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Foreword

My book Algorithmic Information Theory is like hiking up a mountain
by the fastest route, not stopping until one reaches the top. Here we
shall instead take a look at interesting sights along the way and explore
some alternate routes, in roughly the order that I discovered them.

In this book I shall survey eight different theories of program size
complexity based on eight different programming models. And I’ll dis-
cuss the incompleteness results that one gets in each of these eight
theories.

I decided to tell this story in the form of a mathematical autobi-
ography.

Gregory Chaitin
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A LIFE IN MATH

“Guts and imagination!”

—The ambitious young director Easton in
Norman Chaitin’s 1962 film The Small Hours

“The open secret of real success is to throw your whole personality at
a problem.”

—G. Polya, How to Solve It

“To appreciate the living spirit rather than the dry bones of mathe-
matics, it is necessary to inspect the work of a master at first hand.
Textbooks and treatises are an unavoidable evil. . . The very crudities
of the first attack on a significant problem by a master are more illu-
minating than all the pretty elegance of the standard texts which has
been won at the cost of perhaps centuries of finicky polishing.”

—Eric Temple Bell,

Mathematics: Queen & Servant of Science

Beginnings

In which we consider the plight of a bright child growing up in Manhat-
tan and attempting to learn everything, including general relativity and
Gödel’s incompleteness theorem, on his own.

It was fun being a child in Manhattan in the late 1950s and early
1960s. I was lucky to go to a series of good public schools, and
to take advantage of many special programs for bright children, and
many accelerated school programs. The Bronx High School of Sci-
ence was an exciting place, with an excellent school library, and lots of
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2 Prologue

very bright students. There were new almost-college-level experimental
math, physics, biology and chemistry courses that had been provoked
by the Russian success in orbiting the artificial satellite Sputnik before
America could put a satellite in orbit. While at the Bronx High School
of Science I got into a special program for bright high school students
run by Columbia University, called the Science Honors Program, where
I was able to play with computers. This was great fun, and not at all
usual at that time, because computers were still a novelty.

We lived a block away from Central Park, near many branches of
the New York City Public Library full of interesting books, and also
at walking distance from the Museum of Modern Art (conveniently
located across the street from a branch of the Public Library). I spent
much of my time in the park, at the library, and in the Museum of
Modern Art, where I saw many interesting old and foreign films. (I’ve
never lost my taste for such films; the early Ingmar Bergman films
and Eric Rohmer’s films are among my favorites as an adult.)

I would hike across Central Park, looking for interesting rocks, par-
ticularly crystals and fossils, which I would then compare with the
collection of minerals in the Museum of Natural History across the
park from our apartment. (As an adult I’ve continued hiking. First in
Argentina, then in New York’s Hudson Valley and Maine’s Mt. Desert
Island, and lately in Switzerland.)

My parents were involved with the United Nations and with the
theater and film making. Recently I was flying back to New York on a
Swissair flight after lecturing in Gödel’s classroom in Vienna, and a
documentary about Marilyn Monroe was shown on the plane. All of
a sudden, there on the screen for a moment were my father and several
others with Marilyn Monroe!

All this gave me the feeling that anything was possible, that the
sky was the limit. As the ambitious young director Easton says in my
father’s 1962 film The Small Hours, all it takes is “Guts and imagina-
tion!”

Two big steps in my childhood were when I was given permission to
take out books from the adult section of the New York Public Library,
even though I was much too young. Also when in high school as a
member of the Columbia University Science Honors Program I was
given the run of the stacks of the Columbia University mathematics
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library, and could have first-hand contact with the collected works of
masters like Neils Henrik Abel and Léonard Euler. The library
at the Bronx High School of Science was also good, and later I had
permission to enter the stacks of the City College library. I read a lot;
I was a sponge!

Scientific American with Martin Gardner’s Mathematical
Games and the Amateur Astronomer and Amateur Scientist depart-
ments played a big role in my childhood. I read every issue, and tried
out many of the mathematical games and amateur scientist experi-
ments. One of my amateur scientist projects was building a van de

Graaff electrostatic generator, which I did when I was eleven years
old.

My first loves were physics and astronomy. I wanted very badly
to learn Einstein’s theories and build a telescope on my own. (I
didn’t quite manage it then, but as an adult I did.) One problem was
that to read the physics books one had to understand mathematics.
And it was hard to get equipment for physics experiments and astron-
omy. So I started studying math and experimenting with computers. I
spent a lot of time in high school programming Edward F. Moore’s
“Gedanken-Experiments on Sequential Machines,”1 which led to my
first publication, written while I was in high school.2

In high school I was also interested in game theory, information
theory and in Gödel’s incompleteness theorem. These subjects were
still relatively new and exciting then, and there were not many books
about them or about computers either, which were also a novelty at
that time. I first had the idea of defining randomness via algorithmic
incompressibility as part of the answer for an essay question on the
entrance exam to get into the Science Honors Program! But I forgot
the idea for a few years.

The summer between the Bronx High School of Science and the
City College of the City University of New York, I thought about the
simplicity and speed of programs for computing infinite sets of natural

1
Edward F. Moore, “Gedanken-Experiments on Sequential Machines,” in

Claude E. Shannon and John McCarthy, Automata Studies, Annals of Math-
ematics Studies, No. 34, Princeton: Princeton University Press (1956), pp. 129–153.

2
Gregory J. Chaitin, “An Improvement on a Theorem of E. F. Moore,” IEEE

Transactions on Electronic Computers EC-14 (1965), pp. 466–467.
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numbers.3 In this connection I came up with my first incomplete-
ness theorem.4 Gödel’s original proof I had found to be infinitely
fascinating, but incomprehensible. Once I formulated and proved an
incompleteness theorem of my own, I began to understand Gödel’s.
(To really understand something, I believe that one must discover it
oneself, not learn it from anyone else!)

During my first year at City College, while reading von Neu-

mann and Morgenstern’s Theory of Games and Economic Behavior
where they invoke random (“mixed”) strategies for zero-sum two-person
games without a saddle point (“Justification of the Procedure as Ap-
plied to an Individual Play”),5 I recalled my idea for a definition of
randomness, and decided to try to develop it mathematically using the
notion of a Turing machine. I did this the next summer, the summer
of 1965, between my first and second years at City College, while seeing
interesting films at the Museum of Modern Art and thinking in Central
Park. When college started in the fall, I was excused from attending
classes to finish writing up my results!6,7,8,9 These papers contain two
theories of program size based on counting the number of states in Tur-

ing machines, and one theory of program size based on counting bits in

3This eventually became: Gregory J. Chaitin, “On the Simplicity and Speed
of Programs for Computing Infinite Sets of Natural Numbers,” Journal of the ACM
16 (1969), pp. 407–422.

4Maximizing over all provably total recursive functions, one obtains a total re-
cursive function that grows more quickly than any function that is provably total.
See the discussion at the end of Section 2 of: Gregory J. Chaitin, “Gödel’s The-
orem and Information,” International Journal of Theoretical Physics 22 (1982), pp.
941–954.

5
John von Neumann and Oskar Morgenstern, Theory of Games and Eco-

nomic Behavior, Princeton: Princeton University Press (1953), pp. 146–148.
6
Gregory J. Chaitin, “On the Length of Programs for Computing Finite

Binary Sequences by Bounded-Transfer Turing Machines,” Abstract 66T–26, AMS
Notices 13 (1966), p. 133.

7
Gregory J. Chaitin, “On the Length of Programs for Computing Finite

Binary Sequences by Bounded-Transfer Turing Machines II,” Abstract 631–6, AMS
Notices 13 (1966), pp. 228–229.

8
Gregory J. Chaitin, “On the Length of Programs for Computing Finite

Binary Sequences,” Journal of the ACM 13 (1966), pp. 547–569.
9
Gregory J. Chaitin, “On the Length of Programs for Computing Finite

Binary Sequences: Statistical Considerations,” Journal of the ACM 16 (1969), pp.
145–159. Publication was inexplicably delayed.
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programs for more abstract binary computers; altogether three differ-
ent theories of program size! (I did all this when I was eighteen.) Then
my parents and I moved to Buenos Aires, a sophisticated European
city of cafes, cinemas, restaurants, beer halls, and rowing clubs. There
my adult life began and I almost immediately joined IBM working as
a programmer, continuing my research as a hobby.

Adult Activities

In August 1968 I presented a paper summarizing my ideas at the Pan-
American Symposium of Applied Mathematics in Buenos Aires. This
was published in 1970.10 In 1970 I also published some thoughts on
possible connections between my work and John von Neumann’s
ideas on self-reproducing automata11 in the newsletter of the ACM’s
Special Interest Committee on Automata and Computability Theory
(SICACT).12 (SICACT was later renamed SIGACT, the Special Inter-
est Group on Automata and Computability Theory).

I discovered my first information-theoretic incompleteness theorem
in 1970 at the age of twenty-two while I was visiting a Rio de Janiero
university and enjoying the tropical beaches and the excitement of
Carnival.13,14 (I should have discovered this incompleteness theorem in
1965, because this theorem is an immediate consequence of the proof
that program-size complexity is uncomputable that I give in my 1966
Journal of the ACM paper. The reason that I didn’t discover this theo-
rem in 1965 is that I was so interested in randomness that I temporarily
forgot about incompleteness! The moment that I thought about ran-
domness and incompleteness, I realized that one cannot prove that

10
Gregory J. Chaitin, “On the Difficulty of Computations,” IEEE Transac-

tions on Information Theory IT–16 (1970), pp. 5–9.
11

John von Neumann, Theory of Self-Reproducing Automata, Urbana: Univer-
sity of Illinois Press (1966). Edited and completed by Arthur W. Burks.

12
Gregory J. Chaitin, “To a Mathematical Definition of ‘Life’,” ACM SICACT

News 4 (January 1970), pp. 12–18.
13

Gregory J. Chaitin, “Computational Complexity and Gödel’s Incomplete-
ness Theorem,” Abstract 70T–E35, AMS Notices 17 (1970), p. 672.

14
Gregory J. Chaitin, “Computational Complexity and Gödel’s Incomplete-

ness Theorem,” ACM SIGACT News 9 (April 1971), pp. 11–12.
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a string is random because of very strong information-theoretic con-
straints on the power of mathematical reasoning.)

And in Rio I obtained a copy of the original MIT LISP 1.5 manual.15

When I returned to Buenos Aires I learned LISP by writing a LISP
interpreter. This was the first of many LISP interpreters that I was to
write, and the beginning of a long love affair with LISP. (I was having
so much fun playing with LISP on computers that I did not realize that
my theoretical ideas on program-size complexity apply beautifully to
LISP.16)

The early 1970s were a time of intense activity.17,18,19,20,21,22 I gave
a course on LISP and two courses on “Computability and Metamathe-
matics” at Ciencias Exactas, the School of Exact Sciences of the Uni-
versity of Buenos Aires.

In the early 1970s I continued developing my information-theoretic
approach to incompleteness. In October 1971, Jacob T. Schwartz

presented a paper on this for me at the Courant Institute Computa-
tional Complexity Symposium in New York. In June 1973, Terrence

L. Fine presented a paper on this for me at the IEEE International
Symposium on Information Theory in Ashkelon, Israel.23 In 1974 these

15
John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy

P. Hart, and Michael I. Levin, LISP 1.5 Programmer’s Manual, Cambridge:
MIT Press (1985).

16See pages 37–105 in this volume.
17

Gregory J. Chaitin, Information-Theoretic Aspects of the Turing Degrees,
Abstract 72T–E77, AMS Notices 19 (1972), pp. A–601, A–602.

18
Gregory J. Chaitin, “Information-Theoretic Aspects of Post’s Construction

of a Simple Set,” Abstract 72T–E85, AMS Notices 19 (1972), p. A–712.
19

Gregory J. Chaitin, “On the Difficulty of Generating all Binary Strings of
Complexity less than N,” Abstract 72T–E101, AMS Notices 19 (1972), p. A–764.

20
Gregory J. Chaitin, “On the Greatest Natural Number of Definitional or

Information Complexity ≤ N,” Recursive Function Theory: Newsletter 4 (January
1973), pp. 11–13.

21
Gregory J. Chaitin, “A Necessary and Sufficient Condition for an Infinite

Binary String to be Recursive,” Recursive Function Theory: Newsletter 4 (January
1973), p. 13.

22
Gregory J. Chaitin, “There are Few Minimal Descriptions,” Recursive Func-

tion Theory: Newsletter 4 (January 1973), p. 14.
23

Gregory J. Chaitin, “Information-Theoretic Computational Complexity,”
Abstracts of Papers, 1973 IEEE International Symposium on Information Theory,
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two papers were published as an invited paper in the IEEE Transac-
tions on Information Theory24 and a much longer paper in the Journal
of the ACM.25

While visiting the IBM Thomas J. Watson Research Center in
New York in 1974, I realized that it is very important to use abstract
binary computers to measure program-size complexity that have self-
delimiting programs.26 (Indeed, the Turing machines that I had stud-
ied had self-delimiting programs. Dropping this when going to abstract
binary computers had been a mistake.) The definition of relative com-
plexity also needed a correction. This new approach made a world of
difference: It was during this visit that I devised the halting probability
Ω and showed that Ω is random. At this point it became appropriate to
refer to this subject as “algorithmic information theory;” the definitions
were now right. I was invited to speak about this at the opening ple-
nary session of the 1974 IEEE International Symposium on Information
Theory.27

In 1975 my first Scientific American article appeared.28 I visited
the IBM Thomas J. Watson Research Center again, wrote a few

June 25–29, 1973, King Saul Hotel, Ashkelon, Israel, IEEE Catalog No. 73 CHO
753–4 IT, p. F1–1.

24
Gregory J. Chaitin, “Information-Theoretic Computational Complexity,”

IEEE Transactions on Information Theory IT–20 (1974), pp. 10–15. Reprinted in:
Thomas Tymoczko, New Directions in the Philosophy of Mathematics, Boston:
Birkhäuser (1986), pp. 287–299.

25
Gregory J. Chaitin, “Information-Theoretic Limitations of Formal Sys-

tems,” Journal of the ACM 21 (1974), pp. 403–424.
26

Gregory J. Chaitin, “A Theory of Program Size Formally Identical to In-
formation Theory,” Journal of the ACM 22 (1975), pp. 329–340.

27
Gregory J. Chaitin, “A Theory of Program Size Formally Identical to In-

formation Theory,” Abstracts of Papers, 1974 IEEE International Symposium on
Information Theory, October 28–31, 1974, University of Notre Dame, Notre Dame,
Indiana, USA, IEEE Catalog No. 74 CHO 883–9 IT, p. 2.

28
Gregory J. Chaitin, “Randomness and Mathematical Proof,” Scientific

American 232 (May 1975), pp. 47–52. Also published in the French, Italian and
Japanese editions of Scientific American.
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papers,29,30,31 and then became a permanent member of the staff at
the Watson Research Center. For a decade I was heavily involved
in pioneering work on RISC technology. In spite of this, I managed
to publish a few survey papers,32,33,34 an improved version of my 1970
SICACT paper on biology,35 and a note with Jacob T. Schwartz.

36

In the mid 1980s, after working on a computer physics course,37 I
received an invitation to write the first book in the new Cambridge
University Press series Cambridge Tracts in Theoretical Computer Sci-
ence. This invitation was a tremendous stimulus. It encouraged me
to re-think incompleteness using self-delimiting complexity (my 1974
definitions). While working on the book I discovered that there is
randomness in arithmetic.38,39 I proved this by transforming Ω into

29
Gregory J. Chaitin, “Information-Theoretic Characterizations of Recursive

Infinite Strings,” Theoretical Computer Science 2 (1976), pp. 45–48.
30

Gregory J. Chaitin, “Algorithmic Entropy of Sets,” Computers & Mathe-
matics with Applications 2 (1976), pp. 233–245.

31
Gregory J. Chaitin, “Program Size, Oracles, and the Jump Operation,”

Osaka Journal of Mathematics 14 (1977), pp. 139–149.
32

Gregory J. Chaitin, “Algorithmic Information Theory,” IBM Journal of
Research and Development 21 (1977), pp. 350–359, 496.

33
Gregory J. Chaitin, “Algorithmic Information Theory,” in Samuel Kotz,

Norman L. Johnson and Campbell B. Read, Encyclopedia of Statistical Sci-
ences, Vol. 1, New York: Wiley (1982), pp. 38–41.

34
Gregory J. Chaitin, “Gödel’s Theorem and Information,” International

Journal of Theoretical Physics 22 (1982), pp. 941–954. Reprinted in: Thomas Ty-

moczko, New Directions in the Philosophy of Mathematics, Boston: Birkhäuser
(1986), pp. 300–311.

35
Gregory J. Chaitin, “Toward a Mathematical Definition of ‘Life’,” in

Raphael D. Levine and Myron Tribus, The Maximum Entropy Formalism,
Cambridge: MIT Press (1979), pp. 477–498.

36
Gregory J. Chaitin and Jacob T. Schwartz, “A Note on Monte Carlo

Primality Tests and Algorithmic Information Theory,” Communications on Pure
and Applied Mathematics 31 (1978), pp. 521–527.

37
Gregory J. Chaitin, “An APL2 Gallery of Mathematical Physics—A Course

Outline,” in IBM Japan, Proceedings Japan 85 APL Symposium, form N:GE18–
9948–0 (1985), pp. 1–56.

38
Gregory J. Chaitin, “Random Reals and Exponential Diophantine Equa-

tions,” Research Report RC–11788, Yorktown Heights: IBM Thomas J. Watson

Research Center (March 1986), 6 pp.
39

Gregory J. Chaitin, “Incompleteness Theorems for Random Reals,” Ad-
vances in Applied Mathematics 8 (1987), pp. 119–146.
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a two-hundred page algebraic equation involving only whole numbers.
The book40 is full of new results, and has a foreword by Jacob T.

Schwartz. A collection of my papers41 was published at the same
time.42

My discovery of randomness in arithmetic attracted a great deal of
attention, starting with an article by Ian Stewart in Nature.43 I had
the pleasure of writing about it not only in Scientific American,44 but
also in the English magazine New Scientist45 and the French magazine
La Recherche.46 I also had the pleasure of being invited to speak on this
work in the very room of the Mathematical Institute of the University
of Vienna where Gödel used to teach.47 The room where I lectured
is called the Gödel classroom and has a stone plaque on the wall
announcing that “hier wirkte KURT GÖDEL von 1932–1938”.

I also gave a less technical talk on the background and the broader

40
Gregory J. Chaitin, Algorithmic Information Theory, Cambridge Tracts

in Theoretical Computer Science, No. 1, Cambridge: Cambridge University Press
(1987). Reprinted with corrections in 1988 and 1990.

41
Gregory J. Chaitin, Information, Randomness & Incompleteness—Papers

on Algorithmic Information Theory, Singapore: World Scientific (1987). A second
edition was published in 1990.

42Incidentally, my father published a book when he was twenty. I was forty when
these two books appeared.

43
Ian Stewart, “The Ultimate in Undecidability,” Nature 232 (10 March 1988),

pp. 115–116.
44

Gregory J. Chaitin, “Randomness in Arithmetic,” Scientific American 259
(July 1988), pp. 80–85. Also published in the French, German, Italian, Japanese
and Spanish editions of Scientific American.

45
Gregory J. Chaitin, “A Random Walk in Arithmetic,” New Scientist 125

(24 March 1990), pp. 44–46. Reprinted in: Nina Hall, The New Scientist Guide
to Chaos, Harmondsworth: Penguin (1991), pp. 196–202. Also reprinted in this
volume, p. 137.

46
Gregory J. Chaitin, “Le Hasard des Nombres,” La Recherche 22 (May 1991),

pp. 610–615. Reprinted in this volume, p. 171. Also published in the Spanish edition
of La Recherche.

47
Gregory J. Chaitin, “Randomness in Arithmetic,” in Marc E. Car-

vallo, Nature, Cognition and System, Vol. 3, Dordrecht: Kluwer (1993), in press.
Reprinted in this volume, p. 161.
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significance of my work.48,49

How is the two-hundred page equation for Ω constructed? I start
with an interpreter for a toy version of LISP that I originally used in
the LISP course that I gave at Ciencias Exactas (the School of Exact
Sciences of the University of Buenos Aires) in the early 1970s. I then
take this LISP interpreter and transform it into an equation using ideas
of Jones and Matijasevič.

50 Finally, I plug a LISP program for
computing approximations to Ω into the equation that I produced from
the LISP interpreter. The software for doing all of this was originally in
assembly language. It has been rewritten twice: in C, and in the very
high level language SETL2. (This software is available on request.)

I had the pleasure of speaking at two Solvay conferences in Brus-
sels. One took place in October 1985, the other in September 1989.
Both conferences were organized by Prof Ilya Prigogine and spon-
sored by the Solvay Institute and the Honda Foundation. Both
conferences were quite stimulating. My first talk is summarized in a
paper.51 My second talk was filmed; a transcript is included in the sec-
ond collection of my papers52 (my New Scientist article is a condensed
version of this talk; my La Recherche article is an expanded version).

I am grateful to the King and Queen of Belgium, Mr Honda,

Mr Solvay and Prof Prigogine for their hospitality. Two memo-
rable moments: One, a dinner at Mr Solvay’s city residence. Among
the guests, the King and Queen of Belgium, the Crown Prince of
Japan, Mr Honda and Prof Prigogine. The other, a party hosted

48
Gregory J. Chaitin, “Zahlen und Zufall,” in Hans-Christian Reichel

and Enrique Prat de la Riba, Naturwissenschaft und Weltbild, Vienna: Verlag
Hölder–Pichler–Tempsky (1992), pp. 30–44.

49
Gregory J. Chaitin, “Number and Randomness,” in Marc E. Car-

vallo, Nature, Cognition and System, Vol. 3, Dordrecht: Kluwer (1993), in press.
Reprinted in this volume, p. 145.

50
James P. Jones and Yuri V. Matijasevič, “Register Machine Proof of the

Theorem on Exponential Diophantine Representation of Enumerable Sets,” Journal
of Symbolic Logic 49 (1984), pp. 818–829.

51
Gregory J. Chaitin, “Randomness and Gödel’s Theorem,” Mondes en

Développement 54–55 (1986), pp. 125–128.
52

Gregory J. Chaitin, “Undecidability & Randomness in Pure Mathematics,”
in Gregory J. Chaitin, Information, Randomness & Incompleteness—Papers on
Algorithmic Information Theory, Singapore: World Scientific (1990), pp. 307–313.
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by Mr Honda, with a string quartet playing Mozart and dressed in
period costumes. During a break, one of the performers standing in his
wig and knee-breeches, eating sushi with chopsticks!

Recently I have given much thought to program size in
LISP,53,54,55,56 which works out nicely.

My latest paper presents surprising reformulations of my most
basic incompleteness theorems using self-delimiting enumeration
complexity.57

This book is the story of my mathematical adventures, and this
story is told roughly in the order that I made the discoveries. The
first part surveys eight different theories of program-size complexity:
one based on Turing machines, three based on LISP, and four using
abstract binary computers (see the index of complexity measures on
p. 12). In each case the emphasis is on incompleteness theorems. The
second part discusses the significance of information-theoretic incom-
pleteness.

“The essential in the being of a man of my type lies precisely in what
he thinks and how he thinks, not in what he does or suffers.”

“This exposition has fulfilled its purpose if it shows the reader how the
efforts of a life hang together and why they have led to expectations
of a definite form.”

—Albert Einstein, Autobiographical Notes

53
Gregory J. Chaitin, “LISP Program-Size Complexity,” Applied Mathematics

and Computation 49 (1992), pp. 79–93. Reprinted in this volume, p. 37.
54

Gregory J. Chaitin, “LISP Program-Size Complexity II,” Applied Mathe-
matics and Computation 52 (1992), pp. 103–126. Reprinted in this volume, p. 55.

55
Gregory J. Chaitin, “LISP Program-Size Complexity III,” Applied Mathe-

matics and Computation 52 (1992), pp. 127–139. Reprinted in this volume, p. 83.
56

Gregory J. Chaitin, “LISP Program-Size Complexity IV,” Applied Mathe-
matics and Computation 52 (1992), pp. 141–147. Reprinted in this volume, p. 97.

57
Gregory J. Chaitin, “Information-Theoretic Incompleteness,” Applied

Mathematics and Computation 52 (1992), pp. 83–101. Reprinted in this volume,
p. 107.
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Index of Complexity Measures
Notation Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Page Unit

Turing Machines Complexity Measure
Htm Turing Machine Complexity . . . . . . . . . . . . . . . 17 States

LISP Complexity Measures
Hlisp (Real) LISP Complexity . . . . . . . . . . . . . . . . . . . 37 Characters
Hpf Parenthesis-Free LISP Complexity . . . . . . . . . 83 Characters
Hcs Character-String LISP Complexity . . . . . . . . 97 Characters

Abstract Binary Computer Complexity Measures
Hb Blank-Endmarker Complexity . . . . . . . . . . . . . 25 Bits
Hbe Blank-Endmarker Enumeration Complexity 30 Bits
H Self-Delimiting Complexity . . . . . . . . . . . . . . . 108 Bits
He Self-Delimiting Enumeration Complexity . 113 Bits
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“The mathematician’s patterns, like the painter’s or poet’s, must be
beautiful; the ideas, like the colours or the words, must fit together
in a harmonious way. Beauty is the first test: there is no permanent
place in the world for ugly mathematics.”

“A mathematician, like a painter or poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because they are
made with ideas.”

—G. H. Hardy, A Mathematician’s Apology1

“Two proofs are better than one.”

“Look out for simple intuitive ideas: Can you see it at a glance?”

“Can you use the result, or the method, for some other problem?”

“Quite often, when an idea that could be helpful presents itself, we do
not appreciate it, for it is so inconspicuous. The expert has, perhaps,
no more ideas than the inexperienced, but appreciates more what he
has and uses it better.”

“The future mathematician. . . should solve problems, choose the prob-
lems which are in his line, meditate upon their solution, and invent
new problems. By this means, and by all other means, he should en-
deavor to make his first important discovery: he should discover his
likes and his dislikes, his taste, his own line.”

—G. Polya, How to Solve It

1See also: Robert Kanigel, The Man Who Knew Infinity: A Life of the Genius
Ramanujan, New York: Scribners (1991).
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“If we marvel at the patience and the courage of the pioneers, we
must also marvel at their persistent blindness in missing the easier
ways through the wilderness and over the mountains. What human
perversity made them turn east to perish in the desert, when by going
west they could have marched straight through to ease and plenty?”

—Eric Temple Bell,

Mathematics: Queen & Servant of Science

“ ‘A mathematician’s reputation rests on the number of bad proofs he
has given.’ (Pioneer work is clumsy.)”

—A. S. Besicovitch quoted in
J. E. Littlewood, A Mathematician’s Miscellany

“On revient toujours à ses premières amours.”
[One always returns to one’s first loves.]

—Mark Kac, Enigmas of Chance

“He who seeks for methods without having a definite problem in mind
seeks for the most part in vain.”

—David Hilbert,

International Congress of Mathematicians,
Paris, 1900

“A theory is the more impressive the greater the simplicity of its
premises is, the more different kinds of things it relates, and the more
extended is its area of applicability.”

—Albert Einstein, Autobiographical Notes



TURING MACHINES

G. J. Chaitin

Abstract

We review the Turing machine version of a fundamental information-
theoretic incompleteness theorem, which asserts that it is difficult to
prove that specific strings s have high Turing machine state complexity
Htm(s). We also construct a Turing machine “halting probability” Ωtm

with the property that the initial segments of its base-two expansion
asymptotically have the maximum possible Turing machine complexity
Htm.

1. Turing Machine Complexity Htm

Following [1], consider Turing machines with a single one-way infinite
tape (infinite to the right), a single read-write scanner, and a tape-
symbol alphabet consisting of blank, 0 and 1. Such an n-state 3-tape-
symbol Turing machine is defined by a 3×n table. This table gives the
action to be performed and the next state as a function of the current
state and the symbol currently being scanned on the tape. There are
six possible actions: write blank (erase tape), write 0, write 1, shift
tape left, shift tape right, or halt.

This chapter of the survey has not been published elsewhere.
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Define the Turing machine complexity Htm(s) of a bit string s to
be the number of states in the smallest n-state 3-tape-symbol Turing
machine that starts with the scanner at the beginning of a blank tape
and halts with s written at the beginning of the tape, with the rest of
the tape blank, and with the scanner on the first blank square of the
tape.1

In [1] it is shown that the maximum possible Turing machine com-
plexity Htm(s) of an n-bit string s is asymptotic to n/2 log2 n. Fur-
thermore, most n-bit strings s have Turing machine complexity close
to n/2 log2 n. Equivalently, most 2n log2 n bit strings have Turing ma-
chine complexity close to n. Moreover, it is proposed in [1] that such
strings are “random”; for example, it is shown that in the limit of large
n such s have exactly the same relative frequency of 0’s and 1’s.

The sequel [2] considers random infinite bit strings and laboriously
constructs an example, i.e., a specific infinite string whose initial n-
bit segments have Turing machine complexity close to the maximum
possible, which is n/2 log2 n. As we show in Section 2, there is a much
better way to do this: via a halting probability.

2. The “Halting Probability” Ωtm

There are

n
(6n)3n

n!

n-state 3-tape-symbol Turing machines. The factor n on the left is to
specify the initial state. The exponent 3n is because there are that
many entries in the table defining the Turing machine. The base 6n is
because each of the 3n table entries specifies one of six operations and
one of n states. The denominator n! is because any permutation of the
state numbers gives the same behavior.

log n! ∼ n log n. Thus

log2(the total number of n-state Turing machines) ∼ 2n log2 n.

1As will be discussed below, this definition illustrates our “linkage convention.”
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Define

Ωtm =
∞∑

n=1

[
# of n-state Turing machines that halt

2dlog2(total # of n-state Turing machines)e

]
2−2dlog2 ne−1.

The factor of 2−2dlog2 ne−1 is in order to insure convergence; it is easy to
see that

∑∞
n=1 2−2dlog2 ne−1 < 1. The denominator of (total # of n-state

Turing machines) is increased to the next highest power of two, so that
only straight-forward binary arithmetic is involved in calculating Ωtm.

If we knew the first 2n log2 n + o(n logn) bits of Ωtm, this would
enable us to solve the halting problem for all≤ n state Turing machines.

Thus the first ∼ 2n log2 n bits of Ωtm tell us the Turing machine
complexity of each string with ≤ 2n log2 n bits. Hence the Turing
machine complexity of the first 2n log2 n bits of Ωtm is asymptotic to
the maximum possible for a 2n log2 n bit string, which is ∼ n. Thus
Ωtm is a Turing-machine-random bit string and therefore a normal real
number in Borel’s sense.

The construction of a complex infinite string presented in this sec-
tion is much better than our original approach in [2, Section 7]. The
description in this section is very concise. For more details, see the
analogous discussion for LISP in [3, Sections 4, 7 and 9].

3. Proving Lower Bounds on Htm

We will measure the complexity of a formal system by the number of
states needed for a proof-checker.

We need a Turing machine linkage convention and should only mea-
sure the size of Turing machine programs that obey this linkage con-
vention. A good convention is that nothing to the left of the position
of the scanner upon entry to a subroutine is ever read or altered by
the subroutine. This makes it possible for the calling routine to save
information on the tape. One problem with Turing machines is that a
subroutine can be called from only one place, because the return ad-
dress must be “wired” into the subroutine as a fixed state number to
return to after finishing.

Theorem: An n-state formal system cannot prove that a specific
bit string has Turing machine complexity > n+O(logn).
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The “O(logn)” here is because we can run a formal system’s proof-
checker to get theorems, but the proof-checker does not tell us how
many states it has, i.e., what its Turing machine complexity is.2

Proof (Original Version): Suppose we are given a n-state Turing
machine for checking purported proofs in a formal system. The output
is either a message that the proof is incorrect, or else the theorem
established by the proof. We assume that the proof-checker is coded
in such a way that it can be invoked as a subroutine, i.e., it obeys the
linkage conventions we discussed above. We add blog2 kc+ c states to
tell us an arbitrary natural number k that we will determine later, and
c′ more states that keep calling the proof-checker until we find a proof
that a specific bit string s has Turing machine state complexity > k.
Then we output s and halt. This gives us a Turing machine with

n+ blog2 kc+ c+ c′

states that produces a string s with Turing machine complexity

> k.

That is, there is a Turing machine with

≤ n+ log2 k + c+ c′

states that produces a string s with Turing machine complexity

> k.

Let us take
k = n + log2 n+ ∆ + c+ c′,

which must be an integer. Thus there is a Turing machine with

≤ n+ log2(n+ log2 n + ∆ + c+ c′) + c+ c′

2One could (but we won’t) add to our Turing machines a way to write on the
tape the current state number. This could then be used to determine the size
of a program by subtracting the initial state from the final state. In fact, real
computers can get a return address for a subroutine into a register, so that the
subroutine knows where to branch after it is finished.
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states that produces a string s with Turing machine complexity

> n+ log2 n+ ∆ + c+ c′.

This implies that

n+ log2 n + ∆ + c+ c′ < n+ log2(n+ log2 n + ∆ + c+ c′) + c+ c′.

I.e.,
log2 n+ ∆ < log2(n+ log2 n + ∆ + c+ c′),

or

∆ < log2

(
1 +

log2 n + ∆ + c+ c′

n

)
.

We may assume that n is greater than or equal to 1. From this it is easy
to see that (log2 n)/n is always less than or equal to 1. This implies
that

∆ < log2

(
1 +

log2 n + ∆ + c+ c′

n

)
≤ log2(1 + 1 + ∆ + c+ c′).

Hence
∆ < log2(1 + 1 + ∆ + c+ c′).

Clearly, this last inequality can hold for at most finitely many values of
∆. More precisely, it implies that ∆ < c′′, where c′′ does not depend on
the complexity n of the proof-checker. Thus an n-state formal system
can establish that a specific bit string has complexity

> k = n+ log2 n+ ∆ + c+ c′

only if ∆ < c′′. I.e., an n-state formal system cannot establish that a
specific bit string has complexity

> n+ log2 n + c′′ + c+ c′.

