F such that each FD X → Y ∈ G is embedded in some Ri ∈ R.

From now on we assume that R is a dependency preserving database schema with respect
to F and let Fi be a cover of F+|Ri which is embedded in Ri; we assume without loss of
generality that Fi is a canonical cover, i.e. for all X → Y ∈ Fi, Y = {A} and A 6∈ X. (See
[LL99a] for more details on the formal properties of FDs.)

Definition 2.8 (Inclusion dependency) An Inclusion Dependency (or simply an IND)
over R is a statement of the form Ri[X] ⊆ Rj [Y], where Ri, Rj ∈ R and X ⊆ Ri, Y ⊆ Rj are
sequences of distinct attributes such that |X| = |Y|. An IND is said to be trivial if it is of the
form R[X] ⊆ R[X]. An IND is said to be typed if it is of the form R[X] ⊆ S[X].

An IND Ri[X] ⊆ Rj [Y] over R is satisfied in d, denoted by d |= Ri[X] ⊆ Rj [Y], whenever
πX(ri) ⊆ πY(rj), where ri, rj ∈ d are the relations over Ri and Rj , respectively. A database
d over R satisfies a set I of INDs over R, if for all α ∈ I, d |= α.

From now on we let I be a set of INDs over R and let Σ = F ∪ I. A database d over R
satisfies Σ, denoted by d |= Σ, whenever each ri ∈ d satisfies all the FDs in Fi and d satisfies
all the INDs in I. Also, we denote by Σ+ the set of FDs and INDs that are logically implied
by Σ.

Definition 2.9 (Graph representation of INDs) The graph representation of a set of
INDs I over R is a directed graph GI = (N, E), which is constructed as follows. Each relation
schema R in R has a separate node in N labelled by R, i.e. we do not distinguish between
nodes and their labels. There is an edge (R, S) ∈ E if and only if there is a nontrivial IND
R[X] ⊆ S[Y] ∈ I.

Definition 2.10 (Dag-like INDs) A set I of INDs over R is dag-like if

6

1) I is a set of typed INDs, and

2) GI is a rooted directed acyclic graph.

Definition 2.11 (Keys and key-based INDs) A set of attributes X ⊆ Ri is a superkey
for Ri with respect to Fi (or simply X is a superkey for Ri if Fi is understood from context) if
CFi(X) = Ri holds; X is a key for Ri with respect to Fi if it is a superkey for Ri with respect
to Fi and for no proper subset Y ⊂ X is Y a superkey for Ri with respect to Fi. The primary
key of Ri is one of the keys for Ri with respect to Fi, which is designated by the database
designer.

A database schema R is in Boyce-Codd Normal Form (or simply BCNF) with respect to
F if for all Ri ∈ R, for all nontrivial FDs X → Y ∈ Fi, X is a superkey for Ri with respect to
Fi.

An IND Ri[X] ⊆ Rj [Y] is key-based if Y is a key for Rj with respect to Fj . When Y is
the primary key of Rj then X is called a foreign key of Ri.

Definition 2.12 (No interaction between FDs and INDs) A set Σ = F ∪ I of FDs and
INDs do not interact when X → Y ∈ Σ+ if and only if X → Y ∈ F+ and R[X] ⊆ S[Y] ∈ Σ+

if and only if R[X] ⊆ S[Y] ∈ I+.

In Section 3 we will show that for the subclass of dag-like INDs we are interested in, F
and I do not interact.

The chase procedure provides us with a very useful algorithm which forces a database to
satisfy a set of integrity constraints.

Definition 2.13 (Chase procedure for FDs) We assume a countably infinite domain of
marked nulls, V, which is disjoint from D; without loss of generality we assume that V is
linearly ordered and that ∀c ∈ D, ∀v ∈ V, c < v.

Given a tuple t ∈ ri, where ri ∈ d is over Ri ∈ R, pad(t) is a tuple over U such that
pad(t)[Ri] = t, and for all A ∈ U −Ri, pad(t)[A] ∈ V, i.e. it is a marked null. Given a relation
ri ∈ d over Ri ∈ R we define pad(ri) =

⋃
t∈ri

pad(t), and pad(d) =
⋃

ri∈d pad(ri), such that
for all t1, t2 ∈ pad(d), for all A, B ∈ U , if t1[A], t2[B] ∈ V, and either t1 6= t2 or A 6= B, then
t1[A] 6= t2[B], i.e. all marked nulls in distinct positions of pad(d) are distinct.

The chase of d with respect to a set F of FDs over U , denoted by CHASE(d, F), is the
result of applying the FD rule, as defined below, to the current state, say r̂, of CHASE(d,
F) until it cannot be further applied to r̂ or until a contradiction is detected. The state of
CHASE(d, F) prior to the first application of the FD rule is pad(d).

FD rule: If X → Y ∈ F and ∃t1, t2 ∈ r̂ such that t1[X] = t2[X] but t1[Y] 6= t2[Y], then

1) if for some A ∈ Y such that t1[A] 6= t2[A] and t1[A], t2[A] ∈ D, then a contradiction
is detected, otherwise

2) for all A ∈ Y, change all the occurrences in r̂ of the larger of the values of t1[A]
and t2[A] to the smaller of the values of t1[A] and t2[A].

7

Often we refer to an application of the FD rule during the computation of the chase as a
chase step. When the FD rule cannot be further applied to the current state, r̂, of CHASE(d,
F) or a contradiction is detected, then we remove subsumed tuples from the result to obtain
CHASE(d, F). A tuple t2 is subsumed by a tuple t1, if t1 6= t2 and for all A ∈ U , t1[A] ≤
t2[A].