Q.E.D.
These inequalities are obvious if viewed properly. We are talking

about the size of the base-two numeral for n. How much can this grow
if we add it to its own size? For all sufficiently large n, this size, which
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is blog2 nc + 1, is much less than n. Therefore the number of bits to
express this size is much less than the number of bits to express n.
(More precisely, the number of bits in the base-two numeral for the
number of bits in n is in the limit a vanishing fraction of the number of
bits in the base-two numeral for n.) So when the size of the base-two
numeral for n is added to n, the base-two numeral for the result will
usually be the same size as the base-two numeral for n. At most one
bit is added to its size in the unlikely event that overflow occurs (i.e.,
a carry out of the left-most non-zero bit position).

History: This was my very first information-theoretic incomplete-
ness theorem [4, 5]. The only difference is that here I spell out all the
inequalities.

4. Proving Lower Bounds II

Here is an arrangement of the proof that avoids the messy inequalities.
Proof (Improved Version): Suppose we are given an n-state

Turing machine for checking purported proofs in a formal system. The
output is either a message that the proof is incorrect, or else the theorem
established by the proof. We assume that the proof-checker is coded in
such a way that it can be invoked as a subroutine. We add blog2 kc+ c
states to tell us an arbitrary natural number k that we will determine
later, and c′ more states that keep calling the proof-checker until we
find a proof that a specific bit string s has Turing machine complexity
> k + blog2 kc+ c. Then we output s and halt.

This gives us a Turing machine with

n+ blog2 kc+ c+ c′

states that produces a string s with Turing machine complexity

> k + blog2 kc+ c.

Taking k = n + c′, we have a Turing machine with

n + blog2(n + c′)c+ c+ c′

states that produces a string s with Turing machine complexity

> n+ c′ + blog2(n+ c′)c+ c,
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which is impossible. Thus an n-state formal system cannot establish
that a specific bit string has complexity

> n+ c′ + blog2(n + c′)c+ c = n +O(logn).

Q.E.D.
It is much easier to formulate this information-theoretic incomplete-

ness theorem in LISP [3, Section 3]. The LISP result is also much
sharper.
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BLANK-ENDMARKER
PROGRAMS

G. J. Chaitin

Abstract

We review four different versions of the information-theoretic incom-
pleteness theorem asserting that it is difficult to prove that specific
strings s have high blank-endmarker complexity Hb(s). We also con-
struct a blank-endmarker “halting probability” Ωb with the property
that the initial segments of its base-two expansion asymptotically have
the maximum possible blank-endmarker complexity Hb.

1. Blank-Endmarker Complexity Hb

Following [1, Appendix], we define the abstract setting.
A computer C is a partial recursive function that maps a program

p that is a bit string into an output C(p) that is also an individual bit
string. The complexity HC(x) of the bit string x based on the computer
C is the size in bits |p| of the smallest program p for computing x with

This chapter of the survey has not been published elsewhere.
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C:
HC(x) = min

C(p)=x
|p|.

Define a universal computer U as follows:

U(p1

i 0’s︷ ︸︸ ︷
000 · · ·000) = Ci(p).

Here Ci is the computer with Gödel number i, i.e., the ith computer.
Hence

HU(x) ≤ HCi
(x) + (i+ 1)

for all strings x. The general definition of a universal computer U is
that it is one that has the property that for each computer C there is
a constant simC (the cost in bits of simulating C) such that

HU(x) ≤ HC(x) + simC

for all x. The universal computer U we defined above satisfies this defi-
nition with simCi

= i+1. We pick this particular universal computer U
as our standard one and define the blank-endmarker complexity Hb(x)
to be HU(x):

Hb(x) = HU(x).

2. Discussion

The first thing to do with a new complexity measure is to determine
the maximum complexity that an n-bit string can have and whether
most n-bit strings have close to this maximum complexity. Consider
the identity-function computer C with C(p) = p for all programs p.
This shows that

Hb(s) ≤ |s|+ simC

for all strings s. Do most n-bit s have complexity close to n? Yes,
because there are 2n n-bit strings s but only

1 + 2 + 4 + · · ·+ 2n−k−1 =
∑

j<n−k

2j = 2n−k − 1 < 2n−k

programs p for U of size less than n− k.
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3. The “Halting Probability” Ωb

In Section 2 we saw that most finite bit strings are complex. How about
constructing an infinite bit string with complex initial segments?

Let
∑

n 2−f(n) ≤ 1, e.g., f(n) = 2dlog2 ne+ 1 = O(logn).
Define

Ωb =
∑
n

#{programs p of size n such that U(p) halts}2−n−f(n).

Then 0 ≤ Ωb ≤ 1 because there are 2n n-bit programs p. I.e.,

Ωb ≤
∑
n

2n 2−n−f(n) =
∑
n

2−f(n) ≤ 1.

Hence the blank-endmarker complexity of the first n+ f(n) bits of
Ωb is greater than or equal to n− c.

From this it can be shown that Ωb is what Borel called a normal
real number.

The description in this section is very concise. For more details, see
the analogous discussion for LISP in [2, Sections 4, 7 and 9].

4. Proving Lower Bounds on Hb

Now let’s do some metamathematics using the complexity measure Hb.
We consider a fixed set of rules of inference F to be a recursively

enumerable set of ordered pairs of the form A ` T indicating that the
theorem T follows from the axiom A. (We may consider the axiom A
to be represented as a bit string via some standard binary encoding.)

Theorem A: Consider a formal system FA consisting of all theo-
rems T derived from a single axiom A≤ n bits in size by applying to it a
fixed set of rules of inference. This formal system FA of size ≤ n cannot
prove that a specific string has blank-endmarker complexity > n+ c.

Proof: Consider a special-purpose computer C that does the fol-
lowing when given the axiom A of a formal system FA followed by a 1
and any number of 0’s:

C(A1

k 0’s︷ ︸︸ ︷
000 · · ·000) =

{
The first specific string s?

that can be shown in FA to have
complexity > |A|+ 2k + 1.
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How does C accomplish this? Given the program p, C counts the
number k of 0’s at the right end of p. It then removes them and the
rightmost 1 bit in order to obtain the axiom A. Now C knows A and
k. C then searches through all proofs derived from the axiom A in size
order, and among those of the same size, in some arbitrary alphabetical
order, applying the proof-checking algorithm associated with the fixed
rules of inference to each proof in turn. (More abstractly, C enumerates
FA = { T : A ` T }.) In this manner C determines each theorem T
that follows from the axiom A. C examines each T until it finds one of
the form

“Hb(s
?) > j”

that asserts that a specific bit string s? has blank-endmarker complexity
greater than a specific natural number j that is greater than or equal
to |A|+ 2k + 1. C then outputs s? and halts. This shows that

|A|+ 2k + 1 < Hb(s
?) ≤ |A1

k 0’s︷ ︸︸ ︷
000 · · ·000 |+ simC .

I.e.,
|A|+ 2k + 1 < Hb(s

?) ≤ |A|+ 1 + k + simC .

This implies
k < simC .

Taking k = simC , we have a contradiction. It follows that s? cannot
exist for this value of k. The theorem is therefore proved with c =
2k + 1 = 2simC + 1. Q.E.D.

Here is a stronger version of Theorem A.
Theorem B: Consider a formal system FA consisting of all theo-

rems T derived from a single axiom A with blank-endmarker complexity
≤ n by applying to it a fixed set of rules of inference. This formal sys-
tem FA of blank-endmarker complexity ≤ n cannot prove that a specific
string has blank-endmarker complexity > n+ c.

Proof: Instead of being given A directly, C is given an Hb(A) bit
program pA for U to compute A. I.e., C’s program p is now of the form

p′ = pA1

k 0’s︷ ︸︸ ︷
000 · · ·000
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instead of

p = A1

k 0’s︷ ︸︸ ︷
000 · · ·000 .

Here
|pA| = Hb(A),

and
U(pA) = A.

So now we have
|p′| = Hb(A) + 1 + k

instead of
|p| = |A|+ 1 + k.

And now
C(p′) = s?

and
Hb(s

?) > Hb(A) + 2k + 1.

Hence we have

Hb(A) + 2k + 1 < Hb(s
?) ≤ Hb(A) + 1 + k + simC .

This yields a contradiction for k = simC . Q.E.D.
Theorems A and B are sharp; here is the converse.
Theorem C: There is a formal system FA with n-bit axioms A that

enables us to determine:

(a) which bit strings have blank-endmarker complexity ≥ n, and

(b) the exact blank-endmarker complexity of each bit string with
blank-endmarker complexity < n.

Proof: Here are two axioms A from which we can deduce the de-
sired theorems:

(a) The n-bit string that is the base-two numeral for the number of
programs p of size < n that halt.
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(b) p1000 · · ·000, the program p of size < n that takes longest to halt
(there may be several) padded on the right to exactly n bits with
a 1 bit and the required (possibly zero) number of 0 bits.

Q.E.D.
Here is a corollary of the ideas presented in this section. An n +

O(1) bit formal system is necessary and sufficient to settle the halting
problem for all programs of size less than n bits. For a detailed proof,
see [3, Theorem 4.4].

5. Enumeration Complexity Hbe

Following [3], we extend the formalism that we presented in Section 1
from finite computations with a single output to infinite computations
with an infinite amount of output. So let’s now consider computers
that never halt, which we shall refer to as enumeration computers, or
e-computers for short. An e-computer C is given by a computable
function that maps the program p and the time t into the finite set of
bit strings that is the output C(p, t) of C at time t with program p. The
total output C(p) produced by e-computer C when running program p
is then defined to be

C(p) =
∞⋃

t=0

C(p, t).

The complexity HC(S) of the set S based on the e-computer C is the
size in bits |p| of the smallest program p for enumerating S with C:

HC(S) = min
C(p)=S

|p|.

Define a universal e-computer Ue as follows:

Ue(p1

i 0’s︷ ︸︸ ︷
000 · · ·000) = Ci(p).

Here Ci is the e-computer with Gödel number i, i.e., the ith e-computer.
Hence

HUe(S) ≤ HCi
(S) + (i+ 1)
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for all S. The general definition of a universal e-computer U is that
it is one that has the property that for each e-computer C there is a
constant simC (the cost in bits of simulating C) such that

HU(S) ≤ HC(S) + simC

for all S. The universal e-computer Ue we defined above satisfies this
definition with simCi

= i + 1. We pick this particular universal e-
computer Ue as our standard one and define the blank-endmarker e-
complexity1 Hbe(S) to be HUe(S):

Hbe(S) = HUe(S).

In summary, the blank-endmarker e-complexity Hbe(S) of a
recursively-enumerable set S is the size in bits |p| of the smallest com-
puter program p that makes our standard universal e-computer Ue enu-
merate the set S.

6. Proving Lower Bounds II

Now we reformulate Theorem B using the concepts of Section 5.
Theorem D: Consider a formal system consisting of a recursively

enumerable set T of theorems. Suppose that Hbe(T ) ≤ n. This formal
system T of blank-endmarker e-complexity ≤ n cannot prove that a
specific string has blank-endmarker complexity > n+c. More precisely,
if a theorem of the form “Hb(s) > n” is in T only if it is true, then
“Hb(s) > n” is in T only if n < Hbe(T ) + c.

Note that Hbe(T ) combines the complexity of the axioms and the
rules of inference in a single number; it is therefore a more natural and
straight-forward measure of the complexity of a formal system than the
one that we used in Section 4.

Proof: In the proof of Theorem B, let pA now be pT , a minimal-size
program for enumerating the set T of theorems. To cut a long story
short, this time we have C(p) = s? and

Hb(s
?) > Hbe(T ) + 2k + 1

1In full, this is the “blank-endmarker enumeration complexity.”
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with

p = pT 1

k 0’s︷ ︸︸ ︷
000 · · ·000

of length
|p| = Hbe(T ) + 1 + k.

Hence

Hbe(T ) + 2k + 1 < Hb(s
?) ≤ Hbe(T ) + 1 + k + simC .

This yields a contradiction for k = simC . Q.E.D.

7. Hb versus Hbe

Note that the blank-endmarker e-complexity of a singleton set {x} is
essentially the same as the blank-endmarker complexity of the string
x:

Hbe({x}) = Hb(x) +O(1).

Proof: There is a special-purpose e-computer C such that

C(p) = {U(p)}.

(Just forget to halt!) This shows that

Hbe({x}) ≤ Hb(x) + c.

On the other hand, there is a special-purpose computer C ′ such that

C ′(p) = the first string output by Ue(p).

This shows that
Hb(x) ≤ Hbe({x}) + c′.

Q.E.D.
What about finite sets instead of singleton sets? Well, we can define

the blank-endmarker complexity of a finite set S as follows:

Hb(S) = Hb(
∑
x∈S

2x).
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Here we associate the kth string x with the natural number k, i.e., if the
kth string is in the set S, then 2k is in the sum

∑
x∈S 2x. This trickery

conceals the essential idea, which is that Hb(S) is the minimum number
of bits needed to tell our standard computer U how to write out S and
halt, whereas Hbe(S) is the minimum number of bits needed to tell our
standard computer Ue how to enumerate S but never halt, so that we
are never sure if the last element of S has been obtained or not.

Enumerating S is easier than computing S, sometimes much easier.
More precisely,

Hbe(S) ≤ Hb(S) + c.

And
Φ(n) = max

S finite
Hbe(S) ≤ n

Hb(S),

which measures the extent to which it is easier to enumerate finite sets
than to compute them, grows faster than any computable function of
n. In fact, it is easy to see that Φ grows at least as fast as the function
Θ defined as follows:

Θ(n) = max
Hb(x)≤n

x.

More precisely, there is a c such that for all n,

Φ(n+ c) ≥ Θ(n).

Proof Sketch: Consider the set

{0, 1, 2, . . . ,Θ(Θ(n))}

of all natural numbers up to Θ(Θ(n)). This set has blank-endmarker
complexity roughly equal to Θ(n), but its e-complexity is very small.
In fact, given the natural number n, one can enumerate this set, which
shows that its blank-endmarker e-complexity is ≤ log2 n + c. Q.E.D.

Here are three related functions Γ1, Γ2 and Γ3 that also grow very
quickly [4]:

Γ1(n) = max
S finite

Hb(S) ≤ n

#S.
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Here, as in Section 3, #S is the cardinality of the finite set S.

Γ2(n) = max
S finite

Hbe(S) ≤ n

#S.

Last but not least,
Γ3(n) = max

S finite
Hbe(S) ≤ n

#S.

Here S is the complement of the set S, i.e., the set of all bit strings
that are not in S.

8. Proving Lower Bounds III

It is possible to sustain the view that e-complexity is more fundamental
than normal complexity.2 If so, here is how to reformulate Theorem D:

Theorem E: Consider a formal system consisting of a recursively
enumerable set T of theorems. Suppose that Hbe(T ) ≤ n. This for-
mal system T of blank-endmarker e-complexity ≤ n cannot prove that
a specific string, considered as a singleton set, has blank-endmarker
e-complexity > n + c. More precisely, if a theorem of the form
“Hbe({s}) > n” is in T only if it is true, then “Hbe({s}) > n” is
in T only if n < Hbe(T ) + c.
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LISP PROGRAM-SIZE
COMPLEXITY1

Applied Mathematics and Computation

49 (1992), pp. 79–93

G. J. Chaitin

Abstract

A theory of program-size complexity for something close to real LISP is
sketched.

1This paper should be called “On the length of programs for computing finite
binary sequences in LISP,” since it closely follows references [3] to [6]. But that’s
too long!
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1. Introduction

The complexity measure used in algorithmic information theory [1] is
somewhat abstract and elusive. Instead of measuring complexity via
the size in bits of self-delimiting programs for a universal Turing ma-
chine as is done in [1], it would be nice to use instead the size in
characters of programs in a real computer programming language.

In my book Algorithmic Information Theory [1] I make considerable
use of a toy version of pure LISP constructed expressly for theoretical
purposes. And in Section 5.1 [1], “Complexity via LISP Expressions,”
I outline a theory of program-size complexity defined in terms of the
size of expressions in this toy LISP. However, this toy LISP is rather
different from real LISP; furthermore gruesome estimates of the number
of S-expressions of a given size (Appendix B [1]) are required.

One can develop a theory of program-size complexity for something
close to real LISP; we sketch such a theory here. It was pointed out
in [2] that this is a straightforward application of the methods used
to deal with bounded-transfer Turing machines in [3–6]. In fact, the
results in this paper closely follow those in my two earliest publications
on algorithmic information theory, the two AMS abstracts [3, 4] (also
reprinted in [2]), but restated for LISP instead of bounded-transfer
Turing machines.

2. Précis of LISP

Our basic LISP reference is [7]. So we have a LISP that includes
integers. Otherwise, we pretty much restrict ourselves to the pure
LISP subset of LISP 1.5, so there are no side-effects. In addi-
tion to the usual LISP primitives CAR, CDR, CONS, EQ, ATOM, COND,

QUOTE, LAMBDA, NIL and T, we need some more powerful built-in
functions, which are described below.

We shall principally be concerned with the size in characters of
programs for computing finite binary sequences, i.e., bit strings. The
convention we shall adopt for representing bit strings and character
strings is as follows. A bit string shall be represented as a list of the
integers 0 and 1. Thus the bit string 011 is represented by the 7-
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character LISP S-expression (0 1 1). Similarly, a character string is
represented as a list of integers in the range from 0 to 255, since we
assume that each character is a single 8-bit byte. Notation: |bit string|
or |character string| denotes the number of bits or characters in the
string.

LENGTH

Given a list, this function returns the number of elements in the list
(an integer).

FLATTEN

This is easy enough to define, but let’s simplify matters by assuming
that it is provided. This flattens an S-expression into the list of its
successive atoms. Thus

(FLATTEN(QUOTE(A(BB(CCC)DD)E)))

evaluates to

(A BB CCC DD E)

EVAL

Provides a way to evaluate an expression that has been constructed,
and moreover to do this in a clean environment, that is, with the initial
association list.

EVLIS

Evaluates a list of expressions and returns the list of values. Applies
EVAL to each element of a list and CONS’s up the results.

TIME-LIMITED-EVAL

This built-in function provides a way of trying to evaluate an expression
for a limited amount of time t. In the limit as t goes to infinity, this
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will give the correct value of the expression. But if the expression
does not have a value, this provides a way of attempting to evaluate
it without running the risk of going into an infinite loop. In other
words, TIME-LIMITED-EVAL is a total function, whereas normal EVAL is
a partial function (may be undefined and have no value for some values
of its argument.)

(TIME-LIMITED-EVAL plays a crucial role in [1], where it is used to
compute the halting probability Ω.)

CHARACTER-STRING

Writes a LISP S-expression into a list of characters, that is, a list of
integers from 0 to 255. In other words, this built-in function converts
a LISP S-expression into its print representation.

S-EXPRESSION

Reads a LISP S-expression from a list of characters, that is, a list of in-
tegers from 0 to 255. In other words, this built-in function converts the
print representation of a LISP S-expression into the LISP S-expression.
CHARACTER-STRING and S-EXPRESSION are inverse functions.

These two built-in functions are needed to get access to the indi-
vidual characters in the print representation of an atom. (In [1] and [9,
10] we program out/define both of these functions and do not require
them to be built-in; we can do this because in [1] atoms are only one
character long.)

3. Definition of Complexity in LISP

HLISP(x) ≡ min
EVAL(e)=x

|e|

That is, HLISP(x) is the size in characters |e| of the smallest S-expression
e (there may actually be several such smallest expressions) that evalu-
ates to the S-expression x. We usually omit the subscript LISP.
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Here e must only be self-contained LISP expressions without per-
manent side-effects. In other words, any auxiliary functions used must
be defined locally, inside e. Auxiliary function names can be bound to
their definitions (LAMBDA expression) locally by using LAMDBA binding.
Here is an example of a self-contained LISP expression, one containing
definitions of APPEND and FLATTEN:2

((LAMBDA (APPEND FLATTEN)

(FLATTEN (QUOTE (A (BB (CCC) DD) E))))

(QUOTE (LAMBDA (X Y) (COND ((ATOM X) Y)

(T (CONS (CAR X) (APPEND (CDR X) Y))))))

(QUOTE (LAMBDA (X) (COND ((ATOM X) (CONS X NIL))

((ATOM (CDR X)) X)

(T (APPEND (FLATTEN (CAR X)) (FLATTEN (CDR X)))))))

)

The value of this expression is (A BB CCC DD E).

4. Subadditivity of Bit String Complexity

One of the most fundamental properties of the LISP program-size com-
plexity of a bit string is that it is subadditive. That is, the complexity of
the result of concatenating the non-null bit strings s1, . . . , sn is bounded
by the sum of the individual complexities of these strings. More pre-
cisely,

H(s1 · · · sn) ≤
n∑

k=1

H(sk) + c, (4.1)

where the constant c doesn’t depend on how many or which strings sk

there are.
Why is this so? Simply, because we need only add c more characters

in order to “stitch” together the minimal-size expressions for s1, . . . , sn

into an expression for their concatenation. In fact, let e1, . . . , en be the
respective minimal-size expressions for s1, . . . , sn. Consider the follow-
ing LISP expression:

(FLATTEN(EVLIS(QUOTE(e1 · · · en)))) (4.2)

2Although we actually are taking FLATTEN to be built-in.
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Recall that the built-in function FLATTEN flattens an S-expression into
the list of its successive atoms, and that EVLIS converts a list of expres-
sions into the list of their values. Thus this S-expression (4.2) evaluates
to the bit string concatenation of s1, . . . , sn and shows that

H(s1 · · · sn) ≤
n∑

k=1

|ek|+ 25 =
n∑

k=1

H(sk) + c.

This S-expression (4.2) works because we require that each of the
ek in it must be a self-contained LISP S-expression with no side-effect;
that is the definition of the LISP program-size complexity HLISP. This
S-expression also works because of the self-delimiting LISP syntax of
balanced parentheses. That is, the ek are separated by their delimiting
parentheses in (4.2), and do not require blanks to be added between
them as separators.

One small but annoying detail is that blanks would have to be
added to separate the ek in (4.2) if any two successive ek were atoms,
which would ruin our inequality (4.1). There is no problem if all of the
ek are lists, because then they all begin and end with parentheses and
do not require added blanks. Does our LISP initially bind any atoms
to bit strings, which are lists of 0’s and 1’s? Yes, because although the
initial association list only binds NIL to NIL and T to T, NIL is the null
bit string! That is why we stipulate that the bit strings sk in (4.1) are
non-null.

5. A Minimal Expression Tells Us Its Size

As Well As Its Value

Symbolically,
H(x,H(x)) = H(x) +O(1).

That is, suppose that we are given a quoted minimal-size expression e
for x. Then of course we can evaluate e using EVAL to get x. And we can
also convert e into the list of characters that is e’s print representation
and then count the number of characters in e’s print representation.
This gives us |e|, which is equal to the complexity H(x) of x.
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More formally, let e be a minimal-size expression for x. Then the
following expression, which is only c characters longer than e, evaluates
to the pair consisting of x and H(x):

((LAMBDA (X) (CONS (EVAL X)
(CONS (LENGTH (CHARACTER-STRING X))

NIL)))
(QUOTE e))

Thus
H(x,H(x)) ≤ H(x) + c.

Conversely, let e be a minimal-size expression for the pair consist-
ing of x and H(x). Then the following expression, which is only c′

characters longer than e, gives us x:

(CAR e)

Thus
H(x) ≤ H(x,H(x)) + c′.

The fact that an expression can tell us its size as well as its value
will be used in Section 9 to show that most n-bit strings have close to
the maximum possible complexity max|s|=nH(s).

6. Lower Bound on Maximum Complexity

max
|s|=n

H(s) ≥ n/8.

To produce each of the 2n bit strings of length n, we need to evaluate
the same number of S-expressions, some of which must therefore have
at least n/8 characters. This follows immediately from the fact that we
are assuming that each character in the LISP character set is a single
8-bit byte 0–255.
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7. Upper Bounds on Maximum Complex-

ity

Consider an arbitrary n-bit string s whose successive bits are b1, . . . , bn.
Consider the LISP expression

(QUOTE(b1 . . . bn))

Here the individual bits bi in the bit string s of length n are separated
by blanks. The value of this expression is of course the list of bits
in s. Since this expression is 2n + 8 characters long, this shows that
H(s) ≤ 2n+ 8. Hence

max
|s|=n

H(s) ≤ 2n+ c.

Let us do slightly better, and change the coefficient from 2 to 1/2.
This can be done by programming out hexadecimal notation. That is,
we use the digits from 0 to 9 and the letters from A to F to denote the
successive quadruples of bits from 0000 to 1111. Thus, for example,

(

big function definition︷ ︸︸ ︷
(LAMBDA(X)...)(QUOTE(F F F F)))

will evaluate to the bit string consisting of sixteen 1’s. Hence each
group of 4 bits costs us 2 characters, and we have

max
|s|=n

H(s) ≤ n/2 + c′,

but with a much larger constant c′ than before.
Final version: let us compress the hexadecimal notation and elimi-

nate the alternating blanks. Form the name of an atom by appending
the hexadecimal digits as a suffix to the prefix HEX. (The prefix is re-
quired because the name of an atom must begin with a letter, not a
digit.) Then we can retrieve the hex digits packed into the name of this
atom by using the CHARACTER-STRING built-in:

(

bigger function definition︷ ︸︸ ︷
(LAMBDA(X)...) (CHARACTER-STRING(QUOTE HEXFFFF)))
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will again evaluate to the bit string consisting of sixteen 1’s. Now each
group of 4 bits costs us only one character, and we have

max
|s|=n

H(s) ≤ n/4 + c′′,

with a constant c′′ that is even slightly larger than before.

8. Smoothness of Maximum Complexity

Consider an n-bit string S of maximum complexity. Divide S into
bn/kc successive nonoverlapping bits strings of length k with one string
of length < k left over.

Then, by the subadditivity of bit string complexity (4.1), we have

H(S) ≤ bn/kcmax
|s|=k

H(s) + max
|s|<k

H(s) + c,

where c is independent of n and k. Hence

max
|s|=n

H(s) ≤ bn/kcmax
|s|=k

H(s) + c′k,

where the constant c′ now depends on k but not on n. Dividing through
by n and letting n→∞, we see that

lim sup
n→∞

1

n
max
|s|=n

H(s) ≤ 1

k
max
|s|=k

H(s).

However, we already know that max|s|=nH(s)/n is ≥ 1/8 and ≤ 1/4 +
o(1). Hence the limit of max|s|=nH(s)/n exists and is ≥ 1/8 and ≤ 1/4.
In summary, max|s|=nH(s) is asymptotic from above to a real constant,
which we shall henceforth denote by β, times n:

max
|s|=n

H(s) ∼ βn

max
|s|=n

H(s) ≥ βn (8.1)

.125 ≤ β ≤ .250
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9. Most N-bit Strings Have Close to Max-

imum Complexity

Padding Lemma. We shall need the following “padding lemma”: Any
S-expression e0 of size ≤ k can be “padded” into an expression e of size
k + 18 that has exactly the same value as e0.

Proof. Here is how to pad e0 into e:

((LAMBDA(X Y)Y)

k + 1− |e0|
digit 9’s︷ ︸︸ ︷

999...999 e0)

Here there are exactly k + 1− |e0| consecutive digit 9’s. The constant
18 is because the size in characters of the minimum padding

((LAMBDA(X Y)Y)9 )

is precisely 18. Correction: The  next to e0 becomes a 9 if e0 is in
()’s—it stays a blank if e0 is an atom.

Our main result in this section is that the number of n-bit strings
x having complexity H(x) less than or equal to

max
|s|=n

H(s)−max
|s|=k

H(s)− c− 18 (9.1)

is less than
2n−k. (9.2)

Assume on the contrary that the number of n-bit strings x having
complexity H(x) less than or equal to (9.1) is greater than or equal to
(9.2). From this we shall obtain a contradiction by showing that any
n-bit string has complexity less than max|s|=nH(s).

Here is how to produce an arbitrary n-bit string with a LISP expres-
sion of size less than max|s|=nH(s). The LISP expression is made by
putting together two pieces: a quoted expression e that was originally
of size less than or equal to (9.1) that has been padded to exactly size

max
|s|=n

H(s)−max
|s|=k

H(s)− c
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and whose value is an n-bit string, and an expression e′ of size

≤ max
|s|=k

H(s)

whose value is an arbitrary k-bit string.
From the quoted expression e we immediately obtain its size

|e| = LENGTH(CHARACTER-STRING(e))

and its value EVAL(e), as in Section 5. Note that |e| − 18 is exactly
(9.1). Next we generate all character strings of size ≤ |e| − 18, and
use S-EXPRESSION to convert each of these character strings into the
corresponding LISP S-expression. Then we use TIME-LIMITED-EVAL on
each of these S-expressions for longer and longer times, until we find
the given n-bit string EVAL(e). Suppose that it is the jth n-bit string
that we found to be the value of an S-expression of size ≤ |e| − 18.

Finally we concatenate the jth bit string of size n−k with the k-bit
string EVAL(e′) produced by e′. The result is an n-bit string S, which by
hypothesis by suitable choice of e and e′ can be made to be any one of
the 2n possible n-bit strings, which turns out to be impossible, because
it gives a LISP expression that is of size less than max|s|=nH(s) for the
n-bit string S.

Why?
The process that we described above can be programmed in LISP

and then carried out by applying it to e and e′ as follows:

(

very big function definition︷ ︸︸ ︷
(LAMBDA(X Y)...) (QUOTE e)︸ ︷︷ ︸

eventually
gives arbitrary
n − k bit string

directly
gives arbitrary

k bit string︷︸︸︷
e′ )

This LISP S-expression, which evaluates to an arbitrary n-bit string S,
is a (large) constant number c′ of characters larger than |e|+ |e′|. Thus

H(S) ≤ |e|+|e′|+c′ ≤
(

max
|s|=n

H(s)−max
|s|=k

H(s)− c
)

+

(
max
|s|=k

H(s)

)
+c′.
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And so
H(S) ≤ max

|s|=n
H(s)− c+ c′ < max

|s|=n
H(s)

if we choose the constant c in the statement of the theorem to be c′+1.

10. Maximum Complexity Strings Are

Random

Consider a long n-bit string s in which the relative frequency of 0’s
differs from 1/2 by more than ε. Then

HLISP(s) ≤ βH
(

1

2
+ ε,

1

2
− ε

)
n+ o(n).

Here
H(p, q) ≡ −p log2 p− q log2 q,

where
p+ q = 1, p ≥ 0, q ≥ 0.

More generally, let the n-bit string s be divided into bn/kc successive
k-bit strings with one string of < k bits left over. Let the relative
frequency of each of the 2k possible blocks of k bits be denoted by
p1, . . . , p2k . Then let k and ε be fixed and let n go to infinity. If one
particular block of k bits has a relative frequency that differs from 2−k

by more than ε, then we have

HLISP(s) ≤ βH
(

1

2k
+ ε,

1

2k
− ε

2k − 1
, · · · , 1

2k
− ε

2k − 1

)
n

k
+ o(n).

Here

H(p1, . . . , p2k) ≡ −
2k∑
i=1

pi log2 pi,

where
2k∑
i=1

pi = 1, pi ≥ 0.
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The notation may be a little confusing, because we are simultane-
ously using H for our LISP complexity measure and for the Boltzmann–
Shannon entropy H ! Note that in the definition of the Boltmann–
Shannon H , any occurrences of 0 log2 0 should be replaced by 0.

The Boltzmann–Shannon entropy function achieves its maximum
value of log2 of the number of its arguments if and only if the probability
distribution pi is uniform and all probabilities pi are equal. It follows
that a maximum complexity n-bit string s must in the limit as n goes
to infinity have exactly the same relative frequency of each possible
successive block of k bits (k fixed).

How does one prove these assertions?
The basic idea is to use a counting argument to compress a bit

string s with unequal relative frequencies into a much shorter bit string
s′. Then the smoothness of the maximum complexity (8.1) shows that
the original string s cannot have had maximum complexity.

For the details, see [5, 6]. Here is a sketch.
Most bit strings have about the same number of 0’s and 1’s, and also

about the same number of each of the 2k possible successive blocks of k
bits. Long strings for which this is not true are extremely unusual (the
law of large numbers!), and the more unequal the relative frequencies
are, the more unusual it is. Since not many strings have this unusual
property, one can compactly specify such a string by saying what is its
unusual property, and which of these unusual strings it is. The latter is
specified by giving a number, the string’s position in the natural enu-
meration of all the strings with the given unusual property. So it boils
down to asking how unusual the property is that the string has. That
is, how many strings share its unusual property? To answer this, one
needs estimates of probabilities obtained using standard probabilistic
techniques; for example, those in [8].

11. Properties of Complexity That Are

Corollaries of Randomness

Let’s now resume the discussion of Section 8. Consider an n-bit string S
of maximum complexity max|s|=nH(s). Divide S into bn/kc successive
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k-bit strings with one < k bit string left over. From the preceding
discussion, we know that if k is fixed and we let n go to infinity, in
the limit each of the 2k possible successive substrings will occur with
equal relative frequency 2−k. Taking into account the subadditivity
of bit string complexity (4.1) and the asymptotic lower bound on the
maximum complexity (8.1), we see that

βn ≤ H(S) ≤
(
n

k

)∑
|s|=k

H(s)/2k


+ o(n).

Multiplying through by k, dividing through by n, and letting n go to
infinity, we see that

βk ≤ ∑
|s|=k

H(s)/2k.

This piece of reasoning has a pleasant probabilistic flavor.
We can go a bit farther. The maximum max|s|=nH(s) cannot be less

than the average
∑

|s|=nH(s)/2n, which in turn cannot be less than βn.
Thus if we can find a single string of k bits with less than the maximum
possible complexity, it will follow that the maximum is greater than the
average, and thus also greater than βk. This is easy to do, for

H(

k 0’s︷ ︸︸ ︷
000 · · ·0) ≤ O(log k) < βk

for large k. Thus we have shown that for all large k,

βk < max
|s|=k

H(s).

In fact we can do slightly better if we reconsider that long maximum
complexity n-bit string S. For any fixed k, we know that for n large
there must be a subsequence 0k of k consecutive 0’s inside S. Let’s call
everything before that subsequence of k 0’s, S ′, and everything after,
S ′′. Then by subadditivity, we have

βn < H(S) ≤ H(S ′) +H(0k) +H(S ′′) + c
≤ H(S ′) +O(log k) +H(S ′′)

where
|S ′|+ |S ′′| = n− k.
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It follows immediately that(
max
|s|=n

H(s)

)
− βn

must be unbounded.

12. Conclusion

We see that the methods used in references [3–6] to deal with bounded-
transfer Turing machines apply neatly to LISP. It is a source of satis-
faction to the author that some ideas in one of his earliest papers, ideas
which seemed to apply only to a contrived version of a Turing machine,
also apply to the elegant programming language LISP.

It would be interesting to continue this analysis and go beyond the
methods of references [3–6]. The Appendix is an initial step in this
direction.

Appendix

There is an intimate connection between the rate of growth of
max|s|=nH(s) and the number of ≤n-character S-expressions.

Why is this?
First of all, if the number of ≤ n-character S-expressions is < 2k,

then clearly max|s|=kH(s) > n, because there are simply not enough
S-expressions to go around.

On the other hand, we can use S-expressions as notations for bit
strings, by identifying the jth S-expression with the jth bit string.
Here we order all S-expressions and bit strings, first by size, and then
within those of the same size, lexicographically.

Using this notation, by the time we get to the 2k+1th S-expression,
we will have covered all ≤k-bit strings, because there are not that many
of them. Thus max|s|=kH(s) ≤ n + c if the number of ≤ n-character
S-expressions is ≥ 2k+1. Here c is the number of characters that must
be added to the jth S-expression to obtain an expression whose value
is the jth bit string.
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So the key to further progress is to study how smoothly the number
of S-expressions of size n varies as a function of n; see Appendix B [1]
for an example of such an analysis.

One thing that limits the growth of the number of S-expressions
of size n, is “synonyms,” different strings of characters that denote
the same S-expression. For example, () and NIL denote the same
S-expression, and there is no difference between (A B), (A  B) and
(A  B ). Surprisingly, the fact that parentheses have to balance does
not significantly limit the multiplicative growth of possibilities, as is
shown in Appendix B [1].
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LISP PROGRAM-SIZE
COMPLEXITY II
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52 (1992), pp. 103–126

G. J. Chaitin

Abstract

We present the information-theoretic incompleteness theorems that
arise in a theory of program-size complexity based on something close
to real LISP. The complexity of a formal axiomatic system is defined
to be the minimum size in characters of a LISP definition of the proof-
checking function associated with the formal system. Using this con-
crete and easy to understand definition, we show (a) that it is difficult
to exhibit complex S-expressions, and (b) that it is difficult to deter-
mine the bits of the LISP halting probability ΩLISP. We also construct
improved versions Ω′

LISP and Ω′′
LISP of the LISP halting probability that

asymptotically have maximum possible LISP complexity.

Copyright c© 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.
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1. Introduction

The main incompleteness theorems of my Algorithmic Information The-
ory monograph [1] are reformulated and proved here using a concrete
and easy-to-understand definition of the complexity of a formal ax-
iomatic system based on something close to real LISP [2]. This paper
is the sequel to [3], and develops the incompleteness results associated
with the theory of LISP program-size complexity presented in [3]. Fur-
ther papers in this series shall study (1) a parenthesis-free version of
LISP, and (2) a character-string oriented version of LISP in which the
naturally occurring LISP halting probability asymptotically has maxi-
mum possible LISP complexity.

In [4] I present the latest versions of my information-theoretic in-
completeness theorems; there the complexity of a formal system is de-
fined in terms of the program-size complexity of enumerating its infinite
set of theorems. Here the goal has been to make these incompleteness
results accessible to the widest possible public, by formulating them as
concretely and in as straight-forward a manner as possible. Instead of
the abstract program-size complexity measure used in [4], here we look
at the size in characters of programs in what is essentially real LISP.
The price we pay is that our results are weaker (but much easier to
prove and understand) than those in [4].

This paper may also be contrasted with the chapter on LISP in my
monograph [1]. There I use a toy version of LISP in which identifiers
(atoms) are only one character long. In future papers I shall present
two LISP dialects that allow multiple-character LISP atoms, but which
share some of the desirable features of the toy LISP in [1].

From a technical point of view, Sections 7 and 8 are of special in-
terest. There two artificial LISP halting probabilities Ω′

LISP and Ω′′
LISP

are constructed that asymptotically have maximum possible LISP com-
plexity.

At this point it is appropriate to recall Levin’s delightful and un-
justly forgotten book [5] on LISP and metamathematics. (Levin was
one of the coauthors of the original LISP manual [2].)

Before proceeding, let’s summarize the results of [3]. Consider an
n-bit string s. Its maximum possible LISP complexity is asymptotic to
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a real constant β times n:

max
|s|=n

HLISP(s) ∼ βn.

Furthermore, most n-bit strings s have close to this maximum possi-
ble LISP complexity; such bit strings are “random.” For example, if
HLISP(sn) ∼ β|sn|, then as n→∞ the ratio of the number of 0’s to the
number of 1’s in the bit string sn tends to the limit unity.

2. Minimal LISP Expressions

Motivation: Imagine a LISP programming class. Suppose the class
is given the following homework assignment: find a LISP S-expression
for the list of primes less than a thousand. The students might well
compete to find the cleverest solution, the smallest LISP S-expression
for this list of prime numbers. But one can never be sure that one
has found the best solution! As we shall see, here one is up against
fundamental limitations on the power of mathematical reasoning! It is
this easy to get in trouble!

Consider a minimal-size LISP S-expression p. I.e., p has the value
x and no S-expression smaller than p has the same value x. Also, let
q be a minimal-size S-expression for p. I.e., the value of q is p and no
expression smaller than q has p as value.

q
yields value−→ p

yields value−→ x.

Consider the following LISP expression:

(quote p)

This expression evaluates to p. This shows that

HLISP(p) ≤ |p|+ 8.

Consider the following LISP expression:

(eval q)
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This expression evaluates to x. This shows that

|p| = HLISP(x) ≤ |q|+ 7 = HLISP(p) + 7.

Hence
HLISP(p) ≥ |p| − 7.

In summary,
Theorem A: If p is a minimal expression, it follows that∣∣∣∣HLISP(p)− |p|

∣∣∣∣ ≤ 8.

Hence the assertion that p is a minimal LISP S-expression is also
an assertion about p’s LISP complexity. If one can prove that p is a
minimal LISP S-expression, one has also shown that HLISP(p) ≥ |p|−7.

Anticipation: Where do we go from here? Minimal LISP S-
expressions illustrate perfectly the ideas explored in the next section,
Section 3.

The following result is a corollary of my fundamental theorem on
the difficulty of establishing lower bounds on complexity (Theorem C
in Section 3): A formal system with LISP complexity n can only enable
one to prove that a LISP S-expression p is minimal if p’s size is < n+ c
characters. This is only possible for finitely many p, because there are
only finitely many expressions (minimal or not) of size < n+ c.

Conversely by Theorem D in Section 3, there are formal systems
that have LISP complexity < n + c′ in which one can determine each
minimal LISP expression p up to n characters in size. (Basically, the
axiom that one needs to know is either the LISP S-expression of size
≤ n that takes longest to halt, or the number of LISP S-expressions of
size ≤ n that halt.)

The details and proofs of these assertions are in Section 3.

3. Exhibiting Complex S-Expressions

Recall the standard LISP convention of having a function return nil

to indicate “no value”; otherwise the return value is the real value
wrapped in a pair of parentheses.
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We define an n-character formal system to be an n-character self-
contained LISP function f that given a purported proof p returns
nil if the proof is invalid and that returns (t) where t is the theorem
proved if the proof is valid. I.e., f(p) is always defined and

f(p) =

{
nil if p is an invalid proof;
(t) if p is a valid proof.

Here is an example of a self-contained function definition:

(lambda

(real-argument-of-function)

( (lambda

(main-function

auxiliary-function-1

auxiliary-function-2

auxiliary-function-3

)

(main-function real-argument-of-function)

)

(quote definition-of-main-function)

(quote definition-of-auxiliary-function-1)

(quote definition-of-auxiliary-function-2)

(quote definition-of-auxiliary-function-3)

)

)

We are interested in the theorems of the following form:

(is-greater-than

(lisp-complexity-of (quote x))

999999

)

This is the LISP notation for

HLISP(x) > 999999.

The following theorem works because if we are given a LISP program
we can determine its size as well as run it.
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Theorem B: An n-character formal system cannot prove that a
specific S-expression has LISP complexity > n+ c characters.

Proof: Suppose we are given a proof-checking algorithm q for a
formal system. This is a LISP function of one argument, the putative
proof. This function q must always return a value, either nil signifying
that the proof is incorrect, or a list (t) consisting of a single element
t, the theorem established by the proof. Given a quoted expression
(quote q) for the definition of this proof-checking function q, we can
do the following two things with it:

1. We can determine the size in characters s of the proof-checker
q by converting the S-expression q to a character string1 and
then counting the number of elements in the resulting list of
characters.2 The LISP for doing this is:

s = (length(character-string q))

2. We can use the proof-checker q to check purported proofs p by
forming the expression (q (quote p)) and then evaluating this
expression in a clean environment. The LISP for doing this is:

(eval (cons q

(cons (cons (quote quote)

(cons p

nil))

nil))

)

So we try the given s-character proof checker q on each possible proof
p until we find a valid proof p that

1The LISP interpreter has to be able to convert S-expressions into character
strings in order to print them out. So it might as well make the resulting character
strings available internally as well as externally, via a character-string built-in
function. Characters are integers in the range from 0 to α − 1, where α is the size
of the LISP alphabet, including the two parentheses and the blank.

2Determining the length of a character string, which is just a list of integers, is
easily programmed if it is not provided as a built-in function: (lambda (list)
((lambda (length) (length list)) (quote (lambda (list) (cond ((atom
list) 0) (t (plus 1 (length (cdr list))) ))) ))).
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(is-greater-than

(lisp-complexity-of (quote x))

n

)

where the numeral n is ≥ s + k. I.e., we are searching for a proof that

HLISP(x) > s+ k

for a specific S-expression x. Then we output the LISP S-expression x
and halt. The computation that we have just described in words can
be formulated as a LISP expression

((lambda(proof-checker lower-bound)...)

(quote (lambda(purported-proof)...)︸ ︷︷ ︸
s characters

) k︸︷︷︸
blog10 kc+ 1 digits

)

whose size is s+blog10 kc+c′ that evaluates to an S-expression x whose
LISP character complexity is > s+ k. Hence

s+ blog10 kc+ c′ > s+ k.

This yields a contradiction for a fixed choice c of k that depends only
on c′ and not on the particular formal proof checker that we are given.
Q.E.D.

Above we consider an n-character proof-checker or formal system.
What if we consider instead a proof-checker whose LISP complexity is
n characters? In fact, a slight modification of the above proof shows
that

Theorem C: A formal system with a LISP complexity of n char-
acters cannot prove that a specific S-expression has LISP complexity
> n+ c characters.

Proof: The only change is that the very big LISP expression con-



62 Part I—Survey

sidered above now becomes:

((lambda(proof-checker lower-bound)...)

(...)︸ ︷︷ ︸
minimal-size LISP expression that evaluates to the proof-checker lambda-expression

k︸︷︷︸
blog10 kc+ 1 digits

)

I.e., the proof-checker is no longer given as a quoted expression, but is
itself computed. Q.E.D.

This theorem is sharp; here is the converse.
Theorem D: There is a formal system with LISP complexity < n+c

that enables us to determine:

(a) which LISP S-expressions have LISP complexity ≥ n,3 and

(b) the exact LISP complexity of each LISP S-expression with LISP
complexity < n.4

Proof: Here are two axioms packed full of information from which
we can deduce the desired theorems:

1. Being given the ≤ n character LISP S-expression that halts and
takes longest to do so (padded to size n).

2. Being given the kth ≤ n character LISP S-expression.5 Here k
is the number of ≤ n character LISP S-expressions that halt.
(Here again, this S-expression must be padded to a fixed size of
n characters.)

Here is how to do the padding:

(quote((...)xxxxxx))

3There are infinitely many S-expressions with this property.
4There are only finitely many S-expressions with this property.
5Pick a fixed ordering of all S-expressions, first by size, then alphabetically among

S-expressions of the same size.
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The three dots are where the S-expression to be padded is inserted.
The x’s are the padding. This scheme pads an S-expression e that is
≤ n characters long into one ((e)xxxxxx) that is exactly n + 4 char-
acters long. (The 4 is the number of added parentheses that glue the
expression e to its padding xxxxxx.) To retrieve the original expression
one takes the CAR of the CAR, i.e., the first element of the first element.
To determine n, one converts the padded S-expression into the corre-
sponding character string, one counts the number of characters in it,
and one subtracts 4. Q.E.D.

4. The Halting Probability ΩLISP

The first step in constructing an expression for a halting probability
for real LISP, is to throw out all atomic S-expressions, S-expressions
like harold, big-atom, etc. Anyway, most atomic S-expressions fail
to halt in the sense that they fail to have a value. (Of course, this
is when they are considered as self-contained S-expressions, not when
they are encountered while evaluating a much larger S-expression with
lambda-expressions and bindings.) The usual exceptions are the logical
constants t and nil, which evaluate to themselves.6 At any rate,
the purpose of a halting probability is to help us to decide which S-
expressions halt, i.e., have a value. But we don’t need any help to
decide if an atomic S-expression has a value; this is trivial to do. So
let’s forget about atomic S-expressions for the moment.

Let’s look at all non-atomic S-expressions e, in other words, at S-
expressions of the form (...). None of these is an extension of another,
because the ()’s must balance and therefore enable us to decide where
a non-atomic S-expression finishes. In other words, non-atomic LISP S-
expressions have the vital property that they are what is referred to as
“self-delimiting.” In a moment we shall show that this self-delimiting
property enables us to define a LISP halting probability as follows:

6In the LISP dialect in [1], an unbound atom will evaluate to itself, i.e., act as
if it were a constant.
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ΩLISP

=
∑

S-expression e
“halts,”

is defined,
has a value.

α−[size in characters of S-expression e]

=
∑

(x) has a value.

α−|(x)|.

Here α is the number of characters in the LISP alphabet and is assumed
to be a power of two. The S-expressions e included in the above sum
must not be atomic, and they must all be different. If two expres-
sions e and e′ differ only in that one contains redundant blanks, then
only the one without the redundant blanks is included in the above
sum. Similarly, (()) and (nil) are equivalent S-expressions, and are
only included once in the sum for ΩLISP. This is a straight-forward
definition of a LISP halting probability; we shall see in Sections 7 and
8 that it can be improved.

ΩLISP is also considered to be an infinite bit string, the base-two
representation of ΩLISP. It is important to pick the base-two represen-
tation with an infinite number of 1s. I.e., if it should end with
100000. . . , pick 011111. . . instead.7

It is crucial that the sum for ΩLISP converges; in fact we have

0 < ΩLISP < 1.

Why is this? The basic reason is that non-atomic LISP S-expressions
are self-delimiting because their parentheses must balance. Thus no ex-
tension of a non-atomic S-expression is a valid non-atomic S-expression.
Extra blanks at the end of an S-expression e are not allowed in the sum
for ΩLISP!

Here is a geometrical proof that this works. Associate S-expressions
with subsets of the interval of unit length consisting of all real numbers
r between zero and one. The S-expression e is associated with all those

7We shall see that ΩLISP is highly uncomputable and therefore irrational, so this
can’t actually occur, but we don’t know that yet!
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real numbers r having that string at the beginning of the fractional
part of r’s base-α representation:

e
is associated with←→ { the set of all reals of the form .e · · · in radix α notation }.

Then the length of the interval associated with an S-expression e is
precisely its probability α−|e|. That no extension of a non-atomic S-
expression is a valid non-atomic S-expression means that the intervals
associated with non-atomic S-expressions do not overlap. Hence the
sum of the lengths of these non-overlapping intervals must be less than
unity, since they are all inside an interval of unit length. In other words,
the total probability that a string of characters picked at random from
an alphabet with α characters is a non-atomic S-expression is less than
unity, and from these we select those that halt, i.e., evaluate to a value.

Another crucial property of ΩLISP (and of the two halting proba-
bilities Ω′

LISP and Ω′′
LISP that we will construct in Sections 7 and 8) is

that it can be calculated in the limit from below. More precisely, ΩLISP

can be obtained as the limit from below of a computable monotone
increasing sequence8 of dyadic rational numbers9 Ωl:

Ω0 ≤ Ω1 ≤ Ω2 ≤ · · · ≤ Ωl−1 ≤ Ωl → ΩLISP.

This is the case because the set of all S-expressions that halt, i.e., that
have a LISP value, is recursively enumerable. In other words, we can
eventually discover all S-expressions that halt.

Assume one is given the first n log2 α bits of ΩLISP. One then starts
to enumerate the set of all S-expressions that halt. As soon as one
discovers enough of them to account for the first n log2 α bits of ΩLISP,
one knows that one has all ≤ n character non-atomic S-expressions
that halt. And there is a trivial algorithm for deciding which ≤ n
character atomic S-expressions halt. One then calculates the set of
all the values of ≤ n character S-expressions that halt, and picks an
arbitrary S-expression that is not in this set of values. The result is an
S-expression with LISP complexity > n. Hence the string of the first
n log2 α bits of ΩLISP must itself have LISP complexity > n− c.

8I.e., nondecreasing sequence.
9I.e., rationals of the form i/2j.
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For more details about the process for using a halting probability
to solve the halting problem, see the chapter “Chaitin’s Omega” in
Gardner [6], or see [1].

In summary, if one knows the first n log2 α bits of ΩLISP, one can
determine each LISP S-expression with LISP complexity ≤ n charac-
ters, and can then produce a LISP S-expression with LISP complexity
> n characters. Thus

Theorem E: The string consisting of the first n log2 α bits of ΩLISP

has LISP complexity > n− c characters.
Using our standard technique for showing that it is difficult to ex-

hibit complex S-expressions (Section 3), it follows immediately that
Theorem F: To be able to prove what are the values of the first

n log2 α bits of ΩLISP requires a formal system with LISP complexity
> n− c characters.

Proof: Suppose we are given a proof-checking algorithm for a for-
mal system. This is a LISP function of one argument, the putative
proof. This function must always return a value, either nil signifying
that the proof is incorrect, or a list (t) consisting of a single element
t, the theorem established by the proof. Given a quoted expression
for the definition of this proof-checking function, we both know its
size in characters s, and we can use it to check purported proofs. So
we try it on each possible proof until we find a proof that “The first
(s+ k) log2 α bits of ΩLISP are . . . ” This would give us a LISP expres-
sion with s+ blog10 kc+ c′ characters that evaluates to something with
LISP complexity > s + k − c′′ characters. This yields a contradiction
for a fixed choice of k that depends only on c′ and c′′ and not on the
particular formal proof checker that we are given. Q.E.D.

5. Diophantine Equations for ΩLISP

Now let’s convert this incompleteness theorem (Theorem F) into one
about diophantine equations.

We arithmetize ΩLISP in two diophantine equations: one polynomial
[7], the other exponential [8]. As we pointed out in Section 4, ΩLISP

can be obtained as the limit from below of a computable monotone
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increasing sequence of dyadic rational numbers Ωl:

Ω0 ≤ Ω1 ≤ Ω2 ≤ · · · ≤ Ωl−1 ≤ Ωl → ΩLISP.

The methods of Jones and Matijasevič [7, 8, 26] enable one to con-
struct the following:

D1: A diophantine equation

P (k, l, x1, x2, x3, . . .) = 0

that has one or more solutions if the kth bit of Ωl is a 1, and that
has no solutions if the kth bit of Ωl is a 0.

D2: An exponential diophantine equation

L(k, l, x2, x3, . . .) = R(k, l, x2, x3, . . .)

that has exactly one solution if the kth bit of Ωl is a 1, and that
has no solutions if the kth bit of Ωl is a 0.

Since in the limit of large l the kth bit of Ωl becomes and remains
correct, i.e., identical to the kth bit of ΩLISP, it follows immediately
that:

P1: There are infinitely many values of l for which the diophantine
equation

P (k, l, x1, x2, x3, . . .) = 0

has a solution iff the kth bit of ΩLISP is a 1.

P2: The exponential diophantine equation

L(k, x1, x2, x3, . . .) = R(k, x1, x2, x3, . . .)

has infinitely many solutions iff the kth bit of ΩLISP is a 1.

Consider the following questions:

Q1: For a given value of k, are there infinitely many values of l for
which the diophantine equation

P (k, l, x1, x2, x3, . . .) = 0

has a solution?
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Q2: For a given value of k, does the exponential diophantine equation

L(k, x1, x2, x3, . . .) = R(k, x1, x2, x3, . . .)

have infinitely many solutions?

As we have seen in Theorem F, to answer the first n log2 α of either of
these questions requires a formal system with LISP complexity > n− c
characters.

In a more abstract setting [4], with diophantine equations con-
structed from a different halting probability, we can do a lot better.
There answering any n of these questions requires a formal system
whose set of theorems has enumeration complexity > n− c bits.

In Sections 7 and 8 we construct more artificial versions of ΩLISP,
Ω′

LISP and Ω′′
LISP, for which we can show that the LISP complexity of

the first n bits is asymptotically the maximum possible, βn characters.
By using the method presented in this section, we will automatically
get from Ω′

LISP and Ω′′
LISP new versions of the diophantine equations D1

and D2, new versions of the questions Q1 and Q2, and new versions
of the corresponding incompleteness theorems. But before diving into
these more technical matters, it is a good idea to step back and take a
look at what has been accomplished so far.

6. Discussion

The spirit of the results in Section 3 (Theorems B and C) is often
expressed as follows:

“A set of axioms of complexity N cannot yield a theorem
of complexity [substantially] greater than N .”

This way of describing the situation originated in the introductory dis-
cussion of my paper [9]:

“The approach of this paper. . . is to measure the power of a
set of axioms, to measure the information that it contains.
We shall see that there are circumstances in which one only
gets out of a set of axioms what one puts in, and in which
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it is possible to reason in the following manner. If a set
of theorems constitutes t bits of information, and a set of
axioms contains less than t bits of information, then it is
impossible to deduce these theorems from these axioms.”

This heuristic principle is basically correct, about as correct as any
informal explanation of a technical mathematical result can be. But it
is useful to point out its limitations.

In fact, any set of axioms that yields an infinite set of theorems
must yield theorems with arbitrarily high complexity! This is true for
the trivial reason that there are only finitely many objects of any given
complexity. And it is easy to give natural examples. For example,
consider the trivial theorems of the form

“N + 1 = 1 +N”

in which the numeral N is, if converted to base-two, a large random
bit string, i.e., one with LISP complexity ∼ β log2N . (This will be the
case for most large integers N .) This theorem has, if considered as a
character string, essentially the same arbitrarily large complexity that
the number N has.

So what is to become of our heuristic principle that

“A set of axioms of complexity N cannot yield a theorem
of complexity substantially greater than N” ???

An improved version of this heuristic principle, which is not really any
less powerful than the original one, is this:

“One cannot prove a theorem from a set of axioms that is
of greater complexity than the axioms and know that one
has done this. I.e., one cannot realize that a theorem is
of substantially greater complexity than the axioms from
which it has been deduced, if this should happen to be the
case.”

Thus even though most large integers N are random bit strings in base-
two and yield arbitrarily complex theorems of the form

“N + 1 = 1 +N”,
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we can never tell which N are random and achieve this!
Note that in Section 4 we encountered no difficulty in using our

heuristic principle to restrict the ability of formal systems to prove
what the value of ΩLISP is; our general method applies quite naturally in
this particular case (Theorem F). This example of the application of our
heuristic principle shows that the power of this principle is not restricted
by the fact that it really only prevents us from proving theorems that
are more complex than our axioms if we can realize that the theorems
would be more complex than our axioms are.

Perhaps it is better to avoid all these problems and discussions by
rephrasing our fundamental principle in the following totally unobjec-
tionable form:

“A set of axioms of complexity N cannot yield a theorem
that asserts that a specific object is of complexity substan-
tially greater than N .”

It was removing the words “asserts that a specific object” that yielded
the slightly overly-simplified version of the principle that we discussed
above:

“A set of axioms of complexity N cannot yield a theorem
that [asserts that a specific object] is of complexity substan-
tially greater than N .”

7. A Second “Halting Probability” Ω′LISP

We shall now “normalize” ΩLISP and make its information content
“more dense.” The new halting probability Ω′

LISP in this section has a
simple definition, but the proof that it works is delicate. The halting
probability in Section 8, Ω′′

LISP, has a more complicated definition, but
it is much easier to see that it works.

Let’s pick a total recursive function f such that
∑

2−f(n) ≤ 1 and
f(n) = O(logn). For example, let f(n) = 2dlog2 ne + 1. This works,
because

∞∑
n=1

2−2dlog2 ne−1 ≤ 1

2

∞∑
n=1

2−2 log2 n =
1

2

∞∑
n=1

1

n2
=
π2/6

2
≈ 1.644934

2
< 1.
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Here we have used the fact discovered by Euler
10 that 1+1/4+1/9+

1/16 + 1/25 + · · · = π2/6.
Define a new LISP “halting probability” between zero and one as

follows:

Ω′
LISP =

∞∑
n=1

[
# of different ≤ n character LISP S-expressions that halt

2dlog2(total # of different ≤ n character LISP S-expressions)e

]
2−2dlog2 ne−1.

The factor of 2−2dlog2 ne−1 is in order to insure convergence. The de-
nominator of (total # of different ≤ n character LISP S-expressions),
or Sn, is increased to the next highest power of two, 2dlog2 Sne, so that
we are doing very straightforward binary arithmetic to calculate Ω′

LISP.
Why is the LISP complexity of the string of the first n bits of Ω′

LISP

asymptotic to the maximum possible, βn?
The main reason is this: Consider all n-bit strings s. From [3] we

know that
max
|s|=n

HLISP(s) ∼ βn.

And below we shall show that it is also the case that

n ∼ log2(# of different ≤ βn character LISP S-expressions).

(This is somewhat delicate.)
So just about when the expression for the denominator in Ω′

LISP,

“2dlog2(total # of different ≤ βn character LISP S-expressions)e,”

hits 2n, the numerator,

“# of different ≤ βn character LISP S-expressions that halt,”

will include all minimal LISP expressions for n-bit strings. Thus
knowing a string consisting of the first n + o(n) bits of Ω′

LISP tells
us the LISP complexity of each ≤ n bit string. Hence the LISP

10For Euler’s proof that 1 + 1/4+1/9+ 1/16+ 1/25+ · · · = π2/6, see Section 6
in Chapter II of the first volume of Polya [10]. (Also see the exercises at the end
of Chapter II.)



72 Part I—Survey

complexity of the string of the first n bits of Ω′
LISP is asymptotic to

max|s|=nHLISP(s) ∼ βn.
It remains for us to establish the asymptotic expression for the

logarithm of Sn, the total number of different ≤ n character LISP
S-expressions. Let S ′n be the number of different non-atomic ≤ n
character LISP S-expressions. Consider an S-expression that is a list of
n elements, each of which is a ≤ k character non-atomic S-expression.
This shows that we have

S ′nk+2 ≥ (S ′k)
n.

(The 2 is for the two enclosing parentheses that must be added.) Hence

log2 S
′
nk+2 ≥ n log2 S

′
k.

Dividing through by nk we see that

log2 S
′
nk+2

nk
≥ log2 S

′
k

k
.

From this it is easy to see that

lim inf
n→∞

log2 S
′
n

n
≥ log2 S

′
k

k
.

On the other hand, the total number Sn of different ≤ n character
LISP S-expressions satisfies:

n log2 α ≥ log2 Sn > log2 S
′
n.

Thus (log2 S
′
n)/n tends to the limit γ ≤ log2 α from below, where

γ = sup
n→∞

log2 S
′
n

n
≤ log2 α.

Furthermore, γ 6= 0. This can be seen by considering those S-
expressions that are a list (999...999) containing a single “bignum” or
large integer. (For such S-expressions to be different, the first digit must
not be 0.) This shows that 9× 10n ≤ S ′n+3, and thus γ ≥ log2 10 > 0.
So the limit γ of (log2 S

′
n)/n is not equal to zero, and thus log2 S

′
n is

asymptotic to γn:
log2 S

′
n ∼ γn.
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Consider an S-expression that is a list (...) with one element,
which may be an atom. This shows that Sn ≤ S ′n+2. On the other hand,
S ′n ≤ Sn, because each S-expression included in S ′n is also included in
Sn. Thus we see that

S ′n ≤ Sn ≤ S ′n+2.

Since log2 S
′
n is asymptotic to γn, it follows from this inequality that

log2 Sn is also asymptotic to γn.
So we have shown that

γn ∼ log2(# of different ≤ n character LISP S-expressions)

and therefore

n ∼ log2(# of different ≤ n/γ character LISP S-expressions).

We finish by showing that β = 1/γ by using reasoning from the
Appendix of [3]. Order the LISP S-expressions, first by their size in
characters, and among those of the same size, in an arbitrary alpha-
betical order.

To get all n-bit strings, one needs to evaluate at least 2n dif-
ferent LISP S-expressions. Thus if Sm < 2n, then there is an n-
bit string s with LISP complexity greater than m. It follows that
max|s|=nHLISP(s) > n/γ + o(n).

On the other hand, we can use the kth S-expression as a notation to
represent the kth bit string. This gives us all n-bit strings by the time
k reaches 2n+1. And we have to add c characters to indicate how to
convert the kth S-expression into the kth bit string. Thus if Sm ≥ 2n+1,
then all n-bit strings s have LISP complexity less than m+c. It follows
that max|s|=nHLISP(s) < n/γ + o(n).

So
max
|s|=n

HLISP(s) ∼ n/γ ∼ βn,

and β = 1/γ. That concludes the proof of the following theorem.
Theorem G: The LISP complexity of the string consisting of the

first n bits of Ω′
LISP is ∼ βn. In order to answer the first n questions Q1

or Q2 for diophantine equations D1 and D2 constructed from Ω′
LISP as

indicated in Section 5, one needs a formal sytem with LISP complexity
> βn+ o(n).
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8. A Third “Halting Probability” Ω′′LISP

This time the definition of the “halting probability” is more artificial,
but it is much easier to see that the definition does what we want it to
do.

As in Section 7, we use the fact that

∞∑
i=1

2−2dlog2 ie−1 ≤ 1

2

∞∑
i=1

2−2 log2 i =
1

2

∞∑
i=1

1

i2
=
π2

12
< 1.

Multiplying together two copies of this infinite series, we see that

∞∑
i=1

∞∑
j=1

2−2dlog2 ie−2dlog2 je−2 < 12 = 1.

Define a new LISP “halting probability” as follows:

Ω′′
LISP =

∞∑
i=1

∞∑
j=1

αij 2−2dlog2 ie−2dlog2 je−2.

Here the dyadic rationals αij, for which it is always the case that

0 ≤ αij ≤ 1,

are defined as follows:

αij =

(
# of j-bit strings that have LISP complexity ≤ i

# of j-bit strings

)
≤ 2j/2j.

It follows immediately that

0 ≤ Ω′′
LISP ≤ 1.

A string consisting of the first n + O(logn) bits of Ω′′
LISP tells us the

LISP complexity of each ≤ n bit string; the most complex have LISP
complexity ∼ βn. So

Theorem H: The LISP complexity of the string consisting of the
first n bits of Ω′′

LISP is ∼ βn. In order to answer the first n questions Q1

or Q2 for diophantine equations D1 and D2 constructed from Ω′′
LISP as

indicated in Section 5, one needs a formal sytem with LISP complexity
> βn+ o(n).



LISP Program-Size Complexity II 75

9. Unpredictability

From the fact that the initial segments of the infinite bit strings Ω′
LISP

and Ω′′
LISP asymptotically have maximum possible LISP complexity, it

follows that their successive bits cannot be predicted using any com-
putable prediction scheme. More precisely,

Theorem I: Consider a total recursive prediction function F , which
given an arbitrary finite initial segment of an infinite bit string, returns
either “no prediction”, “the next bit is a 0”, or “the next bit is a 1”.
Then if F predicts at least a fixed nonzero fraction of the bits of Ω′

LISP

and Ω′′
LISP, F does no better than chance, because in the limit the

relative frequency of correct and incorrect predictions both tend to 1
2
.

Proof Sketch: We know that Ω′
LISP and Ω′′

LISP both have the prop-
erty that the string Ωn of the first n bits of each has LISP complexity
asymptotic to the maximum possible, which is βn.

The idea is to separate the n-bit string Ωn consisting of the first n
bits of either Ω′

LISP or Ω′′
LISP into the substring that is not predicted,

which we will leave “as is,” and the substring that is predicted, which
we will attempt to compress.

Let k be the number of bits of Ωn that are predicted by F . The
(n−k)-bit unpredicted substring of Ωn we are given “as is.” This takes
∼ β(n− k) LISP characters.

The k-bit predicted substring of Ωn is not given directly. Instead,
we calculate the predictions made by F , and are given a k-bit string
telling us which predictions are correct. Let l be the number of bits
that F predicts correctly. Thus this k-bit string will have l 1 bits,
indicating “correct,” and (k − l) 0 bits, indicating “incorrect.” If l
is not about one-half of k, the string of successes and failures of the
prediction scheme will be compressible, from the maximum possible of
∼ βk LISP characters, to only about βkH( l

k
, 1 − l

k
) LISP characters.

Here H(p, q) = −p log2 p − q log2 q is the Boltzmann-Shannon entropy
function. H(p, q) is less than one if p and q are not both equal to a
half. (For more details, see [3, Section 10].)

In summary, we use the prediction function F to stitch together the
unpredicted substring of Ωn with the predictions. And we are given a
compressed string indicating when the predictions are incorrect.

So we have compressed the n-bit string Ωn into two LISP expressions
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of size totaling about

β(n− k) + βkH( l
k
, 1− l

k
)� β(n− k) + βk = βn.

This is substantially less than βn characters, which is impossible, unless
l ≈ k/2. Thus about half the predictions are correct. Q.E.D.

Consider an F that always predicts that the next bit of Ω′
LISP is a 1.

Applying Theorem I, we see that Ω′
LISP has the property that 0’s and

1’s both have limiting relative frequency 1
2
. Next consider an F that

predicts that each 0 bit in Ω′
LISP is followed by a 1 bit. In the limit this

prediction will be right half the time and wrong half the time. Thus 0
bits are followed by 0 bits half the time, and by 1 bits half the time. It
follows by induction that each of the 2k possible blocks of k bits in Ω′

LISP

has limiting relative frequency 2−k. Thus, to use Borel’s terminology,
Ω′

LISP is “normal” in base two; so is Ω′′
LISP. In fact, Ω′

LISP and Ω′′
LISP are

Borel normal in every base, not just base two; we omit the details.