We note that all operations that we have defined on relations, including dependency
satisfaction, equally apply to relations which have marked nulls in them. We further note
that, on treating the marked nulls in CHASE(d, F) as distinct domain values, CHASE(d, F)
|= F if and only if no contradictions are detected during the computation of the chase [Hon82].

Definition 2.14 (Representative instance and consistency) The representative instance
[Sag83] of d with respect to F, denoted as RIF(d) (or simply RI(d) whenever F is understood
from context), is constructed as follows. First we invoke the chase procedure on pad(d) with
respect to F. If CHASE(d, F) |= F, then we set RI(d) to CHASE(d, F), otherwise we set
RI(d) to pad(d). In either case we replace all the marked nulls in the resulting relation with
the minimum value of all these marked nulls.

If there are no contradictions in CHASE(d, F) then we say that RI(d) satisfies F, denoted
by RI(d) |= F. A database d is said to be consistent with respect to F if RI(d) |= F, otherwise
it is said to be inconsistent with respect to F.

Definition 2.15 (Independent and separable database schemas) A database schema
R is said to be independent [Sag83, AC91, Sag91] with respect to Σ if for all databases d over
R, d |= Σ implies that RI(d) |= F, i.e. d satisfies Σ implies that d is consistent with respect
to F.

For a relation s over U , which may contain marked nulls, we define π↓R(s) to be the
database obtained from πR(s) after removing from each resulting relation over Ri all tuples
that have at least one marked null over any attribute in Ri.

A database schema R is said to be separable [CM87] with respect to Σ if R is independent
with respect to Σ and for all d over R such that d |= Σ, d = π↓RRI(d).

We next define the notion of an acyclic database schema [Fag83] by using the concept
of a join tree [BFMY83]. (The original definition of acyclicity does not require that the
intersection of R and S be nonempty.)

Definition 2.16 (Join tree and acyclic database schema) A join tree for R is a tree
whose node set is R such that

1) each of its edges (R, S) is labelled by the nonempty set of attributes R ∩ S; and

2) for every distinct pair R, S ∈ R and for every attribute A ∈ R ∩ S, each edge along the
unique path between R and S includes A in its label.

A database schema R is acyclic if it has a join tree, which we denote by JT(R).

8

Definition 2.17 (Rooted tree) When we distinguish a node in a tree, T, as its root, we
can view T as a directed graph with unique directed paths from the root of T to all its leaves
[BH90].

From now on we will assume that trees are rooted and consider them as special cases of
directed acyclic graphs.

We define the height of a node n in a tree T recursively as follows: if n is the root node of
T then its height is zero, otherwise the height of n is one plus the height of its parent node.
The height of T is defined to be the maximal height among all the leaf nodes of T.

A topological sort of a directed acyclic graph G is a process of assigning a linear ordering
to the nodes of G so that if there is an edge in G from node ni to node nj , then ni precedes
nj in the linear ordering.

We say that a node nj is a descendant of a node ni in G if there is a directed path from
ni to nj ; we take ni to be a descendant of itself. (We take parent to be irreflexive.)

3 Snowflake and Star Schemas

We formalise the notion of a snowflake schema and its important special case the star schema
as an acyclic database schema having a join tree which satisfies two structural properties. We
then define a normal form for snowflake schemas with respect to a set of FDs and INDs and
show that it has several fundamental desirable properties. In particular, our results imply
that the relations over the fact and dimension tables can be updated independently of each
other as long as referential integrity is maintained. Moreover, we show that when in SSNF
the data warehouse can be queried via the snowflake join which is the join of the relation over
the fact table with the relations over its dimension and subdimension tables.

We next present the notion of a snowflake schema as a special kind of an acyclic database
schema. The definition captures the strucutral properties of snowflake schemas regardless
of the specific integrity constraints that need to be maintained; the data dependencies of
snowflake schemas are introduced in Definition 3.3.

Definition 3.1 (Snowflake and star schema) A database schema R is a snowflake schema
if it is acyclic and its join tree has a designated root, which we take to be R0, satisfying the
following structural conditions:

1) no two distinct edges have identical labels; and

2) if there is a label Xj in JT(R) such that {Xi1, Xi2, . . . , Xim} is the set of all labels in
JT(R), satisfying Xj ⊂ Xik, for k = 1, 2, . . . , m, and for no Xik in this set does there
exist a label X ′ in JT(R) satisfying Xj ⊂ X ′ ⊂ Xik, then for some k ∈ {1, 2, . . . , m},
Rik is the parent node of Rj in JT(R), where Xj = Rik ∩Rj and Xik = Ri ∩Rik is the
label of the edge (Ri, Rik), Ri being the parent of Rik in JT(R).

If R is a snowflake schema and the height of JT(R) is one, then R is called a star schema.
When R is a snowflake schema, R0 is called the fact table while the Ri’s of height one are

called the dimension tables and the remaining relation schemas of height greater than one are
called the subdimension tables.

9

As will be clarified below there is a semantic correspondence between our notion of a
snowflake schema and the data dependencies that emanate from it.

We observe that condition (1) above is a restriction on the class of acyclic database
schemas while condition (2), which does not restrict the class of acyclic database schemas,
restricts the class of join trees. The motivation for condition (1) stems from the fact that
labels of the form Xi represent primary keys and thus there is no justification for having two
separate relation schemas having identical primary keys, since they can be coalesced into a
single relation schema. Regarding condition (2) it enforces a hierarchical dependence of the
primary keys of relation schemas in terms of their set inclusion relationship, thereby modelling
many-to-one relationships.