10. Hilbert’s 10th Problem

I would now like to discuss Hilbert’s tenth problem in the light of the
theory of LISP program-size complexity. I will end with a few contro-
versial remarks about the potential significance of these information-
theoretic metamathematical results, and their connection with experi-
mental mathematics and the quasi-empirical school of thought regard-
ing the foundations of mathematics.

Consider a diophantine equation

P (k, x1, x2, . . .) = 0

with parameter k. Ask the question, “Does P (k) = 0 have a solution?”
Let

q = q0q1q2 · · ·
be the infinite bit string whose kth bit qk is a 0 if P (k) = 0 has no
solution, and is a 1 if P (k) = 0 has a solution:

qk =

{
0 if P (k) = 0 has no solution,
1 if P (k) = 0 has a solution.
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Let
qn = q0q1 · · · qn−1

be the string of the first n bits of the infinite string q, i.e., the string of
answers to the first n questions. Consider the LISP complexity of qn,
HLISP(qn), the size in characters of the smallest LISP expression whose
value is qn.

If Hilbert had been right and every mathematical question had
a solution, then there would be a finite set of axioms from which one
could deduce whether P (k) = 0 has a solution or not for each k. We
would then have

HLISP(qn) ≤ HLISP(n) + c.

The c characters are the finite amount of LISP complexity in our ax-
ioms, and this inequality asserts that if one is given n, using the axioms
one can compute qn, i.e., decide which among the first n cases of the
diophantine equation have solutions and which don’t. Thus we would
have

HLISP(qn) ≤ blog10 nc+ 1 + c = O(logn).

(blog10 nc + 1 is the number of digits in the base-ten numeral for n.)
I.e., the LISP complexity HLISP(qn) of answering the first n questions
would be at most order of log n characters. We ignore the immense
amount of time it might take to deduce the answers from the axioms;
we are concentrating instead on the size in characters of the LISP
expressions that are involved.

In 1970 Matijasevič (see [7]) showed that there is no algorithm
for deciding if a diophantine equation can be solved. However, if we
are told the number m of equations P (k) = 0 with k < n that have a
solution, then we can eventually determine which do and which don’t.
This shows that

HLISP(qn) ≤ HLISP(n) +HLISP(m) + c′

for some m ≤ n, which implies that

HLISP(qn) ≤ 2(blog10 nc+ 1) + c′ = O(logn).

I.e., the LISP complexity HLISP(qn) of answering the first n questions
is still at most order of log n characters. So from the point of view
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of the LISP theory of program size, Hilbert’s tenth problem, while
undecidable, does not look too difficult.

Using the method we presented in Section 5, one can use the “im-
proved” LISP halting probability Ω′

LISP or Ω′′
LISP of Sections 7 and 8 to

construct an exponential diophantine equation

L(k, x1, x2, . . .) = R(k, x1, x2, . . .)

with a parameter k. This equation yields randomness and unpre-
dictability as follows. Ask the question, “Does L(k) = R(k) have
infinitely many solutions?” Now let

q = q0q1q2 · · ·

be the infinite bit string whose kth bit qk is a 0 if L(k) = R(k) has
finitely many solutions, and is a 1 if L(k) = R(k) has infinitely many
solutions:

qk =

{
0 if L(k) = R(k) has finitely many solutions,
1 if L(k) = R(k) has infinitely many solutions.

As before, let
qn = q0q1 · · · qn−1

be the string of the first n bits of the infinite string q, i.e., the string of
answers to the first n questions. Consider the LISP complexity of qn,
HLISP(qn), the size in characters of the smallest LISP expression whose
value is qn. Now we have

HLISP(qn) ∼ βn,

i.e., the string of answers to the first n questions qn has a LISP com-
plexity that is asymptotic to the maximum possible for an n-bit string.
As we discussed in Section 9, it follows that the string of answers
q = q0q1q2 · · · is now algorithmically random, in the sense that any
computable prediction scheme that predicts at least a fixed nonzero
fraction of the bits of qn will do no better than chance.11

11In the limit exactly half the predictions will be correct and half the predictions
will be incorrect.
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Surprisingly, Hilbert was wrong to assume that every mathemat-
ical question has a solution. The above exponential diophantine equa-
tion yields an infinite series of mathematical facts having maximum
possible LISP complexity, asymptotically β LISP characters per yes/no
fact. It yields an infinite series of questions which reasoning is powerless
to answer because their infinite LISP complexity exceeds the finite LISP
complexity of any finite set of mathematical axioms! Here one can get
out as theorems only as much LISP complexity as one explicitly puts in
as axioms, and reasoning is completely useless! I think this approach to
incompleteness via program-size complexity makes incompleteness look
much more natural and pervasive than has previously been the case.
This new approach also provides some theoretical justification for the
experimental mathematics made possible by the computer, and for the
new quasi-empirical view of the philosophy of mathematics that is dis-
placing the traditional formalist, logicist, and intuitionist positions.

For other discussions of the significance of these information-
theoretic incompleteness theorems, see [11–25].
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LISP PROGRAM-SIZE
COMPLEXITY III

Applied Mathematics and Computation

52 (1992), pp. 127–139

G. J. Chaitin

Abstract

We present a “parenthesis-free” dialect of LISP, in which (a) each prim-
itive function has a fixed number of arguments, and (b) the parentheses
associating a primitive function with its arguments are implicit and are
omitted. The parenthesis-free complexity of an S-expression e is defined
to be the minimum size in characters |p| of a parenthesis-free LISP ex-
pression p that has the value e. We develop a theory of program-size
complexity for parenthesis-free LISP by showing (a) that the maximum
possible parenthesis-free complexity of an n-bit string is ∼ βn, and (b)
how to construct three parenthesis-free LISP halting probabilities Ωpf ,
Ω′

pf and Ω′′
pf .

Copyright c© 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.
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1. Introduction

In this paper we consider a dialect of LISP half-way between the LISP
considered in my paper [1] (which is essentially normal LISP [2]) and
that studied in my monograph [3]. The “parenthesis-free” LISP studied
in this paper employs multiple-character atoms as in [1], but omits the
parentheses associating each primitive function with its arguments as
in [3]. Subadditivity arguments as in [1] rather than precise counts of
S-expressions as in [3], are used to show that the maximum possible
parenthesis-free LISP complexity Hpf of an n-bit string is ∼ βn. A
particularly natural definition of a parenthesis-free LISP halting prob-
ability Ωpf is presented here. Also two other halting probabilities, Ω′

pf

and Ω′′
pf , that asymptotically achieve maximum possible parenthesis-

free LISP complexity βn of the n-bit initial segments of their base-two
expansions. We thus show that the entire theory developed in [1, 4] for
HLISP can be reformulated in terms of Hpf .

In the last section we make our parenthesis-free LISP substantially
easier to use.1

2. Précis of Parenthesis-Free LISP

Let’s start with an example! Here is a sample specimen of parenthesis-
free LISP. It is a self-contained LISP expression that defines a function
append for concatenating two lists and then applies this function to the
lists (a b c) and (d e f).

Old notation [2]: see Figure 1. This expression evaluates to (a b c

d e f). New notation: see Figure 2. This expression, which is what
we shall call a meta-expression or M-expression, is expanded as it is
read by the parenthesis-free LISP interpreter into the corresponding S-
expression, which has all the parentheses: see Figure 3. This expression
also evaluates to (a b c d e f).

In parenthesis-free LISP, each LISP primitive function must have a
fixed number of arguments. So we have to fix cond, define, plus,

1Two decades ago the author wrote an interpreter for a similar LISP dialect. At
that time he did not realize that a mathematical theory of program size could be
developed for it.
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(
(lambda (append)
(append (quote (a b c)) (quote (d e f)))
)
(quote
(lambda (x y)
(cond ((atom x) y)

(t (cons (car x) (append (cdr x) y)))
)

)
)

)

Figure 1. Old Notation

(fnc (app) (app ’(a b c) ’(d e f))
’fnc (x y)
if at x y

jn hd x (app tl x y)
)

Figure 2. M-expression

((fnc (app) (app (’(a b c)) (’(d e f))))
(’(fnc (x y)
(if (at x) y

(jn (hd x) (app (tl x) y)))))
)

Figure 3. S-expression
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and times. We replace conditional expressions with an indefinite num-
ber of arguments by if-then-else expressions with three arguments. And
define, plus, and times now always have two arguments. As long
as we’re at it, we also shorten the names of the primitive functions. See
the table summarizing parenthesis-free LISP on page 87.

Functions dealing with integers are the same as in C. mexp con-
verts an S-expression into the list of characters in the smallest possible
equivalent M-expression.2 This will be a list of integers in the range
from 0 to α − 1 (α = the size of the alphabet). sexp converts the list
of characters in an M-expression into the corresponding S-expression.3

$ indicates that there are no implicit parentheses in the immediately
following S-expression. ($ also loses any special meaning within the
range of a $.) Thus

’$(hd tl jn $)

evaluates to (hd tl jn $). Another detail: ’ and $ do not need a
blank before the next character, i.e., no other atoms can start with the
characters ’ or $.

For this parenthesis-free approach to work, it is important that

(a) Every S-expression can be written in this notation.

(b) It should be possible given a parenthesis-free LISP S-expression to
calculate the equivalent M-expression4 of smallest size. Here is
an example of the synonym problem: ’$(eq x at y) and ’($eq

x $at y) are the same.

(c) And one must be able to calculate the size in characters of the
M-expression that corresponds to a given S-expression as in (b).

3. Parenthesis-Free LISP Complexity

Previously we had two LISP theories of program-size complexity: one
for real LISP [1, 4], and one for a toy LISP [3]. In this section we

2This is the inverse of what the LISP interpreter’s read routine does.
3This is an internally available version of the read routine used by the LISP

interpreter.
4This is the inverse of the input parse that puts in the implicit parentheses.
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Old New Read Number of
Name Name As Arguments
car hd head 1
cdr tl tail 1
cons jn join 2
atom at atom predicate 1
eq eq equal predicate 2
quote ’ quote 1
lambda fnc function 2
(cond (p x) (t y)) if p x y if-then-else 3

$ no implicit ()’s 1
define def define 2
eval val value-of 1

valt time-limited eval 1
sexp m-expr to s-expr 1
mexp s-expr to m-expr 1

numberp # number predicate 1
plus + plus 2
difference − minus 2
times * times 2
expt ^ raised-to-the 2
quotient / divided-by 2
remainder % remainder 2
equal = equal predicate 2

!= not-equal predicate 2
lessp < less-than predicate 2
greaterp > greater-than predicate 2

<= not-greater predicate 2
>= not-less predicate 2

Summary of Parenthesis-Free LISP
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present a method for getting two new theories of LISP program-size
complexity: a theory of program size for the LISP presented in Section
2, which is the subject of this paper, and a theory of parenthesis-free
program size for the toy LISP in [3], which we shall say no more about.
So we have four LISP complexity theories altogether.5

It is straightforward to apply to parenthesis-free LISP the tech-
niques I used to study bounded-transfer Turing machines [6–9]. Let
us define Hpf(x) where x is a bit string to be the size in characters
of the smallest parenthesis-free LISP M-expression whose value is the
list x of 0’s and 1’s. Consider the self-contained defined-from-scratch
parenthesis-free version of (append p q):

(fnc(app)(app p q)’fnc(x y)if at x y jn hd x(app tl x y))
| |
123456789012345678901234567890123456789012345678901234567

| | | | |
10 20 30 40 50

Here p is a minimal parenthesis-free LISP M-expression for the bit
string x, and q is a minimal parenthesis-free LISP M-expression for the
the bit string y. I.e., the value of p is the list of bits x and p is Hpf(x)
characters long, and the value of q is the list of bits y and q is Hpf(y)
characters long. (append p q) evaluates to the concatenation xy of
the bit strings x and y and is

Hpf(x) +Hpf(y) + 57− 2

characters long. Hence

Hpf(xy) ≤ Hpf(x) +Hpf(y) + 55.

Adding 55 to both sides of this inequality, we have

Hpf(xy) + 55 ≤ [Hpf(x) + 55] + [Hpf(y) + 55].

Therefore, let us define H ′
pf as follows:

H ′
pf(x) = Hpf(x) + 55.

5The next paper in this series [5], on a character-string oriented dialect of LISP,
will add one more LISP complexity theory to the list, for a grand total of five!
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H ′
pf is subadditive just like L(S), the maximum bounded-transfer Tur-

ing machine state complexity of an n-bit string:

H ′
pf(xy) ≤ H ′

pf(x) +H ′
pf(y).

The discussion of bounded-transfer Turing machines in [6–9] therefore
applies practically word for word to H ′

pf . In particular, let B(n) be the
maximum of H ′

pf(s) taken over all n-bit strings s:

B(n) = max
|s|=n

H ′
pf(s) = max

|s|=n
Hpf(s) + 55.

Consider a string s that is n+m bits long and that has the maximum
complexity H ′

pf(s) possible for an (n+m)-bit string, namely B(n+m).
This maximum complexity (n + m)-bit string s can be obtained by
concatenating the string u of the first n bits of s with the string v of
the last m bits of s. Therefore we have

B(n + m) = B(|uv|) = H′
pf(uv) ≤ H′

pf(u) + H′
pf(v) ≤ B(|u|) + B(|v|) = B(n) + B(m).

Thus B is subadditive:

B(n+m) ≤ B(n) +B(m).

This extends to three or more addends. For example:

B(n+m+ l) ≤ B(n+m) +B(l) ≤ B(n) +B(m) +B(l).

In general, we have:

B(n +m+ l + · · ·) ≤ B(n) +B(m) +B(l) + · · · .

From this subadditivity property it follows that if we consider an arbi-
trary n and k:

B(n) ≤
⌊
n

k

⌋
B(k) + max

i<k
B(i).

Hence

B(n) ≤
(
n

k
+O(1)

)
B(k) +O(1).
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[Recall that in this context O(1) denotes a bounded term and o(1)
denotes a term that tends to the limit 0.6] Dividing through by n and
letting n→∞, we see that

B(n)

n
≤
(

1

k
+ o(1)

)
B(k) + o(1).

[Recall that

lim sup
n→∞

ϕ(n) = lim
n→∞ sup{ϕ(k) : k ≥ n},

lim inf
n→∞ ϕ(n) = lim

n→∞ inf{ϕ(k) : k ≥ n}.
The supremum/infinum of a set of reals is the l.u.b./g.l.b. (least upper
bound/greatest lower bound) of the set. This extends the maximum
and minimum from finite sets to infinite sets of real numbers.7] There-
fore

lim sup
n→∞

B(n)

n
≤ B(k)

k
.

Since this holds for any k, it follows that in fact

lim sup
n→∞

B(n)

n
= inf

k

B(k)

k
= β.

This shows that as n goes to infinity, B(n)/n tends to the finite limit
β from above. Now we shall show that this limit β is greater than
zero. It is easy to see that because shorter LISP M-expressions may be
extended with blanks,

αmax|s|=n Hpf(s) ≥ 2n.

Here α is the number of characters in the parenthesis-free LISP alpha-
bet. (This inequality merely states that LISP M-expressions of at least
this size are needed to be able to produce all 2n n-bit strings.8) In other

6See Hardy and Wright [10, p. 7].
7See Hardy [11].
8If it weren’t for the fact that all shorter expressions are already included in this

count, this inequality would have the following slightly more cumbersome form:∑
k≤max|s|=n Hpf (s)

αk ≥ 2n.
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words,
2(log2 α)max|s|=n Hpf(s) ≥ 2n.

Thus
(log2 α) max

|s|=n
Hpf(s) ≥ n.

I.e.,

max
|s|=n

Hpf(s) ≥ n

log2 α
.

Hence
max|s|=nHpf(s)

n
≥ 1

log2 α
.

Therefore

B(n)

n
=

max|s|=nHpf(s) + 55

n
≥ 1

log2 α
+
O(1)

n
=

1

log2 α
+ o(1).

Thus we see that for all sufficiently large n, B(n)/n is bounded away
from zero:

0 <
1

log2 α
≤ lim inf

n→∞
B(n)

n
.

Hence the finite limit

lim
n→∞

B(n)

n
= β,

which we already know exists, must be greater than zero. We can
thus finally conclude that B(n) is asymptotic from above to a nonzero
constant β times n:

B(n) ∼ βn,
≥ βn.

I.e., the “adjusted by +55” maximum parenthesis-free LISP complex-
ity H ′

pf(s) of an n-bit string s is asymptotic from above to a nonzero
constant β times n:

max
|s|=n

H ′
pf(s) ∼ βn,

≥ βn.

In other words, the maximum parenthesis-free LISP complexity Hpf(s)
of an n-bit string s is asymptotic to a nonzero constant β times n:

max
|s|=n

Hpf(s) ∼ βn,
≥ βn− 55.
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4. The Halting Probabilities Ωpf,Ω
′
pf,Ω

′′
pf

In Section 3 we showed that the maximum possible parenthesis-free
LISP complexity Hpf of an n-bit string is asymptotic to βn, just as was
the case with HLISP in [1, Section 8], even though we no longer count
all parentheses as part of the complexity of a LISP S-expression. With
this basic result in hand, one can immediately rework all of [1] for this
new complexity measure Hpf .

What about reworking the sequel [4], which studies the correspond-
ing incompleteness theorems and halting probabilities? Everything is
straightforward and immediate. The only problems that arise in re-
working the discussion in [4] to use Hpf instead of HLISP, are with
halting probabilities. We must figure out (a) how to define a new halt-
ing probability Ωpf to replace ΩLISP, and (b) how to prove that the
initial n-bit segment of the new version Ω′

pf of Ω′
LISP has Hpf ∼ βn.

Ωpf

Problem: How do we define a new halting probability Ωpf to replace
ΩLISP?

As was discussed in [4, Section 4], the sum

ΩLISP =
∑

(e) halts

α−|(e)|

is ≤ 1 and converges because non-atomic LISP S-expressions are self-
delimiting. I.e., no extension of an (e) included in ΩLISP is included
in ΩLISP. However, extensions of non-atomic parenthesis-free LISP M-
expressions may yield other valid M-expressions.

There is a simple general solution to this problem: In our imag-
ination we add a blank at the end of each parenthesis-free LISP M-
expression to cut off possible extensions. With this imaginary modifi-
cation, it is again the case that no extension of a parenthesis-free LISP
M-expression is another valid parenthesis-free LISP M-expression, just
as was the case with non-atomic S-expressions in [4, Section 4]. In
other words, we define the parenthesis-free LISP halting probability as
follows:

Ωpf =
∑

e halts

α−|e|−1.
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This is summed over all parenthesis-free LISP M-expressions e that
have a value or are defined. In [4, Section 4] this sum is taken over
all non-atomic LISP S-expressions e that have a value or are defined.
Here we do not have to restrict the expressions e included in the sum
to be non-atomic. We have Ωpf ≤ 1, as desired.

Ω′′pf

The exact same method used to produce the halting probability in [4,
Section 8], Ω′′

LISP, immediately yields a corresponding Ω′′
pf .

Ω′′
pf =

∞∑
i=1

∞∑
j=1

αij 2−2dlog2 ie−2dlog2 je−2.

Here

αij =
# of j-bit strings that have parenthesis-free LISP complexity ≤ i

# of j-bit strings
.

Just as in [4, Section 8], Ω′′
pf has the property that the string consist-

ing of the first n bits of the base-two expansion of Ω′′
pf asymptotically

has maximum possible parenthesis-free LISP complexity βn. Thus we
can follow [4, Section 5] and construct from Ω′′

pf diophantine equations
D1 and D2 with the following property: To answer either the first n
cases of the yes/no question Q1 in [4, Section 5] about equation D1

or the first n cases of the yes/no question Q2 in [4, Section 5] about
equation D2 requires a formal system with parenthesis-free LISP com-
plexity > βn + o(n). I.e., the proof-checking function associated with
a formal system that enables us to determine the first n bits of the
base-two expansion of Ω′′

pf must have parenthesis-free LISP complexity
> βn+ o(n).

Ω′pf

Following [4, Section 7], Ω′
pf =

∑∞
n=1 of

# of different ≤ n character parenthesis-free LISP M-expressions that halt

2dlog2(total # of different ≤ n character parenthesis-free LISP M-expressions)e+2dlog2 ne+1
.
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The proof in [4, Section 7] that an initial n-bit segment of Ω′
LISP asymp-

totically has maximum possible complexity βn no longer works for Ω′
pf .

The problem is showing that there is a real number γ such that

γn ∼ log2 Sn

where

Sn = # of different ≤ n character parenthesis-free LISP M-expressions.

As was the case in defining Ωpf , the trick is to imagine an extra blank at
the end of each M-expression. In other words, everywhere “≤ n char-
acter M-expressions” appears, one must change this to “< n character
M-expressions.” So the fix is that now we consider instead

Sn = # of different < n character parenthesis-free LISP M-expressions.

As was the case with the definition of Ωpf , this trick automatically takes
care of the fact that atomic M-expressions are not self-delimiting. For
Ω′

pf it is not necessary to follow the proof in [4, Section 7] and consider
S ′n, which is the number of expressions counted in Sn that are non-
atomic. Instead one works directly with Sn, and it is now the case that
Snk+3 ≥ (Sk)

n.
Thus Ω′

pf has the property that the string consisting of the first
n bits of the base-two expansion of Ω′

pf asymptotically has maximum
possible parenthesis-free LISP complexity βn. Thus we can follow [4,
Section 5] and construct from Ω′

pf diophantine equations D1 and D2

with the following property: To answer either the first n cases of the
yes/no question Q1 in [4, Section 5] about equation D1 or the first
n cases of the yes/no question Q2 in [4, Section 5] about equation D2

requires a formal system with parenthesis-free LISP complexity > βn+
o(n). I.e., the proof-checking function associated with a formal system
that enables us to determine the first n bits of the base-two expansion
of Ω′

pf must have parenthesis-free LISP complexity > βn+ o(n).

In summary, we see that all of [1, 4] carries over from LISP complexity
to parenthesis-free LISP complexity.
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5. Improving Parenthesis-Free LISP

Following [3], here is an improvement to parenthesis-free LISP.
Let’s add let, read as “let. . . be. . . ”. let has three arguments. If

the first argument is an atom, the M-expression

let x v e

stands for the S-expression

((fnc (x) e) v)

I.e., evaluate e with x bound to the value of v. On the other hand, the
M-expression

let (f x y...) d e

stands for the S-expression

((fnc (f) e) (’(fnc (x y...) d)))

I.e., evaluate e with f bound to the definition of a function whose formal
parameters are x y. . . and having d as the body of its definition.

Here is an example, a single M-expression:

let (app x y) if at x y

jn hd x (app tl x y)

let x ’(a b c)

let y ’(d e f)

(app x y)

The value of this expression is:

(a b c d e f)

Evaluating the following four M-expressions gives the same final value,
but leaves app, x, and y defined.

def (app x y) if at x y

jn hd x (app tl x y)

def x ’(a b c)

def y ’(d e f)

(app x y)

The let notation makes our parenthesis-free LISP more convenient
to use, and all the proofs in Sections 3 and 4 go through without change
with let added.
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LISP PROGRAM-SIZE
COMPLEXITY IV
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52 (1992), pp. 141–147

G. J. Chaitin

Abstract

We present a new “character-string” oriented dialect of LISP in which
the natural LISP halting probability asymptotically has maximum pos-
sible LISP complexity.

1. Introduction

This paper continues the study of LISP program-size complexity in my
monograph [1, Chapter 5] and the series of papers [2–4].

In this paper we consider a dialect of LISP half-way between the

Copyright c© 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.
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LISP considered in my paper [2] (which is essentially normal LISP [5])
and that studied in my monograph [1]. The “character-string” LISP
studied in this paper employs multiple-character atoms as in [2], but
allows all possible character strings as S-expressions subject only to
the requirement that parentheses balance as in [1]. Precise counts of
S-expressions as in [1] rather than subadditivity arguments as in [2], are
used to show that the maximum possible character-string LISP com-
plexity Hcs(s) of an n-bit string s is βn+O(logn), where β = 1/ log2 α
and α = the number of characters in the alphabet. A particularly
natural definition of a character-string LISP halting probability Ωcs is
presented here. The n-bit initial segment of the base-two expansion of
Ωcs asymptotically achieves maximum possible character-string LISP
complexity βn. Indeed, the entire theory developed in [1, Section 5.1]
for toy LISP and in [2, 3] for HLISP can be reformulated in terms of
Hcs.

2. Précis of Character-String LISP

Let’s put the LISP of [5] on the operating table and examine it from an
information-theoretic point of view. The problem is that sometimes dif-
ferent looking S-expressions produce the same internal structure when
read in by the LISP interpreter and look the same if then written out.
In other words, the problem is synonyms! Information is being wasted
because not all different strings of characters in the external represen-
tation of an S-expression lead to different S-expressions in the internal
representation, which consists of binary trees of pointers.

In my monograph [1] I fixed this by using drastic surgery. First of
all, blanks are eliminated and all atoms are exactly one character long.
Next, () and nil are no longer synonyms, because the only way to
denote the empty list is via (). And “true” and “false” are 1 and 0

instead of t and nil.
The illness is serious, but the cure in [1] is rather drastic. Here we

present another way to eliminate synonyms and improve the expressive
power of LISP from an information-theoretic point of view. This time
the aim is to keep things as much as possible the way they are in normal
LISP [5]. So each extra, not-strictly-necessary blank is now a “blank
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atom,” which prints as a blank or  when we want to show it. And
both nil and () denote an empty list, but will print out differently and
compare different internally using the LISP primitive function eq.

Also we allow any succession of characters in a legal S-expression
between an opening left parenthesis and a closing right parenthesis, and
consider that each such S-expression is different. The only rule is that
parentheses must balance.

I think that a good way to express this idea is to call it a “character-
string” oriented version of LISP. It might also be called a “wysiwyg”
(“what you see is what you get”) version of LISP. The external represen-
tation of S-expressions is now taken seriously; before only the internal
representation of S-expressions really counted.

In summary, internal and external format are now precisely equiv-
alent, and reading an S-expression in and then writing it out gives
exactly the same thing back that was read in. There are no synonyms:
() and nil are different, 00022 and 22 are different, and (x y) and
(x   y) are different. Each different string of characters is a different
S-expression and blanks within an S-expression are respected. 0x0x is
a valid atom.

For example, the following S-expressions are all different:

(a b nil)

(a b ())

(a b())

(a b ( ))

(a b( ))

(a b () )

(a b() )

( a b ())

( a b())

( a b nil)
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(a   b   nil)

(a   b   ())

In normal LISP, these would all be the same S-expression. And the
LISP primitive-function eq is defined to be character-string equality,
so that it can see that all these S-expressions are different.

But what do these S-expressions with blanks mean? Consider the
following character-string LISP S-expression:

(   abc   def   )

The first three blanks denote three blank atoms. The second three
blanks denote only two blank atoms. And the last three blanks denote
three blank atoms. Blank atoms are always a single blank.

In general, n consecutive blanks within an S-expression will either
denote n blank atoms or n−1 blank atoms; it will be n−1 blank atoms
iff the blanks separate two consecutive atoms 6=(). In other words, n
consecutive blanks denote n blank atoms except when they separate
two characters that are neither parentheses nor blanks:

. . . abc   def. . .

In this situation, and only this situation, n + 1 blanks denote n blank
atoms. E.g., a single blank separating two atoms that are 6=() does
not entail any blank atoms:

. . . abc def. . .

On the other hand, here there is no blank atom:

. . . (abc)(def). . .

And here there is exactly one blank atom:

. . . (abc) (def). . .

With this approach, append of two S-expressions will carry along
all the blanks in its operands, and will add a blank if the first list ends
with an atom 6=() and the second list begins with an atom 6=():
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$(append(’( a b c ))(’( d e f ))) → ( a b c   d e f )

$(append(’( a b c ))(’( (d) e f ))) → ( a b c  (d) e f )

Thus the result of appending a list of n elements and a list ofm elements
always has n+m elements as usual. $ starts a mode in which all blanks
are significant in the next complete S-expression. In the normal mode,
excess blanks are removed, as is usual in LISP.

A few more words on $: Normally, extra blanks are helpful in writ-
ing S-expressions, to indicate their structure, but we don’t really want
the blank atoms. So we use the LISP input “meta-character” $ to in-
dicate that in the next complete S-expression extra blanks should not
be removed. For example, $ is a single blank atom. And $(   ) is a
list of three blank atoms. But the input expression

(a   $(   )   b)

denotes

(a(   )b)

because the extra blanks next to the a and the b are outside the range
of the $. The use of $ as a meta-character makes it impossible to have
$’s in the name of an atom.

Note that when taking car, cdr and cons, blanks are usually just
carried along, but sometimes a single blank must be stripped off or
added. The following examples explain how this all works:

• $(car(’( a  b  c))) →  

$(cdr(’( a  b  c))) → (a  b  c)

$(cons(’ )(’(a  b  c))) → ( a  b  c)

• $(cons(’a)(’(b c))) → (a b c)

(adds one blank after the a)

$(cons(’a)(’( b  c))) → (a  b  c)

(adds one blank after the a)

$(cdr(’(a  b  c))) → ( b  c)

(eliminates one blank after the a)
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• $(cons(’a)(’((b)  c))) → (a(b)  c)

(doesn’t add one blank after the a)

$(cons(’a)(’( (b)  c))) → (a (b)  c)

(doesn’t add one blank after the a)

$(cdr(’(a (b)  c))) → ( (b)  c)

(doesn’t eliminate one blank after the a)

• $(cons(’a)(’nil)) → (a)

$(cons(’a)(’())) → (a)

$(cdr(’(a))) → nil

(cdr never yields ())

• $(eq(’nil)(’())) → nil

The primitive functions car, cdr and cons are defined so that if there
are no extra blanks, they give exactly the same value as in normal
LISP. The primitive-function eq is defined to be character-string equal-
ity of entire S-expressions, not just atoms. Of course, the convert S-
expression to character-string primitive function (see [2, Section 2])
gives each repeated blank; this and eq are a way to extract all the
information from an S-expression. And the convert character-string to
S-expression primitive function (see [2, Section 2]) is able to produce
all possible S-expressions.

In summary, this new approach avoids the fact that () is the same as
nil and blanks are often ignored in LISP. We now allow and distinguish
all combinations of blanks; this makes it possible to pack much more
information in an S-expression. We must also allow names of atoms
with any possible mix of characters, as long as they are neither blanks
nor parentheses; we cannot outlaw, as normal LISP does, the atom
9xyz. In normal LISP [5], if an atom begins with a digit, it must all be
digits. In our LISP, 9xyz is allowed as the name of an atom. Thus our
definition of an integer is that it is an atom that is all digits, possibly
preceded by a minus sign (hyphen), not an atom that begins with a
digit. Also we must allow numbers with 0’s at the left like 00022, and
eq must consider 00022 and 022 to be different. There is a different
equality predicate “=” that is for numbers.
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Note that it is still possible to implement character-string LISP
efficiently via binary trees of pointers as is done in normal LISP. Ef-
ficient implementations of normal LISP are based on cells containing
two pointers, to the car and the cdr of an S-expression (see [5]).

3. The Halting Probability Ωcs

Of course the character-string LISP complexity Hcs(x) of an S-
expression x is now defined to be the minimum size in characters |e| of
a character-string LISP S-expression e that evaluates to x. Here e is
in the “official” character-string LISP notation in which every blank is
significant, not in the “meta-notation” used in Section 2 in which only
blanks in the range of a $ are significant.

The new idea that we presented in Section 2 is to think of LISP
S-expressions as character strings, to allow any succession of charac-
ters in a legal S-expression between an opening left parenthesis and a
closing right parenthesis, and to consider that each such S-expression
is different. The only rule is that parentheses must balance. From the
discussion of toy LISP in [1], we know that having parentheses balance
does not significantly decrease the multiplicative growth of the num-
ber of possibilities. I.e., the number of S-expressions with n characters
has a base-two logarithm that is asymptotic to n log2 α, where α is the
number of characters in the LISP alphabet including the blank and
both parentheses. (See [1, Appendix B].)

More precisely, the analysis of [1, Appendix B] gives the exact num-
ber and the asymptotics of the non-atomic character-string LISP S-
expressions of size n. There are also (α− 3)n atomic character-string
LISP S-expressions of size n, which is negligible in comparison. Thus
the total number Sn of character-string LISP S-expressions with exactly
n characters is asymptotic to

Sn ∼ αn−2

2
√
π(n/α)1.5

.

Hence
log2 Sn = n log2 α+O(logn).
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From this it is easy to see that the maximum possible character-string
LISP complexity Hcs(s) of an n-bit string s is βn+O(logn), where β =
1/ log2 α and α = the number of characters in the alphabet (including
the blank and both parentheses).

We see that the rules in Section 2 remove almost all the redun-
dancy in normal LISP S-expressions.1 Also, because no extension of a
non-atomic S-expression (e) is a valid non-atomic S-expression, we can
define a character-string LISP halting probability Ωcs as follows:

Ωcs =
∑

(e) has a value

α−[size of (e)] =
∑

(e) halts

α−|(e)|.

Just as in [3, Section 4], we see that being given the first n+O(log n)
bits of the base-two expansion of Ωcs would enable one to determine
the character-string LISP complexity Hcs of each ≤ n bit string. The
maximum of Hcs(s) taken over all ≤ n bit strings s is asymptotic to βn.
As in [3, Section 4], it follows that the string consisting of the first n
bits of the base-two expansion of Ωcs itself asymptotically has maximum
possible character-string LISP complexity Hcs ∼ βn.2 Thus we can
follow [3, Section 5] and construct from Ωcs diophantine equations D1

and D2 with the following property: To answer either the first n cases
of the yes/no question Q1 in [3, Section 5] about equation D1 or the first
n cases of the yes/no question Q2 in [3, Section 5] about equation D2

requires a formal system with character-string LISP complexity > βn+
o(n). I.e., the proof-checking function associated with a formal system
that enables us to determine the first n bits of the base-two expansion
of Ωcs must have character-string LISP complexity > βn+ o(n).
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INFORMATION-
THEORETIC
INCOMPLETENESS

Applied Mathematics and Computation

52 (1992), pp. 83–101

G. J. Chaitin

Abstract

We propose an improved definition of the complexity of a formal ax-
iomatic system: this is now taken to be the minimum size of a self-
delimiting program for enumerating the set of theorems of the formal
system. Using this new definition, we show (a) that no formal system of
complexity n can exhibit a specific object with complexity greater than
n + c, and (b) that a formal system of complexity n can determine at
most n+ c scattered bits of the halting probability Ω. We also present
a short, self-contained proof of (b).