We exhibit the significance of condition (2) with a simple example. Let R = {R0, R1, R2},
with R0 = (A,B,C), R1 = (A,B) and R2 = (A). The join tree having R0 as the root with two
children R1 and R2 violates condition (2), while the join tree having R0 as the root with a
single child R1, and R1 having a single child R2, satisfies condition (2).

Referring back to the running example of Figure 1, we observe that its underlying database
schema is acyclic and therefore it has a join tree. Suppose we remove any two of the incoming
edges to DEPARTMENT; for concreteness assume we remove the edges from LECTURER
to DEPARTMENT and from STUDENT to DEPARTMENT. Then it can be seen that con-
ditions (1) and (2) are satisfied for this schema and thus it is a snowflake schema. Regarding
condition (1) the labels on the two edges from ATTENDANCE to LECTURER and STU-
DENT represent the primary keys of the two latter dimension tables, and regarding condition
(2) {dept key} is the largest proper subset of {course no, dept key} that is also the label of
the edge from COURSE to DEPARTMENT.

The next definition of the join graph of a snowflake schema ensures that the hierarchical
dependence induced by condition (2) is maintained between all its dimensions and subdimen-
sions. It also allows us to infer a set of typed INDs for the snowflake schema; see Definition 3.3.

Definition 3.2 (The join graph of a snowflake schema) We convert the join tree, JT(R),
of a snowflake schema R, into a directed acyclic graph, called the join graph of R and de-
noted by JG(R), as follows. For every relation schema Ri, whose parent is R′

i and such that
Xi = R′

i ∩Ri, add an edge from Ri to Rj whose parent is R′
j with Xj = R′

j ∩Rj , if Xj ⊂ Xi

and there is no other label X ′ in JT(R) satisfying Xj ⊂ X ′ ⊂ Xi. The label of the new edge
(Ri, Rj) is Xj .

We note that in JG(R) if a node has more than one parent, then the labels of its incoming
edges are identical; this is a byproduct of R being acyclic. We further note that JG(R) is
acyclic, since the new edges are oriented away from the root node.

Referring back to Figure 1, consider the join tree resulting from removing the edges from
LECTURER and STUDENT to DEPARTMENT. The resulting join tree satisfies Defini-
tion 3.1. On using Definition 3.2 we convert the said join tree to the corresponding join graph
by adding the edges from LECTURER and STUDENT to DEPARTMENT.

Let R be a snowflake schema. From now on we assume that whenever Ri and Rj are
distinct relation schemas in R, then i < j if and only if Ri precedes Rj in a topological sort
of JG(R). Moreover, we let

10

1) Xi = Rj ∩Ri, for i = 1, . . . , n, where Rj is the parent node of Ri in JT(R), be the label
of the edge from Rj to Ri;

2) X0 =
⋃k

i=1 Xi, where {R1, R2, . . . , Rk} is the set of children of R0 in JT(R); and

3) Yi = Ri −Xi, for i = 0, 1, . . . , n.

We observe that for all i, j ∈ {0, 1, . . . , n}, with i 6= j, Yi ∩ Yj = ∅.
We next define a normal form for snowflake schemas which imposes further restrictions

on the labels of edges in the join tree of R taking into account the functional and inclusion
dependencies. The main motivation behind the definition is that it encapsulates the intu-
itions behind the snowflake schema, which have been advocated by database practitioners,
by capturing the hierarchical dependence between dimensions and subdimensions via the join
tree and data dependency information via primary key to foreign key relationships.

Definition 3.3 (Snowflake schema normal form) A database schema R is in Snowflake
Schema Normal Form (SSNF) with respect to a set Σ = F ∪ I of FDs and INDs over R (or
simply in SSNF if Σ is understood from context), if

1) R is a snowflake schema;

2) R0 is in BCNF with respect to F0;

3) for i = 0, 1, . . . , n, Xi is the primary key of Ri with respect to Fi;

4) for i = 0, 1, . . . , n, CF(Ri) =
⋃

j≥i Rj such that Rj is a descendant of Ri in JG(R); and

5) we have I = {Ri[Xj] ⊆ Rj [Xj] | i, j ∈ {0, 1, . . . , n} and Ri is a parent of Rj in JG(R)}.

Condition (1) is a structural restriction that was motivated after Definition 3.1. Condi-
tion (2) minimises the redundancy of the relation over the fact table. Condition (3) is the
standard requirement of a snowflake schema [KRRT98]. It implies that R is a lossless join
decomposition of U [LL99a]. Condition (4) maximises the efficiency of queries involving re-
lations over dimension/subdimension tables, since it specifies that the sequence of joins that
is needed to query information emanating from any such table involves only itself and its
subdimension tables. Condition (5) guarantees referential integrity, noting that I is dag-like
by (1) and key-based by (3). We observe that due to (1) and (3) it is always true that

⋃
j≥i

Rj ⊆ CF(Ri).

We believe that SSNF captures most situations that arise in practice, and we have not
found a natural example of a snowflake schema which is not in SSNF. Although there may
be good reason to further restrict dimension tables to satisfy higher normal forms than first
normal form, this is not necessary to obtain our main results.

The following lemma is a corollary of the main result in [LL01] due to the special structure
of snowflake schemas.

Lemma 3.1 If Σ is in SSNF then F and I do not interact. 2

11

We note that as a result of Lemma 3.1 we obtain the desirable property that the implication
problem for FDs or INDs in Σ is polynomial-time decidable [BB79, CV83]. (In general, when
there is interaction between the FDs and INDs, the implication problem for FDs and typed
INDs, with acyclic GI , is NP-hard [CK86].)

The next lemma shows that in the special case when only primary and foreign keys are
specified then R is in SSNF; the lemma does not cover any situation where F has additional
FDs. This special case of SSNF is important, since it is directly induced by the structure of
a snowflake schema and reflects practitioners’ intuition.

Lemma 3.2 Let R be a snowflake schema and F = {X0 → Y0, X1 → Y1, . . . , Xn → Yn} be
a set of FDs over U , where for i = 1, 2, . . . , n, F+|Xi contains only trivial FDs. Also, let I =
{Ri[Xj] ⊆ Rj [Xj] | i, j ∈ {0, 1, . . . , n} and Ri is a parent of Rj in JG(R)} be a set of INDs
over R. Then R is in SSNF with respect to Σ, where Σ = F ∪ I.

Proof. Conditions (1) and (5) of SSNF are evident from the statement of the lemma, so it
remains to show that conditions (2), (3) and (4) hold.

To prove (2) it is sufficient to show that {X0 → Y0} is a cover of F0. By Definition 3.1
and the notation introduced after Definition 3.2 we have that for all Ri distinct from R0 we
have Yi∩R0 = ∅. Moreover, Y0∩Xi = ∅, so the result follows. (In fact, with the assumptions
of the lemma it is not hard to show the tighter result that R is in BCNF with respect to F.)

Condition (3) follows from the assumption that, for i = 1, 2, . . . , n, F+|Xi contains only
trivial FDs and the fact that R0 is in BCNF with respect to F0.

It remains to establish (4). By the observation after Definition 3.3 we have
⋃

j≥i Rj ⊆
CF(Ri), so we need to show that CF(Ri) ⊆

⋃
j≥i Rj . Suppose that this is not the case. Then,

for some relation schema Rj which is not a descendant of Ri we have a nontrivial FD Xj

→ A ∈ F+, where Xj ⊆ CF(Ri) and A 6∈ Ri. By the structure of F and Definition 2.16 it
follows that Xj ⊆ Xi. By part (1) of Definition 3.1 Xj 6= Xi implying that Xj ⊂ Xi, and by
Definitions 3.1 and 3.2 Rj must be a descendant of Ri. This concludes the result. 2

Referring back to Figure 1 let R be the snowflake schema comprising the tables in the
figure and let F and I be the set of FDs and INDs over R, which are induced by the structure
of its join tree. That is, F contains the FDs:

time key → {date, time, holiday key},
holiday key →{holiday name, religion flag, civil flag},
{lecturer no, dept key} → {employee ID, lecturer name},
{student no, dept key} → {student name, student address, student degree, year of study},
{course no, dept key} → course name,
room key → {building, location, capacity} and
dept key → {dept name, dept address, no of staff}

and I contains the INDs:

ATTENDANCE[time key] ⊆ DATE[time key],
DATE[holiday key] ⊆ HOLIDAY[holiday key],
ATTENDANCE[lecturer no, dept key] ⊆ LECTURER[lecturer no, dept key],

12

LECTURER[dept key] ⊆ DEPARTMENT[dept key],
ATTENDANCE[student no, dept key] ⊆ STUDENT[student no, dept key],
STUDENT[dept key] ⊆ DEPARTMENT[dept key],
ATTENDANCE[course no, dept key] ⊆ COURSE[course no, dept key],
COURSE[dept key] ⊆ DEPARTMENT[dept key] and
ATTENDANCE[room key] ⊆ ROOM[room key].

By Lemma 3.2 it follows that R is in SSNF with respect to Σ = F ∪ I. We note that if we
add an attribute to DEPARTMENT such as post code and the additional FD, dept address
→ post code, then the conditions of Lemma 3.2 do not hold, since DEPARTMENT would
not be in BCNF. Despite this R would still be in SSNF.

The next result shows that SSNF implies independence, and if, in addition, the relation
schemas in R are pairwise incomparable then SSNF implies separability.

Theorem 3.3 The following statements are true:

1) If R is in SSNF with respect to Σ then it is independent with respect to Σ.

2) If R is in SSNF with respect to Σ and for all i, j ∈ {0, 1, . . . , n}, with i 6= j, Ri and Rj

are incomparable, then it is separable with respect to Σ.

Proof. Let t ∈ pad(d) originate from Ri and let t′ ∈ r′, where r′ is the current state of
CHASE(d, F) and t′ is the current state of t. Moreover let ρ(t′) be the set of all attributes
A ∈ U such that either t′[A] is nonnull or is a marked null which was equated to some
other marked null in obtaining r′ from pad(d). Thus ρ(t) = Ri and ρ(t) ⊆ ρ(t′). Moreover,
ρ(t′) ⊆ CF(Ri) by a straightforward induction on the number of chase steps which were
applied to pad(d) in order to obtain r′.

For part (1) we assume that R is in SSNF with respect to Σ but is not independent with
respect to Σ. Thus there is a database d over R such that d |= Σ but RI(d) is inconsistent
with respect to F. Consider the first chase step, during the computation of CHASE(d, F),
which detects a contradiction when applying an FD, say X → A, to the two tuples, say t′i and
t′j , in the current state of the chase. Moreover, assume that t′i and t′j are the current states of
ti, tj ∈ pad(d) originating from Ri and Rj , respectively. It follows that XA ⊆ CF(Ri), CF(Rj).

We claim that i and j are such that either Ri is a descendant of Rj in JG(R) or vice
versa. To prove the claim assume that neither Ri nor Rj is a descendant of the other in
JG(R). Now, by condition (4) of SSNF XA is a subset of the union of the descendant relation
schemas of both Ri and Rj . Therefore, by condition (1) of SSNF, it must be the case that
XA ⊆ Ri, Rj , since R being acyclic implies that each edge along the unique path in JT(R)
between Ri and Rj includes XA in its label. However, XA cannot be a subset of any key for
any relation schema with respect to its set of FDs; this contradicts condition (3) of SSNF.
Hence the said claim follows.