Copyright c© 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.
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1. Introduction

The main incompleteness theorems of my Algorithmic Information The-
ory monograph [16] are reformulated and proved here using a new and
improved definition of the complexity of a formal axiomatic system.
This new approach is the self-delimiting version of that used in my
long 1974 paper [4], which may be contrasted with my short 1974 pa-
per [3]. In other words, this paper and my monograph [16] stand in the
same relation as my papers [4] and [3] do.

The new idea is to measure the complexity of a formal system in
terms of the program-size complexity of enumerating its infinite set
of theorems, not in terms of the program-size complexity of the finite
string of the axioms.

This new approach combines in a single number the complexity of
the axioms and the rules of inference, and the new complexity κ′ is never
more than c greater and can sometimes be up to ≈ log2 κ less than the
old complexity κ. Thus the incompleteness results given here are never
weaker and are sometimes somewhat stronger than the incompleteness
results in [16].

In addition, this new approach led me to a short, self-contained
proof (presented in Section 9) that it is hard to determine scattered
bits of the halting probability Ω. While the general theory developed
in my monograph [16] is still necessary to substantiate my thesis that
there is randomness in arithmetic, there is now a short-cut to the result
on the difficulty of determining scattered bits of Ω.

2. Bit String Complexity

Following Chaitin [6, 16], a computer C is a partial recursive function
that maps a program p (a bit string) into an output C(p), which is also
a bit string. C is not given the entire program p immediately. Instead,
C must request each bit of p, one bit at a time [6]. If a bit is requested
it is always provided, so that in a sense programs are initial segments
of infinite bit strings. The blank-endmarker approach in [3, 4] may also
be considered to request one bit at a time, but differs from the self-
delimiting approach used here because requesting a bit may also yield
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a blank, indicating that the program has ended.
A more abstract formulation of this self-delimiting program ap-

proach, but one that can be proved [6] to be entirely equivalent, is
to stipulate that a computer C has the property that no extension of
a valid program is a valid program. I.e., if p′ is an extension of p,
then C(p′) cannot be defined if C(p) is defined. In other words, the
set of valid programs, which is the domain of definition of the partial
recursive function C, is a so-called “prefix-free set.”

The complexity HC(x) of the string x based on the computer C is
the size in bits |p| of the smallest program p for computing x with C:

HC(x) = min
C(p)=x

|p|.

In addition to this complexity measure, there are related probabilities
that take into account all programs that produce a given result, not
just the smallest ones. The probability PC(x) of the string x based on
the computer C is the probability that C computes x if each bit of the
program p is the result of an independent toss of a fair coin:

PC(x) =
∑

C(p)=x

2−|p|.

It is easy to see that this sum converges and must be between zero
and one, because the p that are summed are a prefix-free set. I.e., if a
program p is included in this sum, then no extension of p is included in
this sum.

Define a universal computer U as follows:

U(

i 0’s︷ ︸︸ ︷
000 · · ·000 1p) = Ci(p).

Here Ci is the computer with Gödel number i, i.e., the ith computer.
Hence

HU(x) ≤ HCi
(x) + (i+ 1)

and
PU(x) ≥ PCi

(x) 2−(i+1)
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for all strings x. The general definition of a universal computer U is
that it has the property that for each computer C there is a prefix σC

such that
U(σC p) = C(p)

for all p. I.e., the prefix σC tells U how to simulate C. Hence for
each computer C there is a constant simC = |σC | (the cost in bits of
simulating C) such that

HU(x) ≤ HC(x) + simC

and
PU(x) ≥ PC(x) 2−simC

for all x. The universal computer U we defined above satisfies this
definition with simCi

= i+1. We pick this particular universal computer
U as our standard one and define the complexity H(x) to be HU(x),
and the algorithmic probability P (x) to be PU(x):

H(x) = HU(x), P (x) = PU(x).

The halting probability Ω is the total algorithmic probability:

Ω =
∑
x

P (x) =
∑

U(p) is defined

2−|p|.

Ω is a real number between zero and one, and we also think of it as the
infinite bit string of its binary digits. In [16] it is shown that Ω satisfies
three different but equivalent definitions of randomness: the construc-
tive measure-theoretic definitions of Martin-Löf and Solovay, and
the complexity-theoretic definition of Chaitin. (An alternative:

0 < Ω′ =
∑
x

2−H(x) < 1.

This often works just as well.)

3. Discussion

A fundamental theorem shows that the complexity measure H and the
algorithmic probability P are closely related:

H(x) = − log2 P (x) +O(1).
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Another basic fact is that most bit strings s of length n have close to
the maximum possible complexity

max
|s|=n

H(s) = n+H(n) +O(1) = n +O(logn).

How close are the complexities of most n-bit strings s to the maximum
possible? The number of n-bit strings s with complexity k less than
the maximum drops off exponentially:

#
{
|s| = n : H(s) < n+H(n)− k

}
< 2n−k+c.

The reason for picking a computer U with self-delimiting programs
to measure program-size complexity, is that self-delimiting programs
can be concatenated. For example, if U(p) = x and U(q) = y, then
we can compute x and y if we are given pq, the concatenation of the
programs p and q.

4. Exhibiting Complex Strings

Now to metamathematics! First we do things the old way.
Following Chaitin [3, 8, 16], the rules of inference F are a recur-

sively enumerable set of ordered pairs of the form 〈A, T 〉 indicating that
the theorem T follows from the axiom A:

F = { 〈A1, T1〉, 〈A2, T2〉, 〈A3, T3〉, . . .}.

Instead of 〈A, T 〉 ∈ F , one often writes A `F T . (The axiom A is
represented as a bit string via some standard binary encoding.) F is
fixed, and A varies.

Theorem A (Chaitin [8]1): Consider a formal system FA con-
sisting of all theorems derived from an axiom A by applying the rules
of inference F . The formal system FA cannot exhibit a specific string
with complexity > H(A) + cF . More precisely, if A `F H(s) > n only
if H(s) > n, then A `F H(s) > n only if n < H(A) + cF .

1See [1–5] for early versions of this information-theoretic incompleteness theorem.
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Proof: Consider a special-purpose computer C that does the fol-
lowing when given a minimal-size program pk for the natural number
k followed by a minimal-size program pA for the axiom A:

C(pk pA) =

{
The first specific string s?

that can be shown in FA to
have complexity > k + |pA|.

Here
U(pk) = k, |pk| = H(k),

and
U(pA) = A, |pA| = H(A).

How does C accomplish this? First C simulates running pk on U to
determine the natural number k. Then C simulates running pA on U
to determine the axiom A. Now C knows A and k. C then searches
through all proofs derived from the axiom A, searching through the
possible proofs in size order, and among those of the same size, in some
arbitrary alphabetical order, applying the proof-checking algorithm as-
sociated with the fixed rules of inference F to each proof in turn. (More
abstractly, C enumerates the set of theorems

FA = { T : A `F T } = { T : 〈A, T 〉 ∈ F }.
) In this manner C determines each theorem that follows from the
axiom A. C examines each of these theorems until it finds the first one
of the form

“H(s?) > j”

that asserts that a specific bit string s? has complexity greater than a
specific natural number j that is greater than or equal to k plus the
complexity |pA| of the axiom A:

j ≥ k + |pA|.
C then outputs the string s? and halts. Hence

HC(s?) ≤ |pk pA|,
and

k + |pA| < H(s?) ≤ |pk pA|+ simC .



Information-Theoretic Incompleteness 113

We therefore have the following crucial inequality:

k +H(A) < H(s?) ≤ H(k) +H(A) + simC .

This implies
k < H(k) + simC = O(log k),

which can only be true for finitely many values of k. Pick cF to be a k
that violates this inequality. It follows that s? cannot exist for k = cF .
The theorem is therefore proved. Q.E.D.

5. Set Enumeration Complexity

Following Chaitin [7, 8], we extend the formalism of Section 2 from
finite computations with a single output to infinite computations with
an infinite amount of output. Consider a new class of computers, com-
puters that never halt, and which we shall refer to as enumeration
computers, or e-computers for short. An e-computer C is given by a
total recursive function that maps its program p into the recursively-
enumerable set of bit strings C(p). C must request each bit of the
program p, and cannot run off the end of p, so p is self-delimiting. But
p’s total extent now only emerges in the limit of infinite time.

The complexity HC(S) of the set S based on the e-computer C is
the size in bits |p| of the smallest program p for enumerating S with C:

HC(S) = min
C(p)=S

|p|.

The probability PC(S) of the set S based on the e-computer C is the
probability that C enumerates S if each bit of the program p is produced
by an independent toss of a fair coin:

PC(S) =
∑

C(p)=S

2−|p|.

Define a universal e-computer Ue as follows:

Ue(

i 0’s︷ ︸︸ ︷
000 · · ·000 1p) = Ci(p).
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Here Ci is the e-computer with Gödel number i, i.e., the ith e-
computer. Hence

HUe(S) ≤ HCi
(S) + (i+ 1)

and
PUe(S) ≥ PCi

(S) 2−(i+1)

for all sets S. The general definition of a universal e-computer Ue is
that it has the property that for each e-computer C there is a prefix
σC such that

Ue(σC p) = C(p)

for all p. I.e., the prefix σC tells Ue how to simulate C. Hence for
each e-computer C there is a constant simC = |σC | (the cost in bits of
simulating C) such that

HUe(S) ≤ HC(S) + simC

and
PUe(S) ≥ PC(S) 2−simC

for all sets S. The universal e-computer Ue we defined above satisfies
this definition with simCi

= i + 1. We pick this particular universal
e-computer Ue as our standard one and define the e-complexity2 He(S)
to be HUe(S), and the enumeration probability Pe(S) to be PUe(S):

He(S) = HUe(S), Pe(S) = PUe(S).

In summary, the e-complexity He(S) of a recursively-enumerable set
S is the size in bits |p| of the smallest computer program p that makes
our standard universal e-computer Ue enumerate the set S. Pe(S) is
the probability that our standard universal e-computer Ue enumerates
the set S if each bit of the program p is produced by an independent
toss of a fair coin.

6. Discussion

The programs pA and pB for enumerating two sets A and B can be
concatenated. More precisely, the bits in the two programs pA and pB

2In full, the “enumeration complexity.”



Information-Theoretic Incompleteness 115

can be intertwined or merged in the order that they are read by two
copies of the universal e-computer Ue running in parallel and sharing a
single program bit stream. Thus e-complexity is additive, because the
size of the intertwined bit string pA ⊕ pB is the sum of the sizes of the
original strings pA and pB.

Let’s show some applications of intertwining. Define the e-
complexity of a function f to be the e-complexity of the graph of f ,
which is the set of all ordered pairs 〈x, f(x)〉. By intertwining,

He(
{
f(x) : x ∈ X

}
) < He(f) +He(X) + c.

Here is the cartesian product of two sets:

He(
{
〈x, y〉 : x ∈ A, y ∈ B

}
) < He(A) +He(B) + c.

Two other examples of intertwining:

He(A ∩ B) < He(A) +He(B) + c,

and
He(A ∪ B) < He(A) +He(B) + c.

Here is a horse of a different color:

H(ϕ(ψ(x))) < He(ϕ) +He(ψ) +H(x) + c.

7. Exhibiting Complex Objects

While a minimal-size program for the computer U tells us its size as
well as its output

H(x,H(x)) = H(x) +O(1),

this is not the case with a minimal-size program for the e-computer Ue.
Instead we only get its size in the limit from below:

He(X, {0, 1, 2, . . . , He(X)}) = He(X) +O(1).
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(It is annoying to have to define H and He for multiple arguments.
Intuitively, one simply computes several outputs simultaneously.3) In
the proof that

A `F H(s) > n =⇒ n < H(A) + cF

in Section 4, it is important that C knows |pA| = H(A) as well as A.
So it looks like we cannot prove that

“H(s) > n” ∈ T =⇒ n < He(T ) + c.

Surprisingly, everything works anyway.
Theorem B: Consider a formal system consisting of a recursively

enumerable set T of theorems. The formal system T cannot exhibit a
specific string with complexity > He(T )+c. More precisely, if a theorem
of the form “H(s) > n” is in T only if it is true, then “H(s) > n” is in
T only if n < He(T ) + c.

Proof: Consider a special-purpose computer C that is given as
its program a minimal-size program pk for the singleton set {k} of
the natural number k appropriately intertwined with a minimal-size
program pT for the set of theorems T . Here

Ue(pk) = {k}, |pk| = He({k}),
and

Ue(pT ) = T, |pT | = He(T ).

When C is given pk intertwined with pT it does the following. C runs
pk and pT in parallel on Ue to determine k and enumerate the set of
theorems T . As C enumerates T , C keeps track of the number ρ of
bits of pT that it has read. At some point C will find k. Thereafter, C
continually checks T until C finds a theorem of the form

“H(s?) > j”

3Here are some more formal definitions. For H , one can compute a tuple
〈x, y, z, . . .〉. The tuple mapping is a computable one-to-one correspondence be-
tween bit strings and singletons, pairs, triples, . . . of bit strings. For He, one can
enumerate several sets A, B, C, . . . by prefixing the elements of each with a different
prefix:

{1x : x ∈ A} ∪ {01x : x ∈ B} ∪ {001x : x ∈ C} ∪ · · ·
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asserting that a specific string s? has complexity greater than a specific
natural number j that is greater than or equal to k plus the current
value of ρ:

j ≥ k + ρ.

C then outputs the string s? and halts. It is possible that not all bits
of pk and pT have been read by C; unread bits of pk and pT are not
actually included in the intertwined program for C. Let p′k and p′T be
the portions of pk and pT that are actually read. Thus the final value
of ρ must satisfy

ρ = |p′T | ≤ He(T ).

In summary,

C(p′k ⊕ p′T ) = s?, “H(s?) > j” ∈ T, j ≥ k + ρ.

Thus s? must have the property that

HC(s?) ≤ |p′k|+ |p′T | ≤ He({k}) + ρ.

We therefore have the following crucial inequality:

k + ρ < H(s?) ≤ He({k}) + ρ+ simC .

Note that
He({k}) + ρ+ simC < O(log k) + ρ.

Hence
k + ρ < H(s?) < O(log k) + ρ.

This implies
k < O(log k),

which can only be true for finitely many values of k. Pick c to be a
value of k that violates this inequality. For k = c, s? cannot exist and
C can never halt. Thus T cannot contain any theorem of the form

“H(s?) > j”

with
j ≥ He(T ) + k,
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because
He(T ) + k ≥ k + ρ

and C would halt. The theorem is therefore proved. Q.E.D.
Recall the setup in Theorem A: the fixed rules of inference F and the

variable axiom A yield the set of theorems FA. Let’s apply Theorem
B to the set of theorems FA so that we can compare how powerful
Theorems A and B are. Here is what we get:

Theorem A: A `F H(s) > n =⇒ n < H(A) + cF .
Theorem B: “H(s) > n” ∈ FA =⇒ n < He(FA) + c.

The e-complexity He(FA) is never more than c bits larger and can
sometimes be up to≈ log2H(A) bits smaller than the complexityH(A).
This is because it is sometimes much easier to give the size |p| of a
program in the limit from below than to give the size of a program and
then halt. It all boils down to the fact that He({0, 1, 2, . . . , |p|}) can
be insignificant in comparison with H(|p|) (see [7, Section 3]). Thus
Theorem B is never weaker and sometimes is a little stronger than
Theorem A.

Let’s look at some other consequences of the method used to estab-
lish Theorem B.

We have seen that one can’t exhibit complex strings. What about
sets? One can’t exhibit e-complex sets:

“He(Ue(p)) > n” ∈ T =⇒ n < He(T ) + c.

Here is a bound on what can be accomplished with a single axiom
A and the rules of inference F :

A `F H(s) > n =⇒ n < H(A) +He(F ) + c.

Recall that Theorem A only asserted that

A `F H(s) > n =⇒ n < H(A) + cF .

Consider the set of theorems T derived from a set of axioms A
using the rules of inference F . (Now F is a recursively enumerable
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set of ordered pairs each consisting of a finite set of axioms and a
consequence.) We have

He(T ) ≤ He(A) +He(F ) + c.

And we get the following bound on what can be accomplished with the
set of axioms A and the rules of inference F :

A `F H(s) > n =⇒ n < He(A) +He(F ) + c.

8. Determining Bits of Ω

In the same spirit as Theorem B in Section 7, here is a new and improved
version of the key theorem in [16, Chapter 8] that one can determine
at most n+ c bits of the halting probability Ω with a formal system of
complexity n.

Theorem C: Consider a formal system consisting of a recursively
enumerable set T of theorems. If the formal system T has the property
that a theorem of the form

“The nth bit of Ω is 0/1.”

is in T only if it is true, then at most He(T )+c theorems of this form are
in T . In other words, if the e-complexity of T is n, then T can enable
us to determine the positions and values of at most n+ c scattered bits
of Ω.

Proof: (By reductio ad absurdum.) Suppose on the contrary that
for each k there is a formal system T that enables us to determine
He(T ) + k bits of Ω. We shall show that this contradicts the fact (see
[16]) that Ω is a Martin-Löf random real number.

Here is a way to produce a set of intervals Ak that covers Ω and has
measure µ(Ak) ≤ 2−k. I.e., a way that given k, we can enumerate a set
of intervals Ak that includes Ω and whose total length is ≤ 2−k.

Start running for more and more time all possible programs p on
the standard universal e-computer Ue. If at any point we have read
ρ ≤ |p| bits of a program p while enumerating its output Ue(p) and this
output includes ρ+ k theorems of the form

“The nth bit of Ω is 0/1.”
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determining ρ+ k bits of Ω, then we do the following:

1. The ρ + k theorems in Ue(p) give us a set of intervals of total
measure 2−(ρ+k) that covers Ω. More precisely, this set of inter-
vals covers Ω if Ue(p) is a truthful formal system. We add these
intervals to the set of intervals Ak.

2. We stop exploring this subtree of the tree of all possible programs
p. In other words, we don’t continue with the current program p
nor do we examine any program whose first ρ bits are the same
as the first ρ bits of p. This removes from further consideration
all programs in an interval of length 2−ρ, i.e., a set of programs
of measure 2−ρ.

For each k, the set of intervals Ak will have total measure µ(Ak) ≤
2k. Ω cannot be in all the Ak or Ω would not be Martin-Löf random,
which it most certainly is [16]. Therefore Ω is in only finitely many of
the Ak. Let c be the first k for which Ω is not in Ak, i.e., such that
we never find a way of determining ρ + k bits of Ω with only ρ bits of
axioms. Q.E.D.

9. A Different Proof

In Section 8 it was shown that a formal system of e-complexity n cannot
determine the positions and values of more than n+c bits of Ω (Theorem
C). The proof is like an iceberg, because it depends on the theory
systematically developed in the second half of my monograph [16]. Here
is a rather different proof that is essentially self-contained.4

Theorem C: A formal system T can enable us to determine the
positions and values of at most He(T ) + c bits of Ω. In other words, if
a theorem of the form

“The nth bit of Ω is 0/1.”

4An analogous situation occurs in elementary number theory. See the remarkably
simple Zermelo–Hasse–Lord Cherwell proof of the unique prime factorization
theorem in Rademacher and Toeplitz [17, p. 200].
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is in T only if it is true, then at most He(T ) + c theorems of this form
are in T .

Proof #2: Consider the following special-purpose computer C.
Given a program

k bits︷ ︸︸ ︷
000 · · ·0001 pT x,

C does the following. First C reads the initial run of 0 bits and the 1 bit
at its end. The total number of bits read is k. Then C starts running
on Ue the remainder of its program, which begins with a minimal-size
program pT for enumerating T :

Ue(pT ) = T, |pT | = He(T ).

As C enumerates T , C counts the number of bits

ρ ≤ He(T )

of pT that it has read. The moment that C has enumerated enough
theorems in the formal system T to find the values and positions of
ρ + 2k bits of Ω, C stops enumerating the theorems of the formal
system T . (Unread bits of pT are not actually included in the program
for C. Let p′T be the portion of pT that is actually read. Thus the final
value of ρ equals |p′T | and may actually be less than He(T ) if not all
bits of the minimal-size program for enumerating T are needed.) Now
C knows ρ+ 2k bits of Ω. Next C determines the position n of the bit
of Ω that it knows that is farthest from the decimal point. In other
words, C finds the largest n in the first ρ+ 2k theorems of the form

“The nth bit of Ω is 0/1.”

in T , where ρ = |p′T | is the number of bits of pT that are read. Consider
the string Ωn of the first n bits of Ω:

Ωn = β1β2β3 · · ·βn.

From T , C has determined βn and ρ + 2k − 1 other bits of Ωn. To fill
in the gaps, the remaining n− ρ − 2k bits of Ωn are provided to C as
the remainder of its program, x, which is exactly n− ρ− 2k bits long.
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(For C’s program to be self-delimiting, it is crucial that at this point
C already knows exactly how long x is.) Now C knows the first n bits
of Ω, and it outputs them and halts:

C(

k bits︷ ︸︸ ︷
000 · · ·0001 p′T x) = Ωn.

Note that the size of C’s program is

|
k bits︷ ︸︸ ︷

000 · · ·0001 |+ |p′T |+ |x| = k + ρ+ (n− ρ− 2k).

This of course simplifies as follows:

k + ρ+ (n− ρ− 2k) = n− k.
Hence

HC(Ωn) ≤ n− k.
We therefore have the following crucial inequality:5

n− c′ < H(Ωn) ≤ n− k + simC .

Hence
k < c′ + simC .

Taking
k = c′ + simC

we get a contradiction. Thus T cannot yield

ρ+ 2k = ρ+ 2(c′ + simC) ≤ He(T ) + 2(c′ + simC)

bits of Ω. The theorem is proved with

c = 2(c′ + simC).

Q.E.D.

5It is easy to see that there is a computer C′ such that

U(p) = Ωn =⇒ C′(p) = the first string x with H(x) > n.

Hence
H(Ωn) > n− simC′ = n− c′.

I.e., Ω is a Chaitin random real. For the details, see the chapter “Chaitin’s Omega”
in Gardner [29], or the proof that Ω is Chaitin random in [16].
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10. Diophantine Equations

Now let’s convert Theorem C into an incompleteness theorem about
diophantine equations.6

We arithmetize Ω in two diophantine equations: one polynomial,
the other exponential. Ω can be obtained as the limit of a computable
sequence of rational numbers Ωl:

Ω = lim
l→∞

Ωl.

(Careful: in Section 9, Ωl meant something else.) For example, let Ωl

be the sum of 2−|p| taken over all programs p of size ≤ l that halt in
time ≤ l:

Ωl =
∑
|p| ≤ l

U(p) halts in time ≤ l

2−|p|.

The methods of Jones and Matijasevič [10, 22, 31] enable one to
construct the following:

1. A diophantine equation

P (k, l, x1, x2, x3, . . .) = 0

that has one or more solutions if the kth bit of Ωl is a 1, and that
has no solutions if the kth bit of Ωl is a 0.

2. An exponential diophantine equation

L(k, l, x2, x3, . . .) = R(k, l, x2, x3, . . .)

that has exactly one solution if the kth bit of Ωl is a 1, and that
has no solutions if the kth bit of Ωl is a 0.

Since in the limit of large l the kth bit of Ωl becomes and remains
correct, i.e., identical with the kth bit of Ω, it follows immediately
that:

6My first information-theoretic incompleteness theorem about diophantine equa-
tions is stated without proof in the introduction of my 1974 paper [4]. A better one
is mentioned in my 1982 paper [9, Section 4]. Finally, two papers [11, 12] and a
book [16] give number theory their undivided attention.
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1. There are infinitely many values of l for which the diophantine
equation

P (k, l, x1, x2, x3, . . .) = 0

has a solution iff the kth bit of Ω is a 1.

2. The exponential diophantine equation

L(k, x1, x2, x3, . . .) = R(k, x1, x2, x3, . . .)

has infinitely many solutions iff the kth bit of Ω is a 1.

Consider the following questions:

1. For a given value of k, are there infinitely many values of l for
which the diophantine equation

P (k, l, x1, x2, x3, . . .) = 0

has a solution?

2. For a given value of k, does the exponential diophantine equation

L(k, x1, x2, x3, . . .) = R(k, x1, x2, x3, . . .)

have infinitely many solutions?

By Theorem C, to answer any n cases of the first question or any n
cases of the second question requires a formal system of e-complexity
> n− c.

For discussions of the significance of these information-theoretic in-
completeness theorems, see [13, 15, 18–21, 23–30].
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“A mathematical theory is not to be considered complete until you
have made it so clear that you can explain it to the first man whom
you meet on the street.”

“This conviction of the solvability of every mathematical problem is
a powerful incentive to the worker. We hear within us the perpetual
call: There is the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no ignorabimus [we shall never
know].”

—David Hilbert,

International Congress of Mathematicians,
Paris, 1900

“Wir müssen wissen! Wir werden wissen!”
[We must know! We will know!]

—David Hilbert,

Naturerkennen und Logik,
Königsberg, 1930

“One does not immediately associate with Hilbert’s name any definite
and important metamathematical result. Nevertheless, Hilbert will
deservedly be called the father of metamathematics. For he is the one
who created metamathematics as an independent being; he fought for
its right to existence, backing it with his whole authority as a great
mathematician. And he was the one who mapped out its future course
and entrusted it with ambitions and important tasks.”

—Alfred Tarski in
Constance Reid, Hilbert
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ARENA PROGRAM ON
‘NUMBERS’ (BBC TV)

Produced by Fisher Dilke

Finished 19 April 1989

Broadcast Friday 19 January 1990

CHAITIN

Most people think that a computer is absolutely mechanical, reliable—
it goes from step to step in a completely mechanical fashion. This
may seem like a very surprising place to come up with unpredictability
and randomness. Computers to be useful have to be as predictable, as
unrandom, as possible.

There’s an absolutely fundamental famous problem called the halt-
ing problem. The problem is to decide whether a computer program
will ever halt.

Most people don’t understand why this is a problem at first. If you
take a computer program and you put it into a computer, and it halts,
you know it’s halted. If you want to decide if a program will halt in an
hour, you run it for an hour, and it’s either halted or it hasn’t. If you
want to decide whether it halts in a day, you run it for a day, and it
either halts or it doesn’t.

What turns out to be a tremendously fundamental conceptual
problem—and this has been known since the 30’s—is to decide if a
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program will ever halt, where there’s no limit on the time it takes.
Of course if a program does halt eventually, if we’re very very patient

we can find that out, by just running it. Maybe in a million years or in
a billion years (I’m speaking now as a mathematician—this is all rather
theoretical) we’ll see that it halted.

What turns out to be the absolutely fundamental problem is to
decide that a program that doesn’t halt will never do it.

And then, instead of asking whether or not a program halts, you
ask what is the probability that a program chosen at random will halt.
That’s when you get complete randomness. That’s when I’ve shown
you get complete absolute randomness, unpredictability and incompre-
hensibility.

DILKE

Is this in the ordinary arithmetic that people learn at school?

CHAITIN

That’s a very good question.
Clearly, there’s nothing more certain than the fact that two plus

two is equal to four. I’m not saying that sometimes it will come out
five and sometimes it’s going to come out three. I’m only dealing with
the whole numbers. Questions like this are clearly very easy to settle.
This is probably the most solid and concrete part of mathematics.

Instead the first step is to mirror the halting problem. The same
way that one asks whether or not a program ever halts, one can look at
equations involving whole numbers and ask whether or not they have
a solution.

That’s the first step. That’s a more abstract question.
If there is a solution for an equation, one can eventually discover

that, by experimenting and trying different possibilities for the solution.
The problem is to prove that there is no solution. That’s equivalent
to the halting problem, and escapes the power of mathematics in some
cases.

But it doesn’t give complete randomness.
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What I’ve done is to go to a slightly more abstract question. That
question is, to ask about an equation involving whole numbers, not
whether or not it has a solution, but does it have an infinity of solutions
or only a finite number of solutions (and no solution is a finite number
of solutions).

If you construct the equations in the right way, and then you ask
whether the number of solutions is finite or infinite, I can show that
you get complete randomness. You get something that is completely
incomprehensible, that is completely unpredictable, and that no mat-
ter how much cleverness a mathematician will apply, will forever be
incomprehensible and show absolutely no pattern or structure.

Since this is rather unbelievable, I thought that it was important to
actually write the equations down and show them to people, to make
this randomness as tangible as possible. These equations turn out to
be enormous. In fact the first one is two hundred pages long. I had to
use a computer to write it out.

DILKE

So this calls for pessimism?

CHAITIN

No, I think it’s wonderful! Who would have thought that the whole
numbers had it in them to behave in this fascinating, rich, unexpected
fashion! Who knows what else they’re capable of doing! I think this is
very exciting.
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A RANDOM WALK IN
ARITHMETIC

New Scientist 125, No. 1709 (24 March 1990), pp. 44–46.
Reprinted in N. Hall, The New Scientist Guide to Chaos, Pen-
guin, 1991.

Gregory Chaitin

God not only plays dice in physics but also in pure mathematics. Math-
ematical truth is sometimes nothing more than a perfect coin toss.

THE NOTION of randomness obsesses physicists today. To what ex-
tent can we predict the future? Does it depend on our own limitations?
Or is it in principle impossible to predict the future? The question of
predictability has a long history in physics. In the early 19th century,
the classical deterministic laws of Isaac Newton led Pierre Simon de
Laplace to believe that the future of the Universe could be determined

Copyright c© 1990, IPC Magazines New Scientist, reprinted by permission.
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forever.
Then quantum mechanics came along. This is the theory that is

fundamental to our understanding of the nature of matter. It describes
very small objects, such as electrons and other fundamental particles.
One of the controversial features of quantum mechanics was that it in-
troduced probability and randomness at a fundamental level to physics.
This greatly upset the great physicist Albert Einstein, who said that
God did not play dice.

Then surprisingly, the modern study of nonlinear dynamics showed
us that even the classical physics of Newton had randomness and un-
predictability at its core. The theory of chaos, as the series of articles
in New Scientist last year described, has revealed how the notion of
randomness and unpredictability is beginning to look like a unifying
principle.

It seems that the same principle even extends to mathematics. I
can show that there are theorems connected with number theory that
cannot be proved because when we ask the appropriate questions, we
obtain results that are equivalent to the random toss of a coin.

My results would have shocked many 19th-century mathematicians,
who believed that mathematical truths could always be proved. For
example, in 1900, the mathematician, David Hilbert, gave a famous
lecture in which he proposed a list of 23 problems as a challenge to
the new century. His sixth problem had to do with establishing the
fundamental universal truths, or axioms, of physics. One of the points
in this question concerned probability theory. To Hilbert, probability
was simply a practical tool that came from physics; it helped to describe
the real world when there was only a limited amount of information
available.

Another question he discussed was his tenth problem, which was
connected with solving so-called “diophantine” equations, named after
the Greek mathematician Diophantus. These are algebraic equations
involving only whole numbers, or integers. Hilbert asked: “Is there a
way of deciding whether or not an algebraic equation has a solution in
whole numbers?”

Little did Hilbert imagine that these two questions are subtly re-
lated. This was because Hilbert had assumed something that was so
basic to his thinking that he did not even formulate it as a question in
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his talk. That was the idea that every mathematical problem has a so-
lution. We may not be bright enough or we may not have worked long
enough on the problem but, in principle, it should be possible to solve
it—or so Hilbert thought. For him, it was a black or white situation.

It seems now that Hilbert was on shaky ground. In fact, there is
a connection between Hilbert’s sixth question dealing with probability
theory and his tenth problem of solving algebraic equations in whole
numbers that leads to a surprising and rather chilling result. That is:
randomness lurks at the heart of that most traditional branch of pure
mathematics, number theory.

Clear, simple mathematical questions do not always have clear an-
swers. In elementary number theory, questions involving diophantine
equations can give answers that are completely random and look grey,
rather than black or white. The answer is random because the only
way to prove it is to postulate each answer as an additional indepen-
dent axiom. Einstein would be horrified to discover that not only does
God play dice in quantum and classical physics but also in pure math-
ematics.

Where does this surprising conclusion come from? We have to go
back to Hilbert. He said that when you set up a formal system of
axioms there should be a mechanical procedure to decide whether a
mathematical proof is correct or not, and the axioms should be con-
sistent and complete. If the system of axioms is consistent, it means
that you cannot prove both a result and its contrary. If the system is
complete, then you can also prove any assertion to be true or false. It
follows that a mechanical procedure would ensure that all mathematical
assertions can be decided mechanically.

There is a colourful way to explain how this mechanical procedure
works: the so-called “British Museum algorithm.” What you do—it
cannot be done in practice because it would take forever—is to use
the axiom system, set in the formal language of mathematics, to run
through all possible proofs, in order of their size and lexicographic order.
You check which proofs are correct—which ones follow the rules and
are accepted as valid. In principle, if the set of axioms is consistent and
complete, you can decide whether any theorem is true or false. Such
a procedure means that a mathematician no longer needs ingenuity or
inspiration to prove theorems. Mathematics becomes mechanical.
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Of course, mathematics is not like that. Kurt Gödel, the Austrian
logician, and Alan Turing, the father of the computer, showed that it is
impossible to obtain both a consistent and complete axiomatic theory
of mathematics and a mechanical procedure for deciding whether an
arbitrary mathematical assertion is true or false, or is provable or not.

Gödel was the first to devise the ingenious proof, couched in number
theory, of what is called the incompleteness theorem (see “The incom-
pleteness of arithmetic,” New Scientist, 5 November 1987). But I think
that the Turing version of the theorem is more fundamental and easier
to understand. Turing used the language of the computer—the instruc-
tions, or program, that a computer needs to work out problems. He
showed that there is no mechanical procedure for deciding whether an
arbitrary program will ever finish its computation and halt.

To show that the so-called halting problem can never be solved, we
set the program running on a Turing machine, which is a mathematical
idealisation of a digital computer with no time limit. (The program
must be self-contained with all its data wrapped up inside the program.)
Then we simply ask: “Will the program go on forever, or at some point
will it say ‘I’m finished’ and halt?”

Turing showed that there is no set of instructions that you can give
the computer, no algorithm, that will decide if a program will ever halt.
Gödel’s incompleteness theorem follows immediately because if there is
no mechanical procedure for deciding the halting problem, then there is
no complete set of underlying axioms either. If there were, they would
provide a mechanical procedure for running through all possible proofs
to show whether programs halt—although it would take a long time,
of course.

To obtain my result about randomness in mathematics, I simply
take Turing’s result and just change the wording. What I get is a sort
of a mathematical pun. Although the halting problem is unsolvable,
we can look at the probability of whether a randomly chosen program
will halt. We start with a thought experiment using a general purpose
computer that, given enough time, can do the work of any computer—
the universal Turing machine.

Instead of asking whether or not a specific program halts, we look
at the ensemble of all possible computer programs. We assign to each
computer program a probability that it will be chosen. Each bit of
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information in the random program is chosen by tossing a coin, an
independent toss for each bit, so that a program containing so many
bits of information, say, N bits, will have a probability of 2−N . We
can now ask what is the total probability that those programs will
halt. This halting probability, call it Ω, wraps up Turing’s question
of whether a program halts into one number between 0 and 1. If the
program never halts, Ω is 0; if it always halts, Ω is 1.

In the same way that computers express numbers in binary notation,
we can describe Ω in terms of a string of 1s and 0s. Can we determine
whether the Nth bit in the string is a 0 or a 1? In other words, can
we compute Ω? Not at all. In fact, I can show that the sequence of 0s
and 1s is random using what is called algorithmic information theory.
This theory ascribes a degree of order in a set of information or data
according to whether there is an algorithm that will compress the data
into a briefer form.

For example, a regular string of 1s and 0s describing some data such
as 0101010101 ... which continues for 1000 digits can be encapsulated
in a shorter instruction “repeat 01 500 times.” A completely random
string of digits cannot be reduced to a shorter program at all. It is said
to be algorithmically incompressible.

My analysis shows that the halting probability is algorithmically
random. It cannot be compressed into a shorter program. To get N
bits of the number out of a computer, you need to put in a program at
least N bits long. Each of the N bits of Ω is an irreducible independent
mathematical fact, as random as tossing a coin. For example, there are
as many 0s in Ω as 1s. And knowing all the even bits does not help us
to know any of the odd bits.

My result that the halting probability is random corresponds to Tur-
ing’s assertion that the halting problem is undecidable. It has turned
out to provide a good way to give an example of randomness in number
theory, the bedrock of mathematics. The key was a dramatic develop-
ment about five years ago. James Jones of the University of Calgary in
Canada and Yuri Matijasevič of the Steklov Institute of Mathematics in
Leningrad discovered a theorem proved by Edouard Lucas in France a
century ago. The theorem provides a particularly natural way to trans-
late a universal Turing machine into a universal diophantine equation
that is equivalent to a general purpose computer.
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I thought it would be fun to write it down. So with the help of a
large computer I wrote down a universal-Turing-machine equation. It
had 17 000 variables and went on for 200 pages.

The equation is of a type that is referred to as “exponential diophan-
tine.” All the variables and constants in it are non-negative integers,
0, 1, 2, 3, 4, 5, and so on. It is called “exponential” because it contains
numbers raised to an integer power. In normal diophantine equations
the power has to be a constant. In this equation, the power can be a
variable. So in addition to having X3, it also contains XY .

To convert the assertion that the halting probability Ω is random
into an assertion about the randomness of solutions in arithmetic, I need
only to make a few minor changes in this 200-page universal-Turing-
machine diophantine equation. The result, my equation exhibiting ran-
domness, is also 200 pages long. The equation has a single parameter,
the variable N . For any particular value of this parameter, I ask the
question: “Does my equation have a finite or infinite number of whole-
number solutions?” Answering this question turns out to be equivalent
to calculating the halting probability. The answer “encodes” in arith-
metical language whether the Nth bit of Ω is a 0 or a 1. If the Nth bit
of Ω is a 0, then my equation for that particular value of N has a finite
number of solutions. If the Nth bit of the halting probability Ω is a
1, then this equation for that value of the parameter N has an infinite
number of solutions. Just as the Nth bit of Ω is random—an inde-
pendent, irreducible fact like tossing a coin—so is deciding whether the
number of solutions of my equation is finite or infinite. We can never
know.

To find out whether the number of solutions is finite or infinite in
particular cases, say, for k values of the parameter N , we would have to
postulate the k answers as k additional independent axioms. We would
have to put in k bits of information into our system of axioms, so we
would be no further forward. This is another way of saying that the k
bits of information are irreducible mathematical facts.

I have found an extreme form of randomness, of irreducibility, in
pure mathematics—in a part of elementary number theory associated
with the name of Diophantus and which goes back 2000 years to classi-
cal Greek mathematics. Hilbert believed that mathematical truth was
black or white, that something was either true or false. I think that my
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work makes things look grey, and that mathematicians are joining the
company of their theoretical physics colleagues. I do not think that this
is necessarily bad. We have seen that in classical and quantum physics,
randomness and unpredictability are fundamental. I believe that these
concepts are also found at the very heart of pure mathematics.

Gregory Chaitin is a member of the theoretical physics group
at the Thomas J. Watson Research Center in Yorktown Heights, New
York, which is part of IBM’s research division.

Further Reading G. J. Chaitin, Information, Randomness & In-
completeness, Second Edition, World Scientific, Singapore, 1990; G. J.
Chaitin, Algorithmic Information Theory, third printing, Cambridge
University Press, Cambridge, 1990.
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NUMBER AND
RANDOMNESS
Algorithmic Information
Theory—
Latest Results on the
Foundations of Mathematics

In M. E. Carvallo, Nature, Cognition and

System, Vol. 3, Kluwer, 1993

Gregory J. Chaitin
IBM Research Division, New York

Lecture given Tuesday 15 January 1991 in the Technical University
of Vienna, at a meeting on “Mathematik und Weltbild,” immediately
following a lecture by Prof. Hans-Christian Reichel on “Mathematik

Copyright c© 1993, Kluwer Academic Publishers, Dordrecht, The Netherlands,
reprinted by permission.
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und Weltbild seit Kurt Gödel.” The lecture was videotaped; this is an
edited transcript.

It is a great pleasure for me to be speaking today here in Vienna. It’s
a particularly great pleasure for me to be here because Vienna is where
the great work of Gödel and Boltzmann was done, and their work is
a necessary prerequisite for my own ideas. Of course the connection
with Gödel was explained in Prof. Reichel’s beautiful lecture. What
may be a bit of a surprise is the name of Boltzmann. So let me talk
a little bit about Boltzmann and the connection with my own work on
randomness in mathematics.

You see, randomness in mathematics sounds impossible. If any-
thing, mathematics is where there is least randomness, where there is
most certainty and order and pattern and structure in ideas. Well, if
you go back to Boltzmann’s work, Boltzmann also put together two con-
cepts which seem contradictory and invented an important new field,
statistical mechanics.

I remember as a student reading those two words “statistical me-
chanics,” and thinking how is it possible—aren’t these contradictory
notions? Something mechanical is like a machine, predictable. What
does statistics have to do with mechanics? These seem to be two widely
separate ideas. Of course it took great intellectual courage on Boltz-
mann’s part to apply statistical methods in mechanics, which he did
with enormous success.

Statistical mechanics now is a fundamental part of physics. One
forgets how controversial Boltzmann’s ideas were when they were first
proposed, and how courageous and imaginative he was. Boltzmann’s
work in many ways is closely connected to my work and to Gödel’s
work, which may be a little surprising.

I’m trying to understand Gödel’s great incompleteness theorem, I’m
obsessed with that. I believe that the full meaning of Gödel’s result can
be obtained by taking Boltzmann’s ideas and applying them to mathe-
matics and to mathematical logic. In other words, I propose a thermo-
dynamical approach, a statistical-mechanics approach, to understand-
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ing the foundations of mathematics, to understanding the limitations
and possibilities of mathematical reasoning.

Thermodynamics and statistical mechanics talk about what can
be accomplished by machines, by heat engines, by steam engines, by
physical systems. My approach to understanding the full implications
of Gödel’s work is mathematically analogous to the ideas of thermo-
dynamics and Boltzmann and statistical mechanics. You might say,
not completely seriously, that what I’m proposing is “thermodynami-
cal epistemology!”

What led me to all this? Well, I was absolutely fascinated by Gödel’s
theorem. It seemed to me that this had to be the most profound re-
sult, the most mysterious result, in mathematics. And I think that a
key question that one should ask when one reads Gödel’s enormously
surprising result, is, well, how seriously should one take it?! It’s clearly
an enormously startling and unexpected result, but consider the math-
ematician working on normal mathematical questions. What is the
meaning of Gödel for daily work in mathematics? That’s the question
I’d like to ask.

Gödel explicitly constructed an arithmetical assertion that is true
but not provable within the system of Principia Mathematica of Russell
and Whitehead. It’s a very strange assertion. It’s an enormously clever
assertion: It says of itself, “I’m unprovable!” This is not the kind of
assertion that one normally is interested in as a working mathemati-
cian. But of course a great part of Gödel’s genius was to take such a
bizarre question very seriously and also to clothe it as an arithmetical
question. With the years this has led to the work on Hilbert’s tenth
problem, which is an even more straight-forward arithmetical incom-
pleteness result inspired by Gödel’s fundamental path-breaking work.

Let me make my question more explicit. There are many problems
in the theory of numbers that are very simple to state. Are there an
infinity of twin primes, primes that are two odd numbers separated
by one even number? That question goes back a long way. A question
which goes back to the ancient Greeks is, are there infinitely many even
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perfect numbers, and are there any odd perfect numbers?
Is it possible that the reason that these results have not been proven

is because they are unprovable from the usual axioms? Is the signifi-
cance of Gödel’s incompleteness theorem that these results, which no
mathematician has been able to prove, but which they believe in, should
be taken as new axioms? In other words, how pervasive, how common,
is the incompleteness phenomenon?

If I have a mathematical conjecture or hypothesis, and I work for a
week unsuccessfully trying to prove it, I certainly do not have the right
to say, “Well obviously, invoking Gödel’s incompleteness theorem, it’s
not my fault: Normal mathematical reasoning cannot prove this—we
must add it as a new axiom!” This extreme clearly is not justified.

When Gödel produced his great work, many important mathemati-
cians like Hermann Weyl and John von Neumann took it as a personal
blow. Their faith in mathematical reasoning was severely questioned.
Hermann Weyl said it had a negative effect on his enthusiasm for do-
ing mathematics. Of course it takes enormous enthusiasm to do good
research, because it’s so difficult. With time, however, people have
gone to the other extreme, saying that in practice incompleteness has
nothing to do with normal, every-day mathematics.

So I think it’s a very serious question to ask, “How common is
incompleteness and unprovability?” Is it a very bizarre pathological
case, or is it pervasive and quite common? Because if it is, perhaps we
should be doing mathematics quite differently.

One extreme would be experimental number theory, to do number
theory as if it were physics, where one looks for conjectures by playing
with prime numbers with a computer. For example, a physicist would
say that the Riemann ζ hypothesis is amply justified by experiment,
because many calculations have been done, and none contradicts it.
It has to do with where the zeros of a function called the Riemann ζ
function are. Up to now all the zeros are where Riemann said they
were, on a certain line in the complex plane.

This conjecture has rich consequences. It explains a lot of empiri-
cally verified properties of the distribution of prime numbers. So it’s a
very useful conjecture. Now in physics, to go from Newtonian physics
to relativity theory, to go from relativity theory to quantum mechanics,
one adds new axioms. One needs new axioms to understand new fields
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of human experience.
In mathematics one doesn’t normally think of doing this. But a

physicist would say that the Riemann hypothesis should be taken as a
new axiom because it’s so rich and fertile in consequences. Of course, a
physicist has to be prepared to throw away a theory and say that even
though it looked good, in fact it’s contradicted by further experience.
Mathematicians don’t like to be put in that position.

These are very difficult questions: How should one do mathemat-
ics? Should number theory be considered an experimental science like
physics? Or should we forget about Gödel’s result in our everyday work
as mathematicians? There are many possibilities in this spectrum.

I think these are very difficult questions. I think it will take many
years and many people to understand this fully. But let me tell you my
tentative conclusion based on my “thermodynamical” approach. It’s
really an information-theoretic approach: The work of Boltzmann on
statistical mechanics is closely connected intellectually with the work of
Shannon on information theory and with my own work on algorithmic
information theory. There’s a clear evolutionary history connecting
these ideas.

My approach is to measure how much information there is in a set
of axioms, to measure how much information there is in a theorem. In
certain circumstances I can show that if you have five pounds of axioms,
only five pounds, but here is a ten-pound theorem, well this theorem is
too big, it weighs too much to get from only five pounds of axioms.

Of course, I actually use an information-theoretic measure related
to the Boltzmann entropy concept. Boltzmann would recognize some
of the formulas in my papers, amazingly enough, because the interpre-
tation is quite different: it involves computers and program size. But
some of the formulas are identical. In fact, I like to use H for the same
reason that Shannon used H , in honor of the Boltzmann H function,
the H function dear to the heart of statistical physicists. (Of course,
there’s also a Hamiltonian H function, which is something else.)

The incompleteness phenomenon that Gödel discovered seems very
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natural from my information-theoretic point of view. You see, there is
no self-reference. Gödel’s incredibly clever proof skirts very very close
to paradox. I was fascinated by it. I was also very disturbed by it as a
child when I started thinking about all this.

If one measures information, then it seems natural to think, that if
you want to get more information out, sometimes you have to put more
information in. A physicist would say that it’s natural that if one wants
to encompass a wider range of mathematical experience, one needs to
add additional axioms. To a physicist that doesn’t seem outrageous.
To a mathematician it’s quite questionable and controversial.

So the point of view of algorithmic information theory suggests that
what Gödel found is not an isolated singularity. The information-
theoretic point of view suggests that Gödel’s incompleteness phe-
nomenon is very natural, pervasive and widespread. If this is true,
perhaps we should be doing mathematics a little bit differently and a
little bit more like physics is done.

Physicists always seem very pleased when I say this, and mathe-
maticians don’t seem at all pleased.

These are very difficult questions. I’m proposing this point of view,
but by no means is it established. I think that one needs to study all
this a lot more.

In summary, let me tell a story from ten years ago, from 1979, which was
the centenary of Einstein’s birth. There were many meetings around
the world celebrating this occasion. And at one of them in New York
I met a well-known physicist, John Wheeler. I went up to Wheeler
and I asked him, “Prof. Wheeler, do you think there’s a connection be-
tween Gödel’s incompleteness theorem and the Heisenberg uncertainty
principle?” Actually, I’d heard that he did, so I asked him, “What con-
nection do you think there is between Gödel’s incompleteness theorem
and Heisenberg’s uncertainty principle?”

This is what Wheeler answered. He said, “Well, one day I was at
the Institute for Advanced Study, and I went to Gödel’s office, and
there was Gödel...” I think Wheeler said that it was winter and Gödel
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had an electric heater and had his legs wrapped in a blanket.
Wheeler said, “I went to Gödel, and I asked him, ‘Prof. Gödel,

what connection do you see between your incompleteness theorem and
Heisenberg’s uncertainty principle?’ ” I believe that Wheeler exagger-
ated a little bit now. He said, “And Gödel got angry and threw me
out of his office!” Wheeler blamed Einstein for this. He said that Ein-
stein had brain-washed Gödel against quantum mechanics and against
Heisenberg’s uncertainty principle!

In print I recently saw a for-the-record version of this anecdote,1

which probably is closer to the truth but is less dramatic. It said, not
that Wheeler was thrown out of Gödel’s office, but that Gödel simply
did not want to talk about it since he shared Einstein’s disapproval of
quantum mechanics and uncertainty in physics. Wheeler and Gödel
then talked about other topics in the philosophy of physics, and about
cosmology.

There is some little-known work of Gödel connected with general
relativity, some very interesting work, about universes where the past
and the future is a loop, and you can travel into your past by going
around. That’s called a Gödel universe. It’s a little-known piece of
work that shows the stamp of Gödel’s originality and profundity.

Okay, so what was the final conclusion of all this? I went up to
Wheeler at this Einstein centenary meeting, and I asked him this ques-
tion. Wheeler told me that he asked Gödel the same question, and
Gödel didn’t answer Wheeler’s question, and Wheeler never answered
my question! So I’m going to answer it!

I’ll tell you what I think the connection really is between Gödel’s
incompleteness theorem and Heisenberg’s uncertainty principle. To an-
swer the question I want to make it a broader question. I would like
to tell you what I think the connection is between incompleteness and
physics.

I think that at the deepest level the implication of Gödel’s incom-
pleteness theorem is as I said before that mathematics should be pur-
sued more in the spirit of physics, that that’s the connection. I see
some negative reactions from the audience! Which doesn’t surprise me!

1Jeremy Bernstein, Quantum Profiles, Princeton University Press, 1991, pp. 140–
141.
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Of course this is a difficult question and it’s quite controversial. But
that’s what my work using an information-theoretic approach to Gödel
suggests to me.

Number theory has in fact been pursued to a certain extent in the
spirit of an experimental science. One could almost imagine a journal
of experimental number theory. For example, there are papers pub-
lished by number theorists which are, mathematicians say, “modulo
the Riemann hypothesis.” That is to say, they’re taking the Riemann
hypothesis as an axiom, but instead of calling it a new axiom they’re
calling it a hypothesis.

There are many examples of how this information-theoretic point of
view yields incompleteness results. I think the most interesting one is
my recent work on randomness in arithmetic, which I haven’t really
referred to yet in my talk.

A fundamental question that many of us wonder about, especially
as teenagers—that’s an age particularly well-suited for fundamental
questions—is the question, “To what extent can the universe be com-
prehended by the human mind?” Is the universe ordered? Is there
chaos and randomness? Are there limits in principle to what we will
ever be able to understand?

Hilbert stated very beautifully that he didn’t believe that there were
limits to what the human mind could accomplish in mathematics. He
believed that every question could be resolved: either shown to be true
or false. We might not be able to ever do it, but he believed that in
principle it was possible. Any clear mathematical question would have
a clear resolution via a mathematical proof. Of course, Gödel showed
that this is not the case.

But it’s really a more general question. Can the universe be compre-
hended, the physical universe as well as the universe of mathematical
experience? That’s a broader question.

To what extent can all this be comprehended by the human mind?
We know that it cannot be completely comprehended because of Gödel’s
work. But is there some way of getting a feeling for how much can be
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comprehended? Again it boils down to that.
When I was a student at the university, I totally believed in sci-

ence. But my faith in science was tried by the work I had to do in
experimental physics laboratories. The experiments were difficult. It
was hard for me to get good results. I’m sure some of you are excellent
experimentalists. There are people who have a natural talent for doing
physics experiments like there are people who have a natural talent for
growing flowers. But for me, the physics laboratory was a difficult ex-
perience and I began to marvel that scientists had been able to create
modern science in spite of the fact that Nature does not give a clear
answer to questions that we ask in the laboratory. It’s very difficult to
get a clear answer from Nature as to how the world works.

So I asked myself, what is it that is the most convincing evidence, in
our normal daily experience, that the universe can be comprehended,
that there is law and order and predictability rather than chaos and ar-
bitrary things which cannot be predicted and cannot be comprehended?
In my experience I would say that what most convinces me in science
and predictability and the comprehensibility of the universe is, you’ll
laugh, the computer!

I’m not referring now to the computer as an industrial gadget. I
think the computer is really amazing not because of its practical use-
fulness, but because of the fact that it works! To get a physical system
to behave so predictably over such long periods, over very extended
calculations, is amazing when one thinks about it.

I’ve done calculations which involved billions2 of successive opera-
tions each of which had to be accurately derived from the preceding
ones. Billions of steps each of which depended on the preceding ones.
I had ways of suspecting or predicting the final result or some char-
acteristic of it, and it worked! It’s really rather amazing. Of course,
it doesn’t always work, because the machine breaks down, or the pro-
grammer makes a mistake. But it works a lot of the time. And if one
runs a program several times one usually gets the same answers.

It’s really amazing when one thinks how many steps the machine
is doing and how this chain of causal events is predictable and is un-
derstandable. That’s the job of the computer engineer, to find physical

2 109



154 Part II—Discussion

principles that are as predictable as possible, that give him a physical
way to model the predictability of mathematics. Because computers
are actually mathematical machines, that is what they really are. At
least a mathematician might say that.

So the computer is a wonderful example of predictability and a
case where the physical behavior of a big chunk of the universe is very
understandable and very predictable and follows definite laws. I don’t
know the detailed laws of how a transistor works. But the overall
behavior of the system is amazingly comprehensible and predictable.
Otherwise one would not use computers. They would be absolutely
useless.

Now it may seem strange that starting with the computer one can con-
struct what I believe to be a very dramatic example of randomness.
This is an idea I got from the work of Turing, which in turn was in-
spired by the work of Gödel, both of which of course were responses to
questions that Hilbert asked.

Turing asks, can one decide if a computer program will ever halt, if
it will ever stop running? Turing took Cantor’s diagonal argument from
set theory and used it to show that there is no mechanical procedure
for deciding if a computer program will ever halt.

Well, if one makes a small change in this, in Turing’s theorem that
the halting problem is undecidable, one gets my result that the halt-
ing probability is algorithmically random or irreducible mathematical
information. It’s a mathematical pun!

The problem with this theorem is of course that in doing everyday
mathematics one does not worry about halting probabilities or halting
problems. So I had the same problem that Gödel had when he was
thinking about mathematical assertions which assert of themselves that
they’re unprovable. My problem was how to take this bizarre notion of
a halting probability and convert it into an arithmetical assertion.

It turns out that one can do this: One can exhibit a way to toss
a coin with whole numbers, with the integers, which are the bedrock
of mathematics. I can show that in some areas of arithmetic there is
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complete randomness!
Don’t misunderstand. I was interviewed on a BBC TV program.

A lot of people in England think I said that 2 + 2 is sometimes 4,
sometimes 5, and sometimes 3, and they think it’s very funny! When
I say that there is randomness in arithmetic I’m certainly not saying
that 2 + 2 is sometimes 3 and sometimes 5. It’s not that kind of
randomness. That is where mathematics is as certain and as black and
white as possible, with none of the uncertainties of physics.

To get complete randomness takes two steps.
The first step was really taken by Turing and is equivalent to

Hilbert’s tenth problem posed in 1900. One doesn’t ask if 2 + 2 =
4 (we know the answer!). One asks if an algebraic equation involving
only whole numbers, integers, has a solution or not.

Matijasevič showed in 1970 that this problem, Hilbert’s tenth prob-
lem, is equivalent to Turing’s theorem that the halting problem is un-
decidable: Given a computer program one can construct a diophantine
equation, an algebraic equation in whole numbers, that has a solution
if and only if the given computer program halts. Conversely, given a
diophantine equation, an algebraic equation involving only whole num-
bers, one can construct a computer program that halts if and only if
the given diophantine equation has a solution.

This theorem was proven by Matijasevič in 1970, but intellectually
it can be traced directly back to the 1931 incompleteness theorem of
Gödel. There were a number of people involved in getting this dramatic
1970 result. It may be viewed as Gödel’s original 1931 result restated
in much simpler arithmetical terms.

Unfortunately it turns out that this doesn’t give complete random-
ness; it only gives partial randomness.

I’ll now speak information-theoretically. Consider N cases of Hilb-
ert’s tenth problem. You ask, does the equation have a solution or not
for N different equations? The worst would be if that were N bits of
information, because each answer is independent. It turns out that it
is only order of log2N bits of information, because the answers are not
at all independent. That’s very easy to see, but I can’t go into it.

So what does one do to get completely independent mathematical
facts in elementary arithmetic? It’s very simple. One goes a step
farther: Instead of taking the halting problem and making it into the
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question of whether a diophantine equation has a solution or not, one
takes my halting probability, and makes it into the question of whether
a diophantine equation has a finite or an infinite number of solutions.

If the equations are constructed properly, whether they have a finite
or an infinite number of solutions is completely random. In fact, a single
equation with a parameter will do. One takes the parameter to be 1, 2,
3, 4, 5, ... and one gets a series of derived equations from the original
equation by fixing the value of the parameter. For each of these derived
equations one asks: “Is there a finite or an infinite number of solutions?”
I can construct this equation in such a way that the answers to this
question are independent irreducible mathematical facts.

So that is how you use arithmetic to toss a coin, to give you ran-
domness.

By the way, this equation turns out to be about 200 pages long and
has 17,000 variables, and it’s fun to calculate it. But one doesn’t do it
by hand! One does it with a computer. A computer is essential to be
able to exhibit this equation.

It is an infinite series of equations really, each of which has a different
value of the parameter. We ask whether each of the equations has a
finite or an infinite number of solutions. Exactly what does it mean to
say that these are irreducible mathematical facts?

Well, how does one reduce mathematical facts? To axioms, to pos-
tulates! And the inverse of the reduction is to prove a theorem, I mean,
to expand axioms into theorems. The traditional notion of mathemat-
ics is that a small finite set of axioms can give us all of mathematics,
all mathematical truths. That was the pre-Gödel notion that Hilbert
believed in.

So in a sense what we’re doing is we’re compressing a lot of mathe-
matical facts enormously, into a small set of axioms. Or actually, we’re
expanding a finite set of axioms into individual mathematical facts.

I’m asserting that I’ve constructed irreducible mathematical facts.
What does this mean? It means that you cannot shrink them any more,
you cannot squeeze them into axioms. In fact, that these are irreducible
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mathematical assertions means that essentially the only way to prove
them is if we directly take each individual assertion that we wish to
prove as an axiom! That’s cheating!

Yes, one can always prove an assertion by putting the assertion
itself as a new axiom, but then we’re not using reasoning. Picking new
axioms is not deduction; it’s the kind of thing that physicists worry
about.

It is surprising that we can have an infinite number of independent
mathematical facts that can only be proven by taking them as axioms.
But if we think about coin tossing this is not at all surprising. You see,
the notion of independent coin tosses is exactly like that.

Each time one tosses a fair coin, whether the outcome of that partic-
ular toss is head or tails, tells us absolutely nothing about the outcome
of any future toss, and absolutely nothing about the outcome of any
previous toss. That’s how casinos make money: There is no way to
predict from what has happened at a roulette wheel what is going to
happen. Well, there is if the roulette wheel isn’t balanced, and of course
the casino works hard to make sure that the roulette wheel is working
properly.

Let’s go back to coin tossing, to the notion that a series of tosses
has no structure. Even if one knew all the even results, it wouldn’t help
us predict any of the odd results. Even if one knew the first thousand
tosses, that wouldn’t help us predict the thousand-first toss.

Well, it’s the same with using my equation to get randomness. Even
if somehow one were told for all the even cases, whether there are a finite
or an infinite number of solutions, this would be absolutely no help in
getting the odd cases. Even if one were told the first thousand cases,
whether there are a finite or an infinite number of solutions, it would
be no help in getting the thousand-first case.

In fact I don’t see how one could ever get any of the cases. Because
there is absolutely no structure or pattern, and as I said these are
irreducible mathematical facts. Essentially the only way to prove them
is to directly assume them, which is not using reasoning at all.
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So we’ve gone a long way in less than a hundred years: From Hilbert’s
conviction that every mathematical problem can be settled decisively
by mathematical reasoning, to Gödel’s surprising discovery that any
finite set of axioms for elementary arithmetic is incomplete, to a new
extreme, areas of arithmetic where reasoning is totally impotent and
totally irrelevant.

Some people were depressed by Gödel’s result. You might say, “This
is all rather upsetting; should I switch fields and stop studying mathe-
matics?” I certainly don’t think you should!

You see, even though there is no pattern or structure in the question
of whether individual cases of my equation have a finite or an infinite
number of solutions, one can deal with it statistically: It turns out that
in half the cases there’s a finite number of solutions, and in half the
cases there’s an infinite number of solutions.

It’s exactly like coin tosses, independent fair coin tosses. One can
use statistical methods and prove theorems about the statistical pat-
terns and properties of the answers to the question, which cannot be
answered in each particular case, of whether there are a finite or an
infinite number of solutions.

Let me repeat that the answers have a very simple statistical struc-
ture, that of independent tosses of a fair coin. So half the cases are heads
and half are tails, one-fourth are a head followed by a head, one-fourth
a head followed by a tail, one-fourth tail-head, one-fourth tail-tail, and
so on for larger blocks and all the other statistical properties that one
would like.

This kind of situation is not new; it’s happened before, in physics.
In quantum mechanics the Schrödinger equation shows this very clearly.
The Schrödinger equation does not directly predict how a physical sys-
tem will behave. The Schrödinger ψ function is only a probability. We
can solve the Schrödinger equation to determine the probability that a
physical system will behave in a certain way. The equation does not
tell us what the system will do, it tells us the probability that it will
do certain things.

In the 1920’s and 1930’s, this was very controversial, and Einstein
hated it. He said, “God doesn’t play dice!” But as you all know and
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as Prof. Reichel explained, in recent times this lack of predictability
has spread outside quantum mechanics. It turns out that even classical
physics, Newtonian physics, contains unpredictability and randomness.

This is the field of non-linear dynamics or “deterministic chaos.”
It occurs in situations where small changes can produce big effects,
in non-linear situations, very unstable situations, like the weather. It
turns out that the weather is unpredictable, even in principle, as Prof.
Casti discusses in his forthcoming book.3 He studies the question of
predictability and comprehensibility in a very broad context, including
mathematics, the weather, and economics.

So it begins to look now like randomness is a unifying principle.
We not only see it in quantum mechanics and classical physics, but
even in pure mathematics, in elementary number theory. As I said
before, I don’t think that this should be viewed pessimistically. What
it suggests to me, is that pure mathematics has much closer ties with
physics than one suspected. Perhaps Plato’s universe of mathematical
ideas and the physical universe that we live in when we’re not doing
mathematics, perhaps these are closer to each other than has hitherto
been suspected.

Thank you.

3John L. Casti, Searching for Certainty—What Scientists Can Know About the
Future, William Morrow, New York, 1991.
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RANDOMNESS IN
ARITHMETIC

In M. E. Carvallo, Nature, Cognition and

System, Vol. 3, Kluwer, 1993

G. J. Chaitin

Lecture given 16 January 1991 in the Gödel Room of the Mathematical
Institute of the University of Vienna.

History

• Hilbert: Math is consistent, complete and decidable?

• Gödel 1931: Math is incomplete!

• Turing 1936: Math is undecidable!

• Gödel’s & Turing’s results superseded by stronger result:

Copyright c© 1993, Kluwer Academic Publishers, Dordrecht, The Netherlands,
reprinted by permission.
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• Chaitin 1987: Math is random!

• Random?

• Answering Einstein, “God not only plays dice in physics, but even
with the whole numbers!”

How to toss a coin?

• Exponential diophantine equation E( ~X,K) = 0

• 200 pages long!

• With 17,000 integer variables ~X!

• For K = 0, 1, 2, 3, ... we ask “Does E(K) = 0 have finitely or

infinitely many solutions ~X?”

• The answers cannot be distinguished from independent tosses of
a fair coin!

• The answers are irreducible mathematical information!

• The only way to prove them is to explicitly assume each of the an-
swers to these questions as a new mathematical axiom/postulate!

• Cheating!

Information theory

• Classical information theory:

H(p1, . . . , pn) ≡ −∑ pi log2 pi

• Algorithmic information theory:

H(X) ≡ size in bits |P | of smallest program P for com-
puting X

• I.e.,
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H(X) ≡ min C(P )=X |P |
• Choice of computer C used as measuring stick doesn’t matter

very much.

• Programs P must be syntactically self-delimiting:

• No extension of a valid program is a valid program.

Undecidability of halting problem

(Turing 1936)

• Assume halting problem is decidable.

• Then log2N + c bit program can do following:

• Contains base-two numeral for N . (log2N bits)

• Remaining c bits:

• Consider each program P of size ≤ N .

• Does P halt?

• If so, run P , and get largest integer printed.

• Maximize over all integers printed by programs that halt.

• Add one to result, print this, and halt.

• So log2N+c bit program prints integer greater than any program
up to size N can print.

• Eventually, log2N + c is much less than N .

• Contradiction!
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The halting probability Ω

• Ω ≡ ∑ program P halts 2−|P |

• Ω < 1 because no extension of a valid program is a valid program.

• Ω is an algorithmically irreducible or random real number.

• I.e., to produce any N bits of base-two expansion of Ω would take
an N -bit program.

• Implies statistical randomness.

• Thus, e.g., Ω is “absolutely normal” in sense of Borel.

• I.e., in any base, all blocks of digits of the same length have equal
limiting relative frequency.

“Computing” Ω in the limit

• ΩN ≡ Nth approximation to halting probability Ω

• ΩN ≡ ∑ |P |≤N & P halts in time ≤N 2−|P |

• ΩN is computable function of N (slow!)

• Ω1 ≤ Ω2 ≤ Ω3 ≤ · · · ↑ Ω

• ΩN converges to Ω very, very slowly!

Equation for Ω

• Write pure lisp program for Kth bit of ΩN ≡ (Nth approxima-
tion to Ω).

• Only three pages long.

• Halts if Kth bit of ΩN is 1.

• Doesn’t halt if Kth bit of ΩN is 0.
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• Plug this lisp program into a 200-page universal exponential dio-
phantine equation.

• (A universal diophantine equation is one that “simulates” a uni-
versal Turing machine.)

• Resulting equation:

• has exactly one solution if Kth bit of ΩN is 1;

• has no solution if Kth bit of ΩN is 0.

• Since ΩN ↑ Ω, equation:

• has finitely many solutions if Kth bit of Ω is 0;

• has infinitely many solutions if Kth bit of Ω is 1.

Solvable/unsolvable?

• Hilbert’s 10th problem:

• “Does a diophantine equation have a solution?”

• Hilbert’s 10th problem is undecidable (Matijasevič 1970).

• Proof:

• P ( ~X,K) = 0 is solvable iff Kth program halts.

• “Is P (K) = 0 solvable/unsolvable?” (0 ≤ K < N)

• Answers not independent.

• If know how many solvable, can determine which.

• So N answers are only O(logN) bits of information.
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Finitely/infinitely many solutions?

• Now consider E( ~X,K) = 0 with infinitely many solutions iff Kth
bit of Ω is 1.

• (Exponential diophantine equation E = 0 instead of polynomial
diophantine equation P = 0.)