There are two further steps to consider. Firstly, consider the case when i = j. Let Y
be the maximal set of attributes Y ⊆ Ri such that Y ⊆ X and XA ⊆ CF(Y). Now, if A
∈ Ri then, since both t′i and t′m are the current states of two distinct tuples, say ti and
tm, which originate from Ri, it must be that t′i[YA] = ti[YA] and t′m[YA] = tm[YA]. Thus
ri 6|= X → A, which contradicts our assumption that d |= F implying that RI(d) must be
consistent. On the other hand, if A 6∈ Ri, then due to condition (4) of SSNF A ∈ Rik

13

for some descendant Rik of Ri. Thus by condition (5) of SSNF we have a chain of INDs,
Ri[Xi1] ⊆ Ri1[Xi1], Ri1[Xi2] ⊆ Ri2[Xi2], . . . , Ri(k−1)[Xik] ⊆ Rik[Xik] such that by condition
(3) of SSNF Xij is the primary key of Rij , for j = 1, 2, . . . , k, and Xi1 ⊆ Y. It follows that
rik 6|= Xik → A, which contradicts our assumption that d |= F implying that RI(d) must be
consistent. We note that A cannot be a member of two relation schemas on distinct paths
leading out of Ri, since by the acyclicity of R this would imply that A ∈ Ri.

Secondly, consider the case when i 6= j; assume without loss of generality that Rj is a
descendant of Ri. We consider the various possibilities for A to be included in Ri or Rj . If A
∈ Ri, then it is also the case that A ∈ Rj , since XA ⊆ CF(Ri), CF(Rj), and thus XA ∈ Ri∩Rj

contradicting the fact that Xj is a key for Rj . If A ∈ Rj but A 6∈ Ri, then we can deduce
that rj 6|= X ′ → A, for some subset X ′ ⊆ Xj , which contradicts our assumption that d |= F
implying that RI(d) must be consistent. Finally, if A 6∈ Ri, Rj , then by an argument similar
to the case when i = j we can arrive at a contradiction of our assumption that d |= F, which
implies that RI(d) must be consistent.

For part (2) we need to show that for all d over R such that d |= Σ, d = π↓RRI(d). Let d
be a database over R and assume that d |= Σ. By part (1) d is consistent, i.e. RI(d) |= F.
Let d′ = π↓RRI(d).

Let r′i be the relation in d′ over Ri ∈ R. We need to show that r′i = ri, where ri is the
relation in d over Ri. Let tj ∈ pad(d) originate from Rj , with j 6= i, and let t′j ∈ RI(d) be the
final state of tj . Assume that t′j [Ri] is nonnull and thus CF(Ri) ⊆ CF(Rj). We claim that
t′j [Ri] ∈ ri proving the result.

There are three cases to consider. In the first case neither Ri nor Rj is a descendant of the
other in JG(R). It follows that Ri ⊆ Rj by conditions (1) and (4) of SSNF, since R is acyclic,
which contradicts our assumption that Ri and Rj are incomparable. In the second case Ri

is a descendant of Rj in JG(R). By condition (5) of SSNF tj [Xi] = ti[Xi] for some ti ∈ ri,
and by condition (3) of SSNF and the fact that d is consistent it follows that t′j [Ri] = ti as
required. In the third case Rj is a descendant of Ri in JG(R). By condition (4) of SSNF we
have CF(Ri) = CF(Rj). Moreover, by the incomparability of Ri and Rj there is an attribute,
say A, in Ri−Rj that does not appear in the label of any edge in JG(R) on the unique path
between Ri and Rj . Thus by condition (4) of SSNF A 6∈ CF(Rj) leading to a contradiction.
This proves the result. 2

In part (2) of Theorem 3.3 we cannot relax the restriction that the Ri in R be incompa-
rable. As a counterexample consider a database schema R = {R0, R1}, with R0 ⊂ R1. In
this case R is not separable with respect to Σ = {R0[R0] ⊆ R1[R0], R0 → (R1 −R0)}, since,
in general, r0 ⊂ πR0(r1), where d = {r0, r1} is a database over R satisfying Σ.

We next define the snowflake join of a database d over a snowflake schema R.

Definition 3.4 (Snowflake join and star join) Let R be a snowflake schema and let Rα0 ,
Rα1 , . . ., Rαn be a topological sort of JG(R). The snowflake join of a database d over R,
denoted as SNOW(d), is given by

SNOW(d) = (· · · (rα0 1 rα1) 1 · · · 1 rαn).

When R is a star schema then SNOW(d) is called the star join of d.

14

The next theorem shows that the snowflake join contains the tuples over the fact table
extended with the relevant information in the constituent dimension and subdimension tables.
This implies that the results of queries over a data warehouse, which is in SSNF, maintain
their consistency, i.e. satisfy the projected set of FDs over their schema.

Theorem 3.4 Let R be in SSNF with respect to Σ. Then RI↓(d) = SNOW(d), if d |= Σ,
where RI↓(d) is the set of all tuples in RI(d) having no null values in them.

Proof. Suppose that d |= Σ and thus by Theorem 3.3 d is consistent, i.e. RI(d) = CHASE(d,
F) and RI(d) |= F. We prove the result by induction on the height, say k, of JT(R).

(Basis): If k = 0, then the result is trivial, since d = {r0} and thus RI(d) = RI↓(d) = r0,
since by hypothesis d |= Σ.