• “Does E(K) = 0 have finitely/infinitely many solutions?” (0 ≤
K < N)

• Now N answers are essentially N bits of information.

• Answers independent!

• Irreducible mathematical information!

Universal diophantine equation

• Simulates universal Turing machine ≡ general-purpose computer.

• Parameter of equation is program to execute.

• If program halts, equation has exactly one solution (“singlefold-
ness”).

• If program doesn’t halt, equation has no solution.

• Solutions to universal exponential diophantine equation are his-
tory vectors giving contents of each machine register as a function
of time.

• Each “digit” in very large base is current register contents.

Constructing the equation

• Program parameter is written in toy pure lisp.
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• Solution of equation is computation of interpreter eval for toy
pure lisp.

• Very little number theory involved!

• Kth binomial coefficient of order N is odd iff K ⇒ N bit by bit
in base-two (Lucas, late 19th century).

• “Kth digit of (11)N base 2N is odd” can be expressed as singlefold
exponential diophantine equation (Jones & Matijasevič 1984).

• Combine equations by using X = 0 & Y = 0 iff X2 + Y 2 = 0.

Toy pure LISP

• Pure functional language:

• Evaluate expressions, no side-effects.

• Data and function definitions are S-expressions:

• Character strings with balanced ()’s.

• Head of ((abc)de(fg(h))) is (abc)

• Tail of ((abc)de(fg(h))) is (de(fg(h)))

• Join of (abc) and (de(fg(h))) is ((abc)de(fg(h)))

• Define lisp functions recursively as in Gödel’s 1931 paper.

LISP register machine

• Lisp S-expressions are character strings in machine registers.

• (Register machine, not Turing machine as in Turing’s 1936 paper.)

• Register modulo 256 is first character of S-expression.

• Register/256 is remaining characters of S-expression.
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• Interpreter eval for toy pure lisp is 300 register machine instruc-
tions.

• Apply techniques of Jones & Matijasevič 1984.

• Eval expands into 200-page universal exponential diophantine
equation.

Summary

• Exponential diophantine equation E( ~X,K) = 0

• 200 pages long!

• With 17,000 integer variables ~X!

• For K = 0, 1, 2, 3, ... we ask “Does E(K) = 0 have finitely or

infinitely many solutions ~X?”

• The answers cannot be distinguished from independent tosses of
a fair coin!

• The answers are irreducible mathematical information!

• The only way to prove them is to explicitly assume each of the an-
swers to these questions as a new mathematical axiom/postulate!

• Cheating!
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LE HASARD DES
NOMBRES

La Recherche 22, N◦ 232

(mai 1991), pp. 610–615

Gregory J. Chaitin

Les mathématiques passent pour l’incarnation de la rigueur logique et
de l’exactitude. Peut-on néanmoins y déceler du désordre ? Dans les
années 1930, les travaux du logicien Kurt Gödel, en démontrant l’� in-
complétude� des mathématiques, avaient déjà ébranlé quelques solides
certitudes. Plus récemment, G.J. Chaitin a proposé une définition
du hasard faisant appel à la théorie algorithmique de l’information.
Moyennant cette définition, l’auteur a pu montrer que certaines ques-
tions en théorie des nombres ont des réponses tout aussi aléatoires que
le résultat d’un jeu de pile ou face. Les mathématiques joueraient-elles
donc aux dés ?

Copyright c© 1991, La Recherche, reprinted by permission.
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Le concept de hasard intrigue depuis longtemps les physiciens, et même
l’humanité en général. Quelle est l’origine du hasard ? Dans quelle
mesure le futur peut-il être prédit ? Notre incapacité à prédire l’avenir
est-elle la conséquence de nos limites humaines ou plutôt la conséquence
d’une impossibilité de principe ? Ces questions ont, en physique, une
longue histoire. La physique classique héritée d’Isaac Newton était
complètement déterministe : la connaissance parfaite de l’état d’un
système à un instant donné permettait en principe la détermination
de son état à tout instant ultérieur. Puis vint au début de ce siècle
la mécanique quantique, où probabilités et hasard interviennent au
niveau le plus fondamental de la théorie ; en effet, celle-ci ne peut
fournir que des probabilités de mesurer telle ou telle valeur de la po-
sition, de l’énergie, etc. La mécanique quantique introduisit donc une
indétermination fondamentale dans la nature, chose qu’Einstein lui-
même ne voulut jamais accepter, comme en témoigne son célèbre �
Dieu ne joue pas aux dés �. Puis, assez récemment, on s’aperçut avec
l’étude des� systèmes dynamiques�, qu’après tout, la physique clas-
sique avait aussi du hasard, ou plus exactement de l’imprévisibilité, en-
fouis en son sein, puisque certains systèmes même très simples, comme
un système de pendules, peuvent exhibir un comportement imprévisible
(voir � Le chaos déterministe � dans La Recherche d’octubre 1990).
Le hasard, souvent associé au désordre, est ainsi devenu, du moins en
physique, une notion pleine de contenu.

Et en mathématiques, discipline souvent perçue comme la certitude
par excellence ? Le hasard y a-t-il une place ? La question est déjà
un peu surprenante. La réponse l’est encore plus ! Différents travaux,
notamment les miens, ont montré que la situation en mathématiques
est apparentée à celle qui prévaut en physique : le hasard apparâıt en
mathématiques à un niveau fondamental. Je ne fais pas ici allusion à la
théorie des probabilités, qui fait partie intégrante des mathématiques et
qui est un outil pour décrire et étudier des phénomènes aléatoires, sans
se préoccuper de l’origine de leur caractère aléatoire. La problématique
qui nous occupe ici est tout autre et, d’un certain point de vue, beau-
coup plus profonde : supposons que nous, mathématiciens, n’arrivions
pas à démontrer un théorème, que nous ne discernions pas une struc-
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ture ou une loi portant sur des nombres ou d’autres entités (cela arrive
très souvent, et même dans la plupart des cas !). Plusieurs questions
sont alors possibles : est-ce de notre faute, est-ce parce que nous ne
sommes pas assez astucieux, parce que nous n’avons pas assez travaillé
? Ou bien est-ce plutôt parce qu’il n’y a pas de loi mathématique à
trouver, pas de théorème, pas de réponse à la question mathématique
que nous nous sommes posée ? C’est en liaison avec cette dernière
question, comme nous le verrons, qu’apparaissent les thèmes du hasard
et de l’imprévisibilité en mathématiques.

Une façon d’orienter notre réflexion sur cette question est de nous
rappeler la célèbre liste des vingt-trois problèmes que le mathématicien
allemand David Hilbert (fig. 1) avait proposée en 1900 en tant que
défi au XXe siècle naissant(1). L’un des problèmes, le sixième de la
liste, était d’axiomatiser la physique, c’est-à-dire d’exprimer toutes les
lois fondamentales de la physique sous forme de règles mathématiques
formelles ; cette question englobait l’axiomatisation de la théorie des
probabilités car, pour Hilbert, les probabilités concernaient le monde
réel et étaient donc du ressort de la physique. Son dixième problème
avait rapport, lui, aux équations � diophantiennes �, c’est-à-dire les
équations algébriques où l’on cherche des solutions sous forme de nom-
bres entiers. La question posée par Hilbert était : � Y a-t-il un moyen
de décider si une équation algébrique possède ou non une solution en
nombres entiers ? �. Hilbert était loin de soupçonner une quelconque
relation entre ces deux problèmes, alors que nous verrons plus loin qu’il
y en a bel et bien une.

Gödel : il n’existe pas de système axioma-

tique complet et cohérent qui puisse con-

tenir l’arithmétique

Pour Hilbert et pour la plupart des mathématiciens de l’époque, l’idée
que tout problème mathématique possède une solution était un principe
qui allait de soi. Ce n’est que par la suite qu’Hilbert a reconnu qu’il
y avait là un thème à explorer. De cette exploration, il s’est avéré
qu’une question mathématique simple et claire ne possède pas toujours
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de réponse tranchée ; de plus, une certaine forme de hasard intervient
même en mathématiques pures, et se rencontre au travers des équations
diophantiennes, objet du dixième problème de Hilbert. En effet, nous
verrons que certaines questions assez simples d’arithmétique, liées aux
équations diophantiennes, ont — dans un sens bien déterminé — une
réponse complètement aléatoire. Et cela, non pas parce que nous ne
pourrons y répondre demain, dans cent ou mille ans, mais parce que la
réponse est aléatoire quel que soit le raisonnement utilisé.

Comment en est-on arrivé là ? Un premier point a rapport avec
la notion de raisonnement axiomatique, c’est-à-dire de raisonnement
mathématique fondé sur des règles formelles. Le système géométrique
d’Euclide est un exemple simple de système axiomatique, mais depuis
la fin du XIXe siècle divers systèmes d’axiomes ont été proposés afin
de formaliser complètement les mathématiques ainsi que la logique sur
laquelle tout raisonnement humain repose. L’axiomatique et le fonde-
ment des mathématiques ont été étudiés par de nombreux chercheurs, y
compris par Hilbert lui-même. En particulier, ce dernier avait formulé
une exigence : pour qu’un système d’axiomes soit satisfaisant, il doit ex-
ister une� procédure mécanique�, c’est-à-dire une suite d’opérations
logiques en nombre fini, permettant de décider si une démonstration
mathématique quelconque vérifie ou non les règles formelles fixées.
C’est là une exigence de clarté et d’objectivité, qui semble parfaite-
ment naturelle. Le point important pour la suite est que si l’on bâtit
un système d’axiomes cohérent (c’est-à-dire tel qu’on ne peut y prou-
ver un résultat et son contraire simultanément) et complet (c’est-à-dire
tel que toute assertion y est soit vraie, soit fausse), alors il découle
immédiatement qu’il existe une procédure mécanique permettant — en
principe — de trancher toute question qui puisse être formulée dans le
cadre de cette théorie.

Une telle procédure consisterait (du moins en principe, car en pra-
tique le temps nécessaire serait prohibitif) à faire la liste de toutes
les démonstrations possibles écrites dans le langage formel, c’est-à-dire
dans le système d’axiomes choisi, par ordre de taille et par ordre al-
phabétique des symboles employés. C’est ce qu’on peut appeler de
manière imagée l’� algorithme du British Museum �, pour faire al-
lusion au gigantisme de l’� inventaire � à effectuer. Autrement dit,
on énumère toutes les démonstrations possibles, et on vérifie si elles
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découlent bien des règles formelles du système axiomatique. De cette
façon, on obtient en principe tous les théorèmes, tout ce qui peut être
prouvé dans le cadre du système d’axiomes. Et si celui-ci est cohérent et
complet, toute affirmation pourra être confirmée (si elle est démontrée)
ou infirmée (son contraire est alors démontré). Ainsi, cela fournit une
procédure mécanique permettant de décider si une assertion est vraie
ou non.

Malheureusement, la situation s’est avérée beaucoup moin simple.
On sait, depuis les travaux fondamentaux de l’Autrichien Kurt Gödel en
1931 et du Britannique Alan Turing en 1936 (fig. 2), que cette entreprise
est vaine : il n’existe pas de système axiomatique cohérent et complet
pour l’arithmétique, et de plus il ne peut y avoir de procédé mécanique
permettant de déterminer, pour toute assertion mathématique, si elle
est vraie ou fausse.

De ce résultat qui a profondément marqué la pensée mathématique,
Gödel a fourni une très ingénieuse démonstration : c’est son célèbre
� théorème d’incomplétude �. Mais l’approche de Turing me sem-
ble, d’une certaine manière, plus fondamentale et plus facile à com-
prendre. Je me réfère ici au théorème de Turing, affirmant qu’il
n’existe pas de procédure mécanique pouvant déterminer, pour un pro-
gramme informatique arbitraire, s’il s’exécutera en un temps fini ou
non une fois mis en route. Le théorème d’incomplétude de Gödel en
découle immédiatement : s’il n’existe pas de procédure mécanique pour
déterminer si un programme s’arrête en un temps fini ou non, alors il
ne peut non plus exister de système d’axiomes permettant de le faire.

Turing : il n’existe pas d’algorithme géné-

ral permettant de savoir si un programme

s’exécutera en un temps fini ou non

Sans entrer dans les détails, on peut esquisser une façon de démontrer
que le problème de l’arrêt d’un programme est insoluble, en faisant
un raisonnement par l’absurde. Supposons qu’il existe une procédure
mécanique permettant de savoir, pour tout programme, si celui-ci
s’exécutera en un temps fini. Cela implique alors qu’il est possible
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de construire un programme (P ) incorporant la donnée d’un nombre
entier N , et effectuant les tâches suivantes : d’abord, examiner tous
les programmes possibles de taille inférieure ou égale à N bits (tout
programme informatique pouvant être traduit en une suite de chiffres
binaires, 0 ou 1, appelés bits, et constituant chacun une unité d’� in-
formation�) et déterminer lesquels d’entre eux s’arrêtent en un temps
fini. Ensuite, simuler l’exécution de tous ces derniers et considérer
leurs résultats. Supposons que les résultats soient des nombres entiers
positifs ou nuls, ce que l’on peut faire sans perte de généralité puisque
tout programme produit comme résultat une suite de 0 ou 1, laquelle
peut toujours être interprétée comme représentant un entier positif ou
nul. La dernière tâche que l’on assigne alors au programme (P ) est de
prendre le résultat le plus élevé produit par tous les programmes qui
s’arrêtent en un temps fini et dont la taille ne dépasse pas N bits, et
de calculer le double (par exemple) de ce résultat maximal.

Examinons maintenant la situation à laquelle on aboutit. Le nom-
bre N est l’essentiel de l’information incluse dans le programme (P )
que l’on vient de décrire. Par conséquent, la taille de ce programme
est de l’ordre de log2N bits, puisque pour exprimer le nombre N , il
n’est besoin que de log2N bits dans le système binaire (par exemple,
le nombre 109 s’écrit 1101101 dans le système binaire, ce qui nécessite
donc 7 ≈ log2 109 bits). Bien sûr, le programme (P ) doit aussi contenir
d’autres instructions permettant d’énumérer et de simuler l’exécution
de tous les programmes de taille inférieure à N bits, mais le résultat
n’est pas fondamentalement modifié : le programme (P ) a bien une
taille d’ordre log2N bits (donc inférieure à N bits). Ce point nécessite
peut être un peu plus d’éclaircissements : näıvement, on aurait ten-
dance à penser que (P ) doit contenir en lui tous les programmes de
moins de N bits. Mais ce n’est pas parce que (P ) simule leur exécution
qu’il doit les contenir ! Pour donner une image, un programme chargé
d’effectuer la somme de tous les entiers de 1 à 1 000 n’a pas besoin
de contenir en mémoire tous les entiers de 1 à 1 000 : il les produit
successivement au fur et à mesure du calcul de la somme. Cela pour
faire comprendre que N est bien l’ingrédient principal du programme
(P ). Mais revenons à notre propos ; par construction, ce programme
produit un résultat qui est au moins deux fois plus grande que celui
produit par tout programme dont la taille est inférieure à N bits : il



Le Hasard des Nombres 177

y a contradiction, puisque (P ) fait lui-même partie de ces programmes
et qu’il donnerait donc un résultat au moins deux fois plus grand que
celui qu’il fournit lui-même... L’hypothèse de départ (l’existence de
(P )) est alors fausse. Le problème de l’arrêt d’un programme est donc
insoluble, ce que nous venons de montrer en utilisant un point de vue
de la théorie de l’information.

Partons de ce résultat fondamental de Turing ; afin d’obtenir mon
résultat établi en 1987(2) sur le hasard en mathématiques, il suffit de
modifier le vocabulaire. C’est une sorte de calembour mathématique.
De l’insolubilité du problème de l’arrêt, on passe au hasard lié à la prob-
abilité d’arrêt. Qu’est donc cette dernière ? Au lieu de se demander
si un programme donné va s’arrêter ou non au bout d’un temps fini,
on considère l’ensemble de tous les programmes informatiques possi-
bles, ce qui peut se faire en principe à l’aide d’un ordinateur idéalisé,
appelé dans le jargon � calculateur universel de Turing �. A chaque
programme possible, on associe une probabilité (à ne pas confondre
avec la probabilité d’arrêt que l’on va bientôt définir). Comme tout
programme est finalement équivalent à une suite de bits, on choisit
chaque bit au hasard, par exemple en tirant à pile ou face : à un pro-
gramme de N bits on associera donc la probabilité 1/2N . En fait, on
se limite aux programmes bien structurés dont on suppose qu’ils se
terminent par l’instruction � fin de programme �, laquelle ne peut
apparâıtre en début ou en milieu de programme ; autrement dit, au-
cun programme bien structuré ne constitue l’extension d’un autre pro-
gramme bien structuré. Cette hypothèse est technique mais essentielle,
car en son absence le total des probabilités 1/2N serait supérieur à 1 (et
même infini). On définit alors la probabilité d’arrêt Ω (oméga) : c’est
la probabilité pour que, ayant tiré au hasard un programme, celui-ci
s’exécute en un nombre fini d’étapes. Ce nombre Ω vaut

∑
N(aN/2

N),
où aN est le nombre de programmes bien structurés de N bits qui
s’exécutent en un temps fini. Ω est une probabilité, donc un nombre
compris entre 0 et 1 ; si l’on trouvait Ω = 0, cela signifierait qu’aucun
programme ne s’arrête, et si l’on trouvait Ω = 1, qu’ils s’arrêtent tous.
Cette probabilité peut être exprimée en diverses bases ; une base parti-
culièrement commode est la base binaire, dans laquelle le nombre Ω est
une suite de 0 ou 1, par exemple 0,111010001101.... La question que
l’on peut alors se poser est : � Quel est le N -ième bit de la probabilité
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d’arrêt Ω ? �
L’assertion de Turing (� le problème de l’arrêt est indécidable

�) mène à mon résultat établissant que la probabilité d’arrêt est
aléatoire ou plus exactement constitue de l’information mathématique
irréductible. En d’autres termes, chaque bit de la représentation binaire
de Ω est un fait mathématique qui est logiquement et statistiquement
indépendant des autres : savoir si un bit donné de Ω est un 0 ou un 1 est
un fait mathématique irréductible, qui ne peut être davantage condensé
ou réduit. Une manière plus précise de le dire est que la probabilité
d’arrêt est algorithmiquement aléatoire, c’est-à-dire que pour calculer
N bits de la représentation binaire de Ω, il faut un programme infor-
matique dont la taille est d’au moins N bits (voir l’encadré 1). Une
façon résumée d’exprimer cela est : � L’assertion que le N -ième bit
de Ω est un 0 ou un 1, pour un N donné, est un fait mathématique
aléatoire, analogue au résultat d’un jet de pile ou face �.

On rétorquera immédiatement que ce n’est pas le genre d’assertions
que l’on rencontre habituellement en mathématiques pures. On
aimerait bien pouvoir traduire cet énoncé dans le langage de la théorie
des nombres, laquelle constitue le soubassement des mathématiques.
En fait, Gödel était confronté au même problème. L’assertion vraie
mais indémontrable qu’il avait construite était bizarre, elle disait : �
je suis indémontrable ! �. Gödel a déployé énormément d’ingéniosité
et utilisé des raisonnements très sophistiqués afin de transformer � je
suis indémontrable � en un énoncé portant sur les nombres entiers.
Les travaux de Gödel ont donné lieu à de nombreuses recherches, dont
la conclusion finale est que le dixième problème d’Hilbert est insoluble
: il n’existe pas d’algorithme pouvant déterminer, en un nombre fini
d’opérations, si une équation diophantienne arbitraire possède une solu-
tion. En fait, ce problème s’avère équivalent à celui de Turing sur l’arrêt
d’un programme : étant donné un programme informatique, on peut
construire une équation diophantienne qui a une solution si et seulement
si ce programme s’exécute en un temps fini ; réciproquement, étant
donnée une équation diophantienne, on peut construire un programme
qui s’arrête si et seulement si cette équation possède une solution.

Particulièrement spectaculaires sont dans ce contexte les travaux des
mathématiciens James P. Jones, de l’université de Calgary au Canada,
et Yuri V. Matijasevič, de l’institut Steklov à Léningrad, publiés il y a
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environ six ans(3). Ces deux mathématiciens ont remarqué qu’il existait
un théorème très simple, démontré par le Français Edouard Lucas, il y
a plus d’un siècle, et qui résoud le dixième problème de Hilbert assez
facilement s’il est utilisé de façon appropriée. Le théorème de Lucas
concerne la parité des coefficients du binôme : demandons-nous si le
coefficient deXK dans le développement de (1+X)N est pair ou impair,
c’est-à-dire quelle est la parité du K-ième coefficient binomial d’ordre
N (pour K = 0, 1, 2,..., N) ; le théorème de Lucas répond que ce
coefficient est impair si et seulement si � K implique N en tant que
suites de bits �. Cela signifie que ce coefficient est impair si à chaque
� 1 � de la représentation binaire de K correspond un � 1 � à la
même place dans la représentation binaire de N (fig. 3). Dans le cas
contraire, le coefficient binomial est pair.

En utilisant la technique de Jones et Matijasevič (voir l’encadré
2), qui se fonde sur ce remarquable théorème de Lucas, j’ai mis au
point un ensemble de programmes, écrits dans le langage C (et très
récemment, dans le langage SETL2(4)), et que j’ai fait � tourner �
sur un ordinateur IBM RISC System/6000 (les lecteurs intéressés par
le logiciel peuvent me contacter(5)). Pour obtenir quoi ? Une équation
diophantienne, plus exactement une équation diophantienne exponen-
tielle. Les équations de ce type ne comportent que des additions, des
multiplications et des exponentiations, les constantes et les inconnues
considérées étant des nombres entiers positifs ou nuls. Contrairement
à une équation diophantienne classique, on admet que la puissance à
laquelle est élevée une inconnue puisse être aussi une inconnue. Ainsi,
par exemple, une telle équation peut contenir non seulement des termes
comme X2 ou X3, mais aussi des termes comme XY ou Y X .

L’équation diophantienne que j’ai obtenue comporte près de 17 000
variables et occupe plus de 200 pages (voir � Une extension spec-
taculaire du théorème de Gödel : l’équation de Chaitin � dans La
Recherche de juin 1988) ! Quelle est sa signification ? Elle contient
un paramètre unique, le nombre N . Pour toute valeur donnée de ce
paramètre, posons-nous la question suivante : � Cette équation a-t-elle
un nombre fini ou infini de solutions en nombres entiers (c’est-à-dire un
nombre fini ou infini de listes de 17 000 nombres entiers, chaque liste
étant une solution de l’équation) ? �. La réponse à cette question
s’avère être un fait arithmétique aléatoire, analogue à un tirage à pile
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ou face. Elle est une transcription arithmétique du fait mathématique
irréductible que le N -ième bit de la probabilité d’arrêt Ω est 0 ou 1 :
si cette équation diophantienne (de paramètre N) a un nombre fini de
solutions, alors ce N -ième bit est 0, et si l’équation possède un nombre
infini de solutions, ce bit est 1 (soulignons en passant que s’il n’y a pas
de solution, le nombre de solutions est fini et vaut 0). La réponse à la
question ne peut donc pas être calculée, et le N -ième bit de Ω non plus.
Cela ne veut pas dire que les bits de Ω ne sont pas définis et déterminés
mathématiquement, mais plutôt qu’il n’existe pas d’algorithme à nom-
bre fini d’étapes pour les calculer, et que la connaissance des N premiers
bits de Ω n’aide strictement en rien à la détermination des suivants.

La différence par rapport au problème posé par Hilbert est double
; d’une part, Hilbert ne pensait qu’aux équations diophantiennes clas-
siques, non exponentielles ; d’autre part, la question qu’il avait posée
était : � Y a-t-il une solution à l’équation ? � Cette question est
indécidable, mais la réponse n’est pas totalement aléatoire, elle ne l’est
que dans une certaine mesure. Les réponses ne sont pas indépendantes
les unes des autres ; en effet, on sait qu’étant donné un nombre fini
d’équations diophantiennes, il est possible de déterminer lesquelles ont
une solution si l’on sait combien d’entre elles en possèdent. Pour obtenir
un hasard vraiment total, semblable à celui associé à un tirage à pile
ou face, la question adéquate que l’on doit poser est : � Y a-t-il un
nombre fini ou infini de solutions ? � Mon assertion est que l’on ne
pourra jamais le savoir, car décider si le nombre de solutions est fini ou
infini, pour chaque valeur de N , est un fait mathématique irréductible.
La réponse est, au sens algorithmique, aléatoire. La seule façon d’aller
de l’avant est de considérer les réponses comme des axiomes. Si l’on
cherche à résoudre M fois la question de savoir si le nombre de solutions
est fini pour M valeurs données du paramètre N , alors il faudra incluire
M bits d’information dans les axiomes de notre système formel. C’est
en ce sens précis que l’on peut dire que les mathématiques contiennent
du � hasard �.
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La probabilité d’arrêt est algorithmique-

ment aléatoire

Dans le sixième problème que Hilbert avait proposé, l’axiomatisation de
la physique devait selon lui englober l’axiomatisation de la théorie des
probabilités. Au fil des ans, cependant, la théorie des probabilités est
devenue une branche des mathématiques à part entière. Mais d’après
ce qui précède, une forme extrême de� hasard�— plus précisément,
d’irréductibilité — apparâıt dans un autre contexte, en mathématiques
pures, en théorie élémentaire des nombres. Les recherches aboutissant
à ces conclusions prolongent les travaux de Gödel et Turing, qui ont
réfuté l’hypothèse de base faite par Hilbert et d’autres, selon laquelle
toute question mathématique possède une réponse univoque.

Cela fait maintenant près d’un siècle que la philosophie et les fonde-
ments des mathématiques suscitent un grand intérêt. Auparavant,
de nombreux efforts ont été consacrés à rendre rigoureuse l’analyse
mathématique (la notion de nombre réel, de limite, etc.). L’examen
moderne des mathématiques a réellement débuté, je pense, avec la
théorie de l’infini de G. Cantor et les paradoxes et les surprises qu’elle
a engendrés, et avec les efforts fournis par des mathématiciens comme
Peano, Russell et Whitehead pour donner aux mathématiques des
fondements solides et rigoureux. On avait placé beaucoup d’espoir
en la théorie des ensembles. On avait ainsi cherché à définir de façon
rigoureuse les nombres entiers 0, 1, 2, 3,... en termes d’ensembles. Mais
il s’est avéré que la notion d’ensemble peut engendrer toutes sortes
de paradoxes (Bertrand Russell en a donné un exemple célèbre : �
L’ensemble de tous les ensembles qui ne font pas partie d’eux-mêmes
� ; cet ensemble fait-il partie de lui-même ?). La théorie des ensembles
est une partie fascinante et vitale des mathématiques ; néanmoins il me
semble qu’il y a eu un certain désabusement vis-à-vis d’elle et qu’un
retour aux 0, 1, 2, 3,... intuitifs s’est opéré. Malheureusement, les
travaux que j’ai mentionnés, et en particulier mon propre travail, font
que l’édifice des nombres entiers parâıt moins solide qu’on ne le pen-
sait. J’ai toujours cru, et probablement la plupart des mathématiciens
y croient aussi, en un sorte d’univers platonicien où règne une� réalité
mathématique � indépendante de la réalité physique. Ainsi, la ques-
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tion de savoir si une équation diophantienne a un nombre fini ou infini
de solutions a très peu de sens concret, mais j’ai toujours pensé en mon
for intérieur que même si nous ne pourrons jamais y répondre, Dieu,
lui, le pouvait.

Avec ces découvertes, les mathématiciens sont en train de rejoin-
dre, en un sens, leurs collègues de la physique théorique. Ce n’est
pas nécessairement une mauvaise chose. Dans la physique moderne, le
hasard et l’imprévisibilité jouent un rôle fondamental ; la reconnais-
sance et la caractérisation de ce fait, lequel pouvait être perçu a priori
comme une limitation, sont un progrès. J’ai la conviction qu’il en sera
de même en mathématiques pures. 2

Gregory J. Chaitin travaille au centre de recherches Thomas J.
Watson d’IBM à Yorktown Heights aux Etats-Unis. Ses recherches ont
trait à la théorie algorithmique de l’information, dont il a posé les bases
vers le milieu des années 1960.

Pour en savoir plus :

2 G. J. Chaitin, Algorithmic information theory, Cambridge University
Press, 1990 (troisième impression).

2 G. J. Chaitin, Information, randomness and incompleteness — Pa-
pers on algorithmic information theory, World Scientific, 1990 (seconde
édition).

2 E. Nagel, J.R. Newman, K. Gödel et J.-Y. Girard, Le théorème de
Gödel, Seuil, 1989.

Notes

(1) Voir par exemple l’article � Hilbert (problémes de) � de Jean-
Michel Kantor dans Encyclopedia Universalis, vol. 9, 300, 1985.

(2) G.J. Chaitin, Advances in Applied Mathematics, 8, 119, 1987;
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G.J.Chaitin, Algorithmic information theory, Cambridge University
Press, 1990 (troisième impression).

(3) J.P. Jones et Y.V. Matijasevič, Journal of Symbolic Logic, 49, 818,
1984.

(4) SETL2 est un nouveau langage de programmation, permettant
d’écrire ces programmes de façon plus courte et plus facile à com-
prendre (mais ils sont plus lents). Ce langage se fonde sur un idée
de J.T.Schwartz de l’institut Courant à New York, selon laquelle la
théorie des ensembles peut être convertie directement dans un langage
de programmation (voir W.K. Snyder, The SETL2 programming lan-
guage, Courant Institute, 1990; J.T. Schwartz et al., Programming with
sets — An introduction to SETL, Springer-Verlag, 1986).

(5) G.J. Chaitin, LISP for � Algorithmic information theory � in
C, août 1990.

Encadré 1. Les décimales de π forment-

elles une suite aléatoire?

En quel sens la suite de chiffres qui composent un nombre peut-elle
être qualifiée d’� aléatoire � ? La question est moins simple qu’elle
ne parâıt. Il y a près d’un siècle, le mathématicien français Emile Borel
(voir cliché) avait défini dans ce contexte la notion de nombre� normal
� et avait démontré que presque tous les nombres sont normaux.

Qu’est-ce qu’un nombre normal ? Un nombre est dit normal
dans une base b si chacun des b chiffres possibles apparâıt, dans le
développement du nombre selon cette base, avec la même fréquence
1/b, si chacun des b2 groupes de deux chiffres successifs apparâıt avec
la même fréquence 1/b2, et de même avec les groupes de trois chiffres,
de quatre chiffres, etc. Par exemple, un nombre est normal dans le
système binaire (b = 2) si dans son développement binaire les chiffres 0
et 1 apparaissent avec las même fréquence limite 1/2, si les séquences
00, 01, 10, 11 apparaissent avec la même fréquence limite 1/4, etc. Un
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nombre est dit absolument normal s’il est normal quelle que soit la base
b dans laquelle il est exprimé.

E. Borel montra en 1909 que presque tous (expression qui a un
sens mathématique précis) les nombres réels sont absolument normaux.
En d’autres termes, choisissons un nombre en tirant à pile ou face
chacun de ses bits constituant son développement infini dans le système
binaire. Alors, le nombre compris entre 0 et 1 choisi de cette façon est
absolument normal, et cela � presque sûrement �, c’est-à-dire avec
une probabilité égale à 1.

Si la non-normalité est l’exception à la règle, on serait tenté de
penser qu’il est facile de trouver des exemples de nombres normaux.
Qu’en est-il par exemple de

√
2, π ou e ? Sont-ils normaux ? Chose

étonnante, on n’en sait rien ! De nombreux calculs par ordinateurs ont
été effectués afin d’obtenir les chiffres successifs formant ces nombres
et de déterminer leur fréquence d’apparition ; tout se passe comme
s’ils étaient normaux, mais personne n’a pu à ce jour le démontrer
rigoureusement. En fait, il a été extrêmement difficile d’exhibir un ex-
emple de nombre normal. En 1933, D.G. Champernowne parvint à
exhiber un nombre qu’il put démontrer être normal dans le système
décimal ; ce nombre s’écrit :

0, 0 1 2 3 4 5 6 7 8 9
10 11 12...98 99 100 101 102...
998 999 1000 1001 1002....

Mais on ne sait pas si ce nombre est normal absolument, c’est-à-dire
normal dans toute base.

Néanmoins, on dispose à présent d’un exemple naturel de nombre
absolument normal : la probabilitié d’arrêt Ω dont il est question dans
l’article. En effet, on peut facilement démontrer que Ω est absolument
normal à partir du fait qu’il est algorithmiquement aléatoire. Un nom-
bre est algorithmiquement aléatoire si, pour déterminer N bits de son
développement binaire, il faut un programme dont la taille est d’au
moins N bits. Pour donner un contre-exemple, les N décimales des
nombres 0,1111111111... ou 0,110110110110... peuvent être calculés
très facilement par un programme dont la taille est très inférieure à N
(pour N pas trop petit) ; en effet, il suffit de traduire les ordres �
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répéter N fois le chiffre 1 � ou � répéter N ′ fois la séquence 110 �
en langage binaire. Ces nombres ne sont donc pas du tout algorith-
miquement aléatoires. Même si

√
2, π ou e sont normaux (ce qui reste

à prouver), ils ne peuvent être algorithmiquement aléatoires, puisqu’il
existe des algorithmes de taille finie pour calculer leurs chiffres succes-
sifs. Le nombre de Champernowne est même pire à cet égard : non
seulement ses chiffres sont calculables et prévisibles, mais en plus il est
très facile de le faire. On voit donc clairement que la notion de nom-
bre algorithmiquement aléatoire est beaucoup plus forte que celle de
nombre normal. De la même façon, la grande importance pratique des
algorithmes produisant des nombres pseudo-aléatoires (utilisés dans les
jeux informatiques ou dans certains méthodes de calcul numérique)
réside précisément dans le fait que les suites de nombres produites
sont extrêmement compressibles, algorithmiquement parlant. (Cliché
Harlingue-Viollet)

Encadré 2. Tirer à pile ou face à l’aide

d’une équation diophantienne

Comment traduire en équation algébrique la détermination des bits
de la probabilité d’arrêt Ω dont il est question dans l’article ? La
méthode utilise une technique développée par Jones et Matijasevič, qui
elle-même s’appuie sur le théorème de Lucas. Celui-ci affirme (fig. 3)
queK� implique�N bits à bit si et seulement si leK-ième coefficient
binomial d’ordre N est impair. Jones et Matijasevič montrent que cela
est équivalent à dire que dans la base b = 2N , le K-ième chiffre de 11N

est impair.
Mathématiquement, cela s’exprime ainsi : K � implique � N si

et seulement s’il existe des entiers positifs ou nuls uniques b, x, y, z, u,
v, w tels que

b = 2N

(b+ 1)N = xbK+1 + ybK + z
z + u+ 1 = bK

y + v + 1 = b
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y = 2w + 1

Pour obtenir une équation diophantienne, il suffit de réécrire ces cinq
équations pour que leur membre de droite soit 0, de les élever au carré
et de les ajouter. On obtient l’équation

[b− 2N ]2+
[(b+ 1)N − xbK+1 − ybK − z]2+
[z + u+ 1− bK ]2+
[y + v + 1− b]2+
[y − 2w − 1]2 = 0

L’équation de 200 pages que j’ai obtenue a été construite en utilisant
de façon répétée cette technique, afin d’exprimer en une équation dio-
phantienne le calcul du N -ième bit d’une K-ième approximation de Ω.
Cette équation possède exactement une solution si ce bit est 1, et n’en
possède pas si ce bit est 0. On change alors le point de vue, et on
considère K non pas comme un paramètre mais comme une inconnue
supplémentaire. La même équation aura alors, pour une valeur donnée
du paramètre N , un nombre fini ou infini de solutions selon que le N -
ième bit de Ω est 0 ou 1 (la valeur de K peut différer d’une solution
à l’autre). Pour K assez grand, l’approximation de Ω est suffisament
bonne pour que le N -ième bit de la K-ième approximation de Ω soit le
bon. Mais il est impossible de calculer, pour N donné, la valeur de K
à partir de laquelle le bit a la bonne valeur, car la probabilité d’arrêt
Ω est algorithmiquement aléatoire.