(Induction): Assume the result holds when the height of JT(R) is k, with k ≥ 0; we then
need to prove that the result holds when the height of JT(R) is k + 1.

Let Rα0 , Rα1 , . . . , Rαm be the set of all relation schemas in JT(R) whose height is less
than or equal to k, and let dk = {rα0 , rα1 , . . . , rαm}. Then by inductive hypothesis, noting
condition (2) of Definition 3.1, we have

RI↓(dk) = SNOW(dk) = (· · · (rα0 1 rα1) 1 · · · 1 rαm).

Now, let Rαm+1 , . . . , Rαn be the remaining relation schemas in R whose height in JT(R)
is k + 1. It remains to show that

RI↓(d) = (· · · (RI↓(dk) 1 rαm+1) 1 · · · 1 rαn) = SNOW(d).

Now, RI↓(d) ⊆ SNOW(d) by conditions (3) and (5) of SSNF, since RI(d) = CHASE(dk, F).
So we need to establish that SNOW(d) ⊆ RI↓(d). Now, since d |= F, we have πRj (SNOW(d))
|= Fj , where j ∈ {m + 1, . . . , n}. Therefore, on using the inductive hypothesis, SNOW(d)
|= F, since by condition (4) of SSNF and the fact that Rj is a leaf node in JT(R) we have
CF (Rj) = Rj . The result that SNOW(d) ⊆ RI↓(d) follows, on account of the fact that
SNOW(dk) joins with a relation rj over Rj only through a foreign to primary key relationship,
where referential integrity is maintained through the INDs in I. 2

4 An Extension of Snowflake Schemas

We observe that Definition 2.16 of acyclicity is more restrictive, i.e. condition (1), than the
classical one encountered in [BFMY83]. Hereafter we extend the concept of snowflake schema
by relaxing this restriction so as to include a broader class of data warehouse designs. We
demonstrate this extension via an example.

Consider part of a data warehouse dealing with a distributed supply chain, whose fact
table is FACT and whose dimension tables are CUSTOMER, SUPPLIER and NATION. The
attributes of the tables are given by

FACT = (cust key, supp key, amount),
CUSTOMER = (cust key, cname, caddress, cust nation key),
SUPPLIER = (supp key, sname, saddress, supp nation key) and
NATION = (nation key, nname).

15

This database schema is acyclic according to the original definition of acyclicity given in
[BFMY83] but it is not acyclic according to Definition 2.16, since NATION does not have
any attributes in common with any of the other relation schemas. To alleviate this problem
we relax Definition 2.16 of a join tree by modifying part (1) of the definition so that R ∩ S
may be empty. Moreover, we relax part (1) in Definition 3.1 of a snowflake schema R so that
the condition that no two distinct edges have identical labels applies only to edges having
nonempty labels. We note that as a result of these modifications we may consider separately
all relation schemas, say R, whose intersection with their parent schema in the join tree, say
S, is empty. For the rest of this section we will let S be the database schema resulting from
removing all such relation schemas R from a snowflake schema R. Regarding our example R =
{FACT, CUSTOMER, SUPPLIER, NATION} and S = {FACT, CUSTOMER, SUPPLIER}.

Continuing the example, F contains the FDs:

{cust key, supp key} → amount,
cust key → {cname, caddress, cust nation key},
supp key → {sname, saddress, supp nation key} and
nation key → nname

and I contains the INDs:

FACT[cust key] ⊆ CUSTOMER[cust key],
FACT[supp key] ⊆ SUPPLIER[supp key],
CUSTOMER[cust nation key] ⊆ NATION[nation key] and
SUPPLIER[supp nation key] ⊆ NATION[nation key].

We now modify Definition 3.3 of SSNF so that R is in Extended Snowflake Schema Normal
Form (ESSNF) if

1) S (rather than R) is in SSNF;

2) I is a set of key-based INDs; and

3) the graph representation of I, GI , is acyclic; here we may assume that GI is connected.

For our example it can easily be verified that R is in ESSNF, since (1) S satisfies Def-
inition 3.3 of SSNF, (2) I is key-based, due to the fact that nation key is the primary key
of NATION and (3) GI is acyclic. We note that in this example F and I possess the desir-
able property of having no interaction, since all the relation schemas in R are in BCNF; see
Theorem 10.21 in [MR92] and Corollary 3.6 in [LL99b].

We can extend the results of Section 3 for a database schema R in ESSNF via a natural
transformation of R into a database schema R′ that can be shown to be in SSNF. This
provides justification for the definition of ESSNF.

We demonstrate the transformation on our example without giving the formal definition.
We tranform R into R′ = {FACT, CUSTOMER′, SUPPLIER′}, where

16

CUSTOMER′ = (cust key, cname, caddress, cust nation key, cust nname),
SUPPLIER′ = (supp key, sname, saddress, supp nation key, supp nname),

and the FDs cust nation key → cust nname and supp nation key → supp nname replace the
FD nation key → nname in F. On the database level, we replace the relation CUSTOMER by
its natural join with the relation over NATION, after a suitable renaming of attributes, and
correspondingly we replace the relation SUPPLIER by its natural join with the relation over
NATION again after a suitable renaming of attributes. As a result the two INDs involving
NATION are no longer relevant in the context of R′. We note, however, that FACT is still
in BCNF.

Although it is tempting to extend SSNF to cyclic database schemas, it is an open problem
to what extent our results will generalise in such cases.

5 Information-Theoretic Interpretation

We now utilise the information-theoretic treatment of relational databases developed in
[Mal86, CP87, Lee87, Mal88]. This approach is important since it allows us to accommo-
date for probabilistic information in the data warehouse, which is fundamental in decision
making [Lin85]. Herein we show that the redundancy in the snowflake join of the primary
key of the fact table is zero, i.e. it is minimal.

We interpret Ri as a sequence of distinct random variables, and assume that tuples in
relations ri over Ri are distributed according to a probability function pi, where pi(t) is the
probability of a tuple t over Ri for t ∈ DOM(Ri); in particular, t ∈ ri if and only if pi(t) > 0.
(In the absence of any further information we can assume a uniform distribution of the tuples
in a relation.) The distribution of the projection πX(ri), with X ⊆ Ri, is interpreted as
the marginal distribution of X based on pi. (See [Hil91] for a tutorial which links relational
database concepts with probability concepts.)

Definition 5.1 (Entropy) The entropy of a set X of attributes of a relation schema R with
respect to a relation r over R, denoted by Hr(X) (or simply H(X) whenever r over R is
understood from context), is given by

Hr(X) =
∑

x∈DOM(X)

p(x) log p(x),

where p is the probability function for R, i.e. p(t) > 0 if and only if t ∈ r. We take the base
of the logarithm to be 2 and use the standard convention that 0 log 0 = 0.

The next theorem was proved in [Mal86, Lee87].

Theorem 5.1 The following statements are true:

1) H(X) ≤ H(XY).

2) A relation r over R satisfies the FD X → Y if and only if H(X) = H(XY).

17

3) H(Y | X) = H(XY) − H(X), where H(Y | X) is the entropy of Y conditional on X, i.e.

H(Y | X) =
∑

xy∈DOM(XY)

p(xy) log p(y | x). 2

Definition 5.2 (Redundancy) The redundancy in a relation r over R of a set of attributes
X ⊆ R is the conditional entropy H(R−X | X).

We observe that by Theorem 5.1 H(R−X | X) ≥ 0, with equality if and only if H(X) =
H(R), i.e. when X is a superkey for R. If X is not a superkey for R then redundancy will arise
when some subset of r satisfies a nontrivial FD X → Y, with XY ⊂ R. The most important
case of redundancy is when Y ⊆ CF(X) implying that r satisfies the nontrivial FD X → Y but
X is not a superkey for R. This provides a justification for BCNF, since R is in BCNF with
respect F if and only if all the relations in d have no redundancy due to F. (For an in-depth
treatment of redundancy in relational databases when the constraints are FDs and INDs, see
[LV00].)

We now discuss a general justification of SSNF in terms of entropy, when R is a star
schema, i.e. the height of JT(R) is one. Let us assume that the cardinality of the relation ri

over the ith dimension table is Ni, for i = 1, 2, . . . , n. Then the cardinality N0 of the relation
r0 over the fact table R0 is of the order of

∏n
i=1 Ni. This product is a rough upper bound

on the cardinality of r0 and a better estimate of the cardinality of r0 can be obtained if we
know the fraction of each ri which is recorded in r0. It follows that the entropy of r0 can
be approximated as the sum of the entropies of the ri’s, for i = 1, 2, . . . , n. On the basis of
the observations made after Definition 5.2 this rough analysis justifies R0 being in BCNF in
terms of minimising redundancy in d. It is less important that Ri, for i = 1, 2, . . . , n, be in
BCNF since the redundancy H(Ri−X | X) in ri ∈ d over Ri is expected to be insignificant
relative to the potential redundancy in r0 were it not to be in BCNF. On the other hand, by
not decomposing the dimension tables Ri query processing can be optimised via the star join
[OG95].

The following result is a special case of Theorem 7 in [Mal88] and Theorem 4 in [Lee87].

Lemma 5.2 Let R be a snowflake schema and r be a relation over U . Then r |= 1[R] if and
only if

Hr(U) =
n∑

i=0

H(Ri)−
n∑

i=1

H(Xi),

where Ri and Xi are as introduced after Definition 3.2. 2

The next result follows from Theorem 4.2 in [LL99a], which implies that R is a lossless
join decomposition of U , Lemma 5.2, and Theorem 5.1.

Theorem 5.3 Let R be a snowflake schema, F+ contain the set of FDs G = {X0 → Y0, X1 →
Y1, . . . , Xn → Yn} over U , and let r be a relation over U . Then r |= G if and only if

Hr(U) =
n∑

i=0

H(Ri)−
n∑

i=1

H(Xi) = H(R0) = H(X0). 2

18

Thus the conditional entropy Hr(U−X0 | X0) is minimal, i.e. zero, when r is the snowflake
join SNOW(d). The next corollary states that when R is in SSNF this is indeed the case.

Corollary 5.4 Let d be a database over a database schema R which is in SSNF with respect
to a set Σ of FDs and INDs. Then d |= Σ implies that HSNOW(d)(U −X0 | X0) = 0. 2

6 Concluding Remarks

We have formalised the intuition behind the snowflake schema via the notion of an acyclic
database schema and its join graph. We have defined SSNF which is a normal form for data
warehouses and shown that it possesses several desirable properties. In particular, database
schemas R which are in SSNF are independent as well as separable when the relation schemas
in R are incomparable. That is, integrity maintenance and updates of functional dependencies
can be carried out independently on a single relation basis. We have also shown that the
snowflake join of the relations in a database over a database schema, which is in SSNF,
comprises the nonnull tuples in the representative instance. To enlarge the class of database
schemas covered by SSNF we have extended the notion of SSNF to ESSNF. Finally, by using
an information-theoretic approach, we have shown that the redundancy in the snowflake join
of the primary key of the fact table is zero.

In practice it may be the case that the simplicity of a star schema will suffice [KRRT98]. It
is not clear that the overheads in further normalising the dimension tables of a star schema, in
order to obtain a snowflake schema, outweigh the simplicity of the star schema, since as argued
in Section 5 the size of the relation over the fact table dominates the size of the database. On
the other hand, the generality of a snowflake schema allows us to model attribute hierarchies
which may save significant space in some cases and provide logical separation between a
dimension and its subdimensions.

A remaining open problem is to devise an efficient algorithm for constructing database
schemas which obey SSNF. Such an algorithm would have to be integrated within a data
warehouse design methodology. Moreover, an important aspect of data warehouses, which
we have not considered in this work, is the incorporation of a cost model for queries over a
snowflake schema which can be used to optimise the height of its join tree.

Acknowledgements. The authors would like to thank the referees for their constructive
comments. We especially thank one of the referees who suggested the extension of snowflake
schema detailed in Section 4.

References

[AC91] P. Atzeni and E.P.F. Chan. Independent database schemes under functional and
inclusion dependencies. Acta Informatica, 28:777–799, 1991.

[BB79] C. Beeri and P.A. Bernstein. Computational problems related to the design of
normal form relational schemas. ACM Transactions on Database Systems, 4:30–
59, 1979.

19

[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30:479–513, 1983.

[BH90] F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood City,
Ca., 1990.

[CD97] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP tech-
nology. ACM SIGMOD Record, 26:65–74, 1997.

[CK86] S.S. Cosmadakis and P.C. Kanellakis. Functional and inclusion dependencies: A
graph theoretic approach. In P.C. Kanellakis and F. Preparata, editors, Advances
in Computing Research, volume 3, pages 163–184. JAI Press, Greenwich, 1986.

[CM87] E.P.F. Chan and A.O. Mendelzon. Independent and separable database schemes.
SIAM Journal on Computing, 16:841–851, 1987.

[CP87] R. Cavallo and M. Pittarelli. The theory of probabilistic databases. In Proceedings
of International Conference on Very Large Data Bases, pages 71–81, Brighton,
1987.

[CV83] M.A. Casanova and V.M.P. Vidal. Towards a sound view integration methodology.
In Proceedings of ACM Symposium on Principles of Database Systems, pages 36–
47, Atlanta, 1983.

[Fag83] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes.
Journal of the ACM, 30:514–550, 1983.

[GMR98] M. Golfarelli, D. Maio, and S. Rizzi. Conceptual design of data warehouses from
E/R schemes. In Proceedings of the Hawaii International Conference on System
Sciences, pages 334–343, Hawaii, 1998.

[Hil91] J.R. Hill. Relational databases: A tutorial for statisticians. In Proceedings of
Symposium on the Interface between Computer Science and Statistics, pages 86–
93, Seattle, Wa., 1991.

[HLV00] B. Hüsemann, J. Lechtenbörger, and G. Vossen. Conceptual data warehouse
design. In Proceedings of International Workshop on Design and Management of
Data Warehouses, Stockholm, 2000.

[Hon82] P. Honeyman. Testing satisfaction of functional dependencies. Journal of the
ACM, 29:668–677, 1982.

[Inm96] W.H. Inmon. Building the Data Warehouse. John Wiley & Sons, Chichester,
second edition, 1996.

[KM00] R. Kimball and R. Mertz. The Data Webhouse Toolkit: Building the Web-Enabled
Data Warehouse. John Wiley & Sons, Chichester, 2000.

[KRRT98] R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite. The Data Warehouse
Lifecycle Toolkit: Expert Methods for Designing, Developing and Deploying Data
Warehouses. John Wiley & Sons, Chichester, 1998.

20

[LAW98] W. Lehner, J. Albrecht, and H. Wedekind. Normal forms for multidimensional
databases. In Proceedings of International Conference on Scientific and Statistical
Data Management, pages 63–72, Capri, 1998.

[Lee87] T.T. Lee. An information-theoretic analysis of relational databases - Part I: Data
dependencies and information metric. IEEE Transactions on Software Engineer-
ing, 13:1049–1061, 1987.

[Lin85] D.V. Lindley. Making Decisions. John Wiley & Sons, London, 1985.

[LL99a] M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-Verlag, London, 1999.

[LL99b] M. Levene and G. Loizou. How to prevent interaction of functional and inclusion
dependencies. Information Processing Letters, 71:115–125, 1999.

[LL01] M. Levene and G. Loizou. Guaranteeing no interaction between functional de-
pendencies and tree-like inclusion dependencies. Theoretical Computer Science,
254:683–690, 2001.

[LV00] M. Levene and M.W. Vincent. Justification for inclusion dependency normal form.
IEEE Transactions on Knowledge and Data Engineering, 12:281–291, 2000.

[Mal86] F.M. Malvestuto. Statistical treatment of the information content of a database.
Information Systems, 11:211–223, 1986.

[Mal88] F.M. Malvestuto. Existence of extensions and product extensions for discrete
probability distributions. Discrete Mathematics, 69:61–77, 1988.

[MR92] H. Mannila and K.-J. Räihä. The Design of Relational Databases. Addison-Wesley,
Reading, Ma., 1992.

[OG95] P.E. O’Neil and G. Graefe. Multi-table joins through bitmapped join indices.
ACM SIGMOD Record, 24:8–11, 1995.

[Sag83] Y. Sagiv. A characterization of globally consistent databases and their access
paths. ACM Transactions on Database Systems, 8:266–286, 1983.

[Sag91] Y. Sagiv. Evaluation of queries in independent database schemes. Journal of the
ACM, 38:120–161, 1991.

21