Figure 1.

En 1900, lors d’un congrès tenu à Paris, le grand mathématicien alle-
mand David Hilbert (1862–1943) a énoncé une liste restée célèbre
de 23 problèmes ouverts. Ses travaux et ses réflexions ont con-
sidérablement influencé les recherches mathématiques du vingtième
siècle. Son dixième problème concernait la résolubilité des équations
diophantiennes : existe-t-il une procédure permettant de déterminer en
un nombre fini d’opérations si une équation diophantienne arbitraire
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possède une solution ? Y.V. Matijasevič a pu montrer en 1970 que la
réponse était négative. De nombreux problèmes de mathématiques peu-
vent être traduits en termes de non-résolubilité d’une certaine équation
diophantienne ; c’est le cas de la question si oui ou non un programme
informatique s’exécute en un temps fini. (Cliché Bildarchiv Preussis-
cher Kulturbesitz)

Figure 2.

Le logicien autrichien K. Gödel (1906–1978) (A) a ébranlé en 1931
la conviction intime de la quasi-totalité des mathématiciens, convic-
tion selon laquelle il était possible de construire des systèmes formels
d’axiomes qui soient complets et cohérents. Il a pu démontrer que tout
système formel comporte des énoncés qui sont indécidibles, c’est-à-dire
qui ne peuvent être confirmés ou infirmés en utilisant uniquement les
axiomes du système. Le Britannique A.M. Turing (1912–1954) (B) a
formalisé les notions de calculabilité et d’algorithmique qui sont les
fondements théoriques de l’informatique. Il a notamment montré en
1936 qu’il n’existe pas de procédure mécanique permettant de savoir si
un programme arbitraire s’exécutera en un temps fini ou non. (Clichés
AFP et E.T. ARCHIVE)

Figure 3.

Une programme informatique étant choisi au hasard, la probabilité Ω
pour qu’il s’exécute en un temps fini peut s’écrire dans le système bi-
naire sous forme d’une suite de 0 ou 1, appelés bits. Pour obtenir une
équation déterminant les bits de la probabilité d’arrêt d’un programme
choisi au hasard, G.J.Chaitin a utilisé des techniques qui s’appuient sur
un théorème simple dû à un mathématicien français du siècle dernier,
Edouard A. Lucas (1842–1891). Ce théorème affirme que le coefficient
de XK dans le développement de (1 +X)N est impair si et seulement
si les � 1 � de l’écriture binaire de K se retrouvent à la même place
dans l’écriture binaire de N .
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Abstract

I have developed a mathematical theory of complexity, which I call “algo-
rithmic information theory.” I have applied this theory to mathematics
itself, and have shown that mathematics is not as simple as had been
thought, and indeed that arithmetic contains infinite complexity and
complete randomness. Here I shall give examples of my mathematical
concept of complexity and how it is measured, outline its main proper-
ties, and discuss what it says about the limitations of mathematics.
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1. Introduction

Mathematics is much simpler than physics or biology, because it does
not have to deal with the real world. I have developed a very the-
oretical mathematical theory of complexity, which I call “algorithmic
information theory.” Hopefully it may help to suggest to physicists and
biologists what to do to develop their own more practical theories of
complexity.

I have used algorithmic information theory to clarify the meaning
of randomness, patternlessness, and lack of structure, and to show that
some arithmetical questions, mathematical questions involving whole
numbers or integers, have answers which completely escape the power
of mathematical reasoning because they are completely random, pat-
ternless, and unstructured.

Formerly it was widely assumed by mathematicians, and empha-
sized by the famous mathematician David Hilbert, that mathematics
was simple in the sense that all questions could be resolved by reasoning
based on a small finite set of mathematical axioms that all could agree
upon. The surprising results obtained by Kurt Gödel and Alan Tur-
ing, the incompleteness theorem and the undecidability of the halting
problem, showed that mathematics is not that simple.

I have greatly extended the work of Gödel and Turing by show-
ing that there are infinite classes of mathematical questions which are
infinitely and irreducibly complex, in that the answers exhibit abso-
lutely no structure or pattern that we could ever perceive using any
finite set of mathematical axioms. Thus mathematics, and in fact even
elementary arithmetic, far from being simple, is infinitely complex!

A good way to summarize this situation, is to connect it with par-
allel developments in modern physics. Classical physics has given way
to quantum physics and now to chaos theory, and it certainly appears
that, to use Einstein’s words, God plays dice with the physical universe,
that physics is complex and harbors randomness and unpredictability.
My work shows that God also plays dice with the whole numbers, in
arithmetic, because there are arithmetical questions involving the whole
numbers whose answers are completely random.

Here I shall attempt to outline these developments and give an
overall feel for the character of my theory, without giving any proofs



Complexity and Randomness in Mathematics 191

or going into the technical details. I shall illustrate the discussion with
many examples and try to keep everything as concrete as possible.

2. Complexity

Let’s start by looking at some examples of how to measure complexity.
We shall measure complexity in binary digits or bits.

Here is an n-bit string which is random and has complexity n:

n bits︷ ︸︸ ︷
10 · · ·1

This sequence of n bits is produced by tossing a coin n times. The coin
must be fair, that is, the probability of producing a head and a tail
must both be equal to 1/2. The tosses must also be independent. If
we get heads, we add a 1 to the sequence. If we get tails, we add a 0
to the sequence. We do this n times. There is no pattern or structure
in the resulting sequence of 0’s and 1’s.1

Here are three examples of n-bit strings which only have complexity
n/2:

n/2 bits︷ ︸︸ ︷
10 · · ·1

n/2 bits︷ ︸︸ ︷
10 · · ·1

In the above sequence, the first half is produced by tossing a coin n/2
times. The second half is a copy of the first half.

n/2 bits︷ ︸︸ ︷
10 · · ·1

n/2 bits︷ ︸︸ ︷
1 · · · 01

In the above sequence, the first half is produced by tossing a coin n/2
times. The second half is the bit string reversal of the first half.

n/2 pairs︷ ︸︸ ︷
11︸︷︷︸
1

00︸︷︷︸
0

· · · 11︸︷︷︸
1

This time we produce an n-bit sequence of complexity n/2 by tossing
a coin n/2 times to produce an n/2-bit string, and then doubling each
bit.

1More precisely, this is highly probable.
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Here are two examples of n-bit strings which have complexity n/3:

n/3 bits︷ ︸︸ ︷
10 · · ·1

n/3 bits︷ ︸︸ ︷
10 · · ·1

n/3 bits︷ ︸︸ ︷
10 · · ·1

In the above sequence, the first third is produced by tossing a coin n/3
times. This sequence is then copied twice.

n/3 triples︷ ︸︸ ︷
111︸︷︷︸

1

000︸︷︷︸
0

· · · 111︸︷︷︸
1

This time we produce an n-bit sequence of complexity n/3 by tossing
a coin n/3 times to produce an n/3-bit string, and then tripling each
bit.

Now let’s look at some examples of bit strings with much lower
complexity:

n 1’s︷ ︸︸ ︷
111 · · · · · · 111

first n bits of fractional part of
√

2 in binary︷ ︸︸ ︷· · · · · · · · · · · · · · ·

first n bits of fractional part of π in binary︷ ︸︸ ︷· · · · · · · · · · · · · · ·

To produce each of these sequences, one really only needs to know n,
which is usually about log2 n bits,2 so these are n-bit strings which only
have complexity log2 n. All the information is really in their size, not
in their content!

These examples all illustrate the following
Idea: the complexity of an object is the number of bits
required to specify/describe how to construct/compute/
calculate it.

2“Usually,” because some n have a special form, e.g., are a power of two.
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Here is a more advanced example:

n bits︷ ︸︸ ︷
75% 1’s, 25% 0’s.

For example, if 75% of the bits are 1’s and 25% are 0’s, then this n-bit
sequence has its complexity reduced to 80% of what it would normally
be, about .80n. Here we assume that the sequence has 1’s and 0’s in
the proportion of 3 to 1 but is otherwise random. That is to say, it has
been produced by n independent tosses of a coin which has probability
.75 of producing heads and probability .25 of producing tails.

More generally, consider the following n-bit string:

n bits︷ ︸︸ ︷
αn 1’s, βn 0’s.

In this string the relative frequency of 1’s is α and the relative frequency
of 0’s is β. It was produced by flipping a coin which produces 1’s with
probability α and 0’s with probability β. In this case the maximum
possible complexity, which is n bits, is reduced by a factor known as
the Boltzmann–Shannon entropy, given by the following formula:

−α log2 α− β log2 β.

3. Is Complexity Additive?

How can we combine two bit strings into a single bit string? This turns
out to be a real problem!

What about the complexity of a pair of strings 〈x, y〉? Is this always
less than the sum of their individual complexities? It would seem so. If
x and y have nothing in common, first tell me how to compute x, then
tell me how to compute y. If they are related, one can combine parts
of the computation and do even better.

But this doesn’t work. The problem is telling where the description
for x ends and that for y begins.

Here is an example. Let’s try to combine the strings 101 and 000.

〈101, 000〉
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This is easy to do because the strings are the same size

101000
divide in middle−→ 〈101, 000〉

So this special case is easy.
But what if the strings that we wish to combine have different sizes?

〈101, 00000〉
One straight-forward approach is to double each bit and use a pair of
unequal bits as an endmarker:

first string︷ ︸︸ ︷
11︸︷︷︸
1

00︸︷︷︸
0

11︸︷︷︸
1

01︸︷︷︸
.

second string︷ ︸︸ ︷
00︸︷︷︸
0

00︸︷︷︸
0

00︸︷︷︸
0

00︸︷︷︸
0

00︸︷︷︸
0

01︸︷︷︸
.

This shows that the complexity H(x, y) of two strings x and y is
bounded by twice the sum of their individual complexities. Symbol-
ically,

H(x, y) ≤ 2H(x) + 2H(y).

This approach also works if we are combining three or more strings:

H(x, y, z) ≤ 2H(x) + 2H(y) + 2H(z).

But this is very wasteful! We can do much better!
Here is a more clever approach. Let’s just concatenate the given

strings, and put in front of each string its size in binary. This is called
a “header”. But how do we know where the header ends and the
data begins? Well, we double each bit in the header and use 01 as
punctuation. Here is an example:

header︷ ︸︸ ︷
11︸︷︷︸
1

11︸︷︷︸
1

01︸︷︷︸
.︸ ︷︷ ︸

3

3 bits︷︸︸︷
101

header︷ ︸︸ ︷
11︸︷︷︸
1

00︸︷︷︸
0

11︸︷︷︸
1

01︸︷︷︸
.︸ ︷︷ ︸

5

5 bits︷ ︸︸ ︷
00000

This shows that the complexity of two strings is bounded by the sum
of their individual complexities plus twice the logarithms of their com-
plexities:

H(x, y) ≤ H(x) +H(y) + 2 log2H(x)H(y).
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And similarly if there are three or more strings:

H(x, y, z) ≤ H(x) +H(y) +H(z) + 2 log2H(x)H(y)H(z).

? Now change the point of view: require descriptions to
be self-delimiting, so each H gets bigger and H is additive3.

4. Self-Delimiting Complexity

So here is our initial approach for making descriptions self-delimiting:

header︷ ︸︸ ︷
11︸︷︷︸
1

00︸︷︷︸
0

11︸︷︷︸
1

01︸︷︷︸
.︸ ︷︷ ︸

5

5 bits︷ ︸︸ ︷
00000

In general, this will make an n-bit string into an (n+2 logn)-bit string:

n −→ n + 2 logn.

We can improve this if instead of doubling each bit in the header to
make it self-delimiting, we precede the header itself by a second header!

header︷ ︸︸ ︷
11︸︷︷︸
1

11︸︷︷︸
1

01︸︷︷︸
.︸ ︷︷ ︸

3

3 bits︷︸︸︷
101︸ ︷︷ ︸

5

5 bits︷ ︸︸ ︷
00000

This will make an n-bit string into an (n+log n+2 log logn)-bit string:

n −→ n + logn + 2 log logn.

And with headers of headers of headers, we make an n-bit string
into an (n + logn + log log n+ 2 log log logn)-bit string:

n −→ n + logn + log log n+ 2 log log logn.

What about strings that are 2n bits of data? For such strings, it is
cheaper to use a header which is a program for computing the length of

3Technically, “subadditive.”
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the data, rather than to give the length of the data directly. And instead
of having a header on the header etc., let’s break the infinite regress
by stipulating that the header which is a program for computing the
length of the data must itself be self-delimiting. Thus the most compact
header preceding n bits of data has as many bits as the self-delimiting
complexity of the number n. This is usually about log n+log log n+· · · ,
but can be much much shorter if the number of bits of data, considered
as a bit string, is highly non-random, i.e., has complexity much smaller
than its size.

In summary, the new viewpoint which automatically makes com-
plexity additive works like this:

Random N -bit String

Old Complexity Measure N
New Complexity Measure N + complexity of N

Once we make this fundamental conceptual shift, a lot changes.
The most important change is that no extension of a valid program is
a valid program, since we know how many bits it has from its header.
This implies that we can now talk about the probability of computing
something as well as the minimal-program complexity.

The program-size complexity is defined as follows:

H(x) ≡ min
C(p)=x

|p|.

That is to say, H(x) is the minimum size in bits |p| that a program p
must have in order to be able to compute a given object x using our
standard computer C.4

Now let’s generate the program p at random. That is to say, we toss
a fair coin, one independent toss for each bit of p, and the probability
of computing x using our standard computer C is simply the sum of

4The choice of C is not very important. Technically speaking, C must be a
“universal Turing machine,” i.e., sufficiently general-purpose that it can simulate
any other computer. Moreover, it must be able to do this economically, that is to
say, by adding a fixed number of bits to each program to indicate which computer
is to be simulated.
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the probability of each program p that computes x. The probability of
a program p is merely

2−(the number of bits |p| in the program p).

Adding these probabilities for all p that compute x, we see that the
probability P (x) of computing x is precisely

P (x) =
∑

C(p)=x

2−|p|.

Moreover, if we add the probabilities that our computer C computes
anything at all, this gives the total halting probability Ω.

Ω =
∑

C(p) halts

2−|p|.

None of these probabilistic notions could work before, when our
computer programs/descriptions were not self-delimiting. The reason
is that before we had 2n n-bit programs, and if each has probability 2−n,
then summing the probabilities of all programs of all sizes that do some-
thing particular will give infinity. When programs are self-delimiting
this no longer happens, because no extension of a valid program is a
valid program. I.e., if p is a valid program, then p0, p1, p00, p01, . . .
cannot be.

There is a geometrical proof that this works. Associate bit strings
with subsets of the interval of unit length consisting of all real numbers
r between zero and one. The string b is associated with all those real
numbers r having that string at the beginning of the fractional part of
r’s base-two representation:

b
is associated with←→ {the set of all reals of the form .b · · · }.

Then the length of the interval associated with a program is precisely
its probability. That no extension of a valid program is a valid program
means that the intervals associated with valid programs do not overlap.
Hence the sum total of the lengths of these non-overlapping intervals
must be less than unity, since they are all inside an interval of unit
length. In other words, the total probability that a program is valid is
less than unity, as it should be, and not infinite.
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5. Joint, Relative and Mutual Complexity

In addition to the plain complexity we have discussed up to now, there
are some important variations called the joint, relative, and the mutual
complexity, which involve two or more objects instead of a single object.
And these composite complexities have some important and elegant
properties.

5.1. Joint Complexity

We have actually already seen the first of these composite complexities,
the joint complexity H(x, y, . . .) of two or more objects x, y, . . . . The
key property of the joint complexity is (sub)additivity:

H(x, y, . . .) ≤ H(x) +H(y) + · · · ,
the joint complexity is bounded by the sum of the individual complex-
ities. In fact, we changed our definition of complexity and demanded
that descriptions be self-delimiting precisely so that this inequality
would hold.

A more esoteric and subtle property is that the complexity of an
object x is equal to that of the pair 〈x,H(x)〉 consisting of the object
x and its complexity H(x):

H(x,H(x)) = H(x).

This is the case because a minimum-size program tells us its size as well
as its output. In other words, in addition to interpreting a minimum-
size description of an object to determine the object, we can also see
the size of the description, and this can be very useful.

This is a rather technical point, and I’d best not say any more about
this equation, except that it indicates most clearly where the formalism
of my algorithmic information theory differs from the original Shannon
formalism of classical ensemble information theory. It also leads to my
next subject, the relative complexity of two objects.

5.2. Relative Complexity

The relative complexity H(x | y) of x given y is the size of the shortest/
smallest description of how to obtain x from y. However, and this is a
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key point, this is not quite right. It is actually necessary to define the
relative complexity H(x | y) of x given y as the size of the shortest/
smallest description of how to obtain x from the pair 〈y,H(y)〉. This
is somewhat subtle and technical, and very closely related to the fact
that H(y,H(y)) = H(y).

When relative complexity is correctly defined, it turns out that the
following fundamental decomposition holds:

H(x, y) = H(x) +H(y | x).
In other words, the joint complexity of x and y is equal to the sum of
the complexity of x and the relative complexity of y given x. Let me
repeat that here in H(y | x) we are not given x directly, we are given
a minimum-size description of x, which is equivalent to knowing x and
H(x).

5.3. Mutual Complexity

This leads us to the mutual complexity H(x : y), which measures the
extent to which it is cheaper to compute x and y together rather than to
compute them separately. In other words, this is the extent to which
two objects appear less complex when seen together than when seen
separately. H(x : y) measures the extent to which x and y are related,
i.e., how much they have in common.

It is an important theorem of mine that H(x : y) is also equal to the
extent to which knowing x helps one to know y, and vice versa. I.e.,
the extent to which each of two objects seems less complex given the
other, turns out to be equal to the extent to which it is less complex to
compute them together than separately:

H(x : y) ≡ H(x) +H(y)−H(x, y),
= H(x)−H(x | y),
= H(y)−H(y | x).

This is very important because it shows that my definitions of self-
delimiting complexity and of the relative complexity of one object
given a minimal-description of another object are the correct defini-
tions. Many variations of these definitions seem plausible but reveal
their inadequacy by failing to have this property.
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Here are two examples of the mutual complexity.
At one extreme, consider two n-bit strings x and y chosen at ran-

dom. They have only their length in common, not their content, so
their mutual complexity H(x : y) is equal to H(n), which is usually
≈ log2 n unless n is of a special form.

At the other extreme, H(x : x) = H(x), that is say, if one considers
two identical objects, all their complexity is mutual.

6. Complexity of Axiomatic Theories

Let’s look at the limitations of mathematics, more precisely, at the
limitations of the axiomatic method, since Euclid the basis for mathe-
matics. A formal axiomatic theory is one that is specified so precisely
that a computer can print out all the theorems by running through all
possible proofs in size-order and checking which are valid.

Axioms
deduction−→ Theorems

If we know the complexity H(axioms) of a formal axiomatic theory,
what does this tell us about its limitations?

Recall the halting probability I call Ω that we encountered in Section
4:

Ω =
∑

C(p) halts

2−|p|.

Since Ω is a probability, it is a real number between zero and one. It
is an extremely basic fact that if Ω is written in binary notation, it is
a random infinite bit string. More precisely,

lim
n→∞H(Ωn)− n =∞.

In other words, the complexity of Ωn the first n bits of the base-two
notation for the halting probability Ω, becomes and stays arbitrarily
greater than n as n gets larger and larger.

My theorem that Ω is random is closely related to Turing’s famous
theorem on the undecidability of the halting problem, because if one
knew the first n bits of Ω it would in principle enable one to solve
the halting problem for all programs p of size |p| less than n. This



Complexity and Randomness in Mathematics 201

implies that Ω is a highly uncomputable real number. In fact it is even
extremely hard to prove whether a particular bit of Ω is a 0 or a 1.

More precisely, the randomness of the halting probability Ω implies
that one cannot deduce what the first n bits of Ω are using a formal
axiomatic theory whose complexity H(axioms) is less than n bits. In
fact, I can show that the randomness of the halting probability Ω im-
plies that one cannot even deduce what are the values and positions of n
scattered bits of Ω using a formal axiomatic theory whose complexity
H(axioms) is less than n bits.

In other words, essentially the only way to determine whether par-
ticular bits of Ω are 0 or 1 using reasoning based on axioms, is if the
particular results that one wishes to prove are axioms. I.e., the value
of each bit of Ω is an irreducible independent mathematical fact, and
each bit is analogous to the result of an independent coin toss. In this
domain, reasoning is completely impotent and completely irrelevant.

One can however make statistical statements about the bits of Ω.
For example, 0’s and 1’s both have limiting relative frequency precisely
1/2. If this were not the case, Ω would be compressible, as we saw in
Section 2.

The real number Ω may seem to be somewhat exotic, but it actu-
ally even appears in elementary number theory, in the arithmetic of
whole numbers. I have constructed a two-hundred page equation with
seventeen-thousand variables which has the remarkable property that
it captures Ω arithmetically.

My equation is what is called an exponential diophantine equation.
That is to say, it is an algebraic equation involving only unsigned whole-
number constants and variables, and is built up using only the opera-
tions of addition x+y, multiplication x×y, and integer exponentiation
xy. Such equations are named after the ancient Greek Diophantos who
first studied them.

How does my equation “capture” Ω?
One of the seventeen-thousand variables in my equation is the vari-

able n. For each particular value of n = 1, 2, 3, . . . , let’s ask whether
my monster equation has a finite or an infinite number of solutions.
It must be one or the other, because no solution is a finite number of
solutions. My equation is craftily constructed so that the answer to
this question turns out to depend on whether the nth bit of Ω is a 0 or
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a 1. If the nth bit of Ω is 0, then my equation has only finitely many
solutions. If the nth bit of Ω is 1, then my equation has infinitely many
solutions.

Thus it is just as impossible to prove whether my equation has
finitely or infinitely many solutions for a particular value of the param-
eter n, as it is to prove whether the nth bit of Ω is a 0 or a 1! So as
far as deciding whether my equation has finitely or infinitely many so-
lutions is concerned, mathematical truth is infinitely complex and has
absolutely no structure or pattern and appears to be completely ran-
dom! No set of axioms of finite complexity can cope with the infinite
complexity of Ω embodied in my equation!

7. Conclusions

I have outlined the major features of my algorithmic information the-
ory. It provides a mathematical definition of complexity that has ele-
gant formal properties. My theory also throws a devastating new light
on Gödel’s incompleteness theorem and on the limitations of the ax-
iomatic method. Algorithmic information theory does this by providing
information-theoretic incompleteness theorems based on measuring the
complexity of the axioms of formal mathematical theories.

My complexity based approach to incompleteness suggests that in-
completeness is natural and pervasive. To prove more one must some-
times assume more. In some cases the complexity of the axioms must
be increased to be commensurate with the complexity of the theorems
to be derived from them.
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BOOK REVIEW

The Mathematical Intelligencer

14, No. 4 (Fall 1992), pp. 69–71

A Diary on Information Theory by Alfréd Rényi
Chichester: John Wiley & Sons, 1987; ix + 125 pp.
Hardcover, US$54.95 (ISBN 0–471–90971–8)
Reviewed by Gregory J. Chaitin

Can the difficulty of an exam be measured by how many
bits of information a student would need to pass it? This
may not be so absurd in the encyclopedic subjects but in
mathematics it doesn’t make any sense since things follow
from each other and, in principle, whoever knows the bases
knows everything. All of the results of a mathematical the-
orem are in the axioms of mathematics in embryonic form,
aren’t they? I will have to think this over some more.

A. Rényi (A Diary on Information Theory, p. 31)

This remarkable quotation comes from Rényi’s unfinished 1969
manuscript, written in the form of a fictitious student’s diary. This
“diary” comprises the bulk of Rényi’s posthumous work, A Diary on

Copyright c© 1992, Springer-Verlag New York Inc., reprinted by permission.
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Information Theory, a stimulating introduction to information theory
and an essay on the mathematical notion of information, a work left
incomplete at Rényi’s death in 1970 at the age of 49.

Alfréd Rényi was a member of the Hungarian Academy of Sciences.
The Diary, as well as the material on information theory in his two
books on probability theory [1, 2], attest to the importance he attached
to the idea of information. This Diary also illustrates the importance
that Rényi ascribed to wide-ranging nontechnical discussions of mathe-
matical ideas as a way to interest students in mathematics. He believed
the discussions served as vital teaching tools and stimuli for further re-
search.

Rényi was part of the tidal wave of interest in information theory
provoked by Claude Shannon’s publications in the 1940s. The many
papers with titles like “Information Theory, Photosynthesis, and Re-
ligion” actually published illustrate the tremendous and widespread
initial interest in information theory.

When Rényi wrote his Diary, the initial wave of interest in infor-
mation theory was dying out. In fact, Rényi was unaware of a second
major wave of interest in information theory slowly beginning to gather
momentum in the 1960s. At that time, Andrei Kolmogorov and I inde-
pendently proposed a new algorithmic information theory to capture
mathematically the notion of a random, patternless sequence as one
that is algorithmically incompressible.

The development of this new information theory was not as dramat-
ically abrupt as was the case with Shannon’s version. It was not until
the 1970s that I corrected the initial definitions. The initial definitions
Kolmogorov and I proposed had serious technical deficiencies which led
to great mathematical awkwardness. It turned out that a few changes
in the definitions led to a revised algorithmic information theory whose
elegant formulas closely mirror those in Shannon’s original theory in a
radically altered interpretation [3].

In the 1970s I also began to apply algorithmic information theory
to extend and broaden Gödel’s incompleteness theorem, culminating
in the 1980s in an explicit constructive proof that there is randomness
in arithmetic [4]. (For recent discussions of algorithmic information
theory directed to the general scientific public, see [5–16].)

Rényi’s Diary stops at the brink between Shannon’s ensemble infor-
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mation theory and the newer algorithmic information theory applying
to individual sequences. With the benefit of hindsight, one can detect
the germ of ideas that, if Rényi had pursued them properly, might have
led him in the direction of algorithmic information theory.

Let us take the quotation at the head of this review. If Rényi
had developed it properly, it might have led him to my insight that
incompleteness can be obtained very naturally via metatheorems whose
spirit can be summarized in the phrase, “a theorem cannot contain
more information than the axioms from which it is deduced.” I think
this new information-theoretic viewpoint makes incompleteness seem a
much more menacing barrier than before.

A second instance occurs later in Rényi’s Diary, p. 41:

Therefore, the method of investigating the redundancy of a
text by erasing and reconstruction is not appropriate. By
this method, we would get a correct estimation of the real
redundancy only if the reconstruction could be done by a
computer. In that case, the meaning of the text wouldn’t
be a factor because a computer wouldn’t understand it and
could reconstruct it only by means of a dictionary and gram-
matical rules.

If Rényi could have formalized this, perhaps he might have discovered
the complexity measure used in algorithmic information theory. (In
algorithmic information theory, the complexity of a string or sequence
of symbols is defined to be the size of the smallest computer program
for calculating that string of symbols.)

So Rényi’s Diary balances on the edge between the old and the new
versions of information theory. It also touches on connections between
information theory and physics and biology that are still the subject of
research [7, 8].

In what remains of this review, I would like to flesh out the above
remarks by discussing Hilbert’s tenth problem in the light of algorith-
mic information theory. I will end with a few controversial remarks
about the potential significance of these information-theoretic meta-
mathematical results, and their connection with experimental mathe-
matics and the quasi-empirical school of thought regarding the founda-
tions of mathematics.
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Consider a diophantine equation

P (k, x1, x2, . . .) = 0

with parameter k. Ask the question, “Does P (k) = 0 have a solution?”
Let

q = q0q1q2 · · ·
be the infinite bit string with

qk =

{
0 if P (k) = 0 has no solution
1 if P (k) = 0 has a solution.

Let
qn = q0q1 · · · qn−1

be the string of the first n bits of the infinite string q, that is, the string
of answers to the first n questions. Let H(qn) be the complexity of qn,
that is, the size in bits of the smallest program for computing qn.

If Hilbert had been right and every mathematical question had a
solution, then there would be a finite set of axioms from which one
could deduce whether P (k) = 0 has a solution or not for each k. We
would then have

H(qn) ≤ H(n) + c.

The c bits are the finite amount of information in our axioms, and this
inequality asserts that if one is given n, using the axioms one can com-
pute qn, that is, decide which among the first n cases of the diophantine
equation have solutions and which do not. Thus, the complexity H(qn)
of answering the first n questions would be at most order of logn bits.
We ignore the immense time it might take to deduce the answers from
the axioms; we are concentrating on the amount of information in-
volved.

In 1970, Yuri Matijasevič showed that there is no algorithm for
deciding if a diophantine equation can be solved. However, if we are
told the number m of equations P (k) = 0 with k < n that have a
solution, then we can eventually determine which do and which do not.
This shows that

H(qn) ≤ H(n) +H(m) + c′
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for some m ≤ n, which implies that the complexity H(qn) of answer-
ing the first n questions is still at most order of log n bits. So from
an information-theoretic point of view, Hilbert’s tenth problem, while
undecidable, does not look too difficult.

In 1987, I explicitly constructed [4] an exponential diophantine
equation

L(k, x1, x2, . . .) = R(k, x1, x2, . . .)

with a parameter k. This equation gives complete randomness as fol-
lows. Ask the question, “Does L(k) = R(k) have infinitely many solu-
tions?” Now let

q = q0q1q2 · · ·
be the infinite bit string with

qk =

{
0 if L(k) = R(k) has finitely many solutions
1 if L(k) = R(k) has infinitely many solutions.

As before, let
qn = q0q1 · · · qn−1

be the string of the first n bits of the infinite string q, that is, the string
of answers to the first n questions. Let H(qn) be the complexity of qn,
that is, the size in bits of the smallest program for computing qn. Now
we have

H(qn) ≥ n− c′′,
that is, the string of answers to the first n questions qn is irre-
ducible mathematical information and the infinite string of answers
q = q0q1q2 · · · is now algorithmically random.

Surprisingly, Hilbert was wrong to assume that every mathematical
question has a solution. The above exponential diophantine equation
yields an infinite series of independent irreducible mathematical facts.
It yields an infinite series of questions which reasoning is impotent to
answer because the only way to answer these questions is to assume
each individual answer as a new axiom! Here one can get out as the-
orems only what one explicitly puts in as axioms, and reasoning is
completely useless! I think this information-theoretic approach to in-
completeness makes incompleteness look much more natural and perva-
sive than has previously been the case. Algorithmic information theory
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provides some theoretical justification for the experimental mathemat-
ics made possible by the computer and for the new quasi-empirical view
of the philosophy of mathematics that is displacing the traditional for-
malist, logicist, and intuitionist positions [5].
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eds.), Vienna: Verlag Hölder–Pichler–Tempsky (1992), 30–44.

IBM Research Division
Yorktown Heights, NY 10598 USA



212 Part II—Discussion



Epilogue
The Challenge for the Future

213





215

“This is my hand. I can move it, feel the blood pulsing through it.
The sun is still high in the sky and I, Antonius Block, am playing
chess with Death.”

—The Knight in
Ingmar Bergman’s 1956 film

The Seventh Seal
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COMPLEXITY AND
BIOLOGY

New Scientist 132, No. 1789

(5 October 1991), p. 52

Information and the Origin of Life
by Bernd-Olaf Küppers, MIT Press, pp 215, £20.25

Gregory Chaitin

BERND-OLAF Küppers’ Information and the Origin of Life, origi-
nally published in German several years ago, belongs to that handful
of books, including Erwin Schrödinger’s 1944 classic What is Life?, that
confront the most fundamental conceptual problems of biology.

What are these fundamental problems? In a more practical domain,
Sydney Brenner, I believe, put it succinctly. “Genetic engineering,” he
said, “is being able to build a centaur!” At a more conceptual level,
the problem, a physicist might say, is to develop a thermodynamic or
statistical mechanics theory of the origin and evolution of life; while a
mathematician would say that it is to prove when life must arise and
evolve, and what its rate of evolution is.

Such a theory would have to tell us how likely life is to appear and

Copyright c© 1991, IPC Magazines New Scientist, reprinted by permission.
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evolve, to give us a feel for how common life is in the Universe, and
whether it is ubiquitous or extremely rare.

This book discusses the connection between biological information,
the mathematical theory of information and the newer algorithmic ver-
sion of information theory. I think it is fair to say that, in spite of the
interesting points of contact between biology and information theory,
much remains to be done and we are far from being able to answer the
fundamental questions.

From where is progress likely to come?
On the one hand, rapid advances in understanding the molecular

biology of embryogenesis and development may suggest new versions
of algorithmic information theory more in tune with the actual “com-
puter programming” language used by DNA to describe how to build
organisms.

And I hope that one day we will visit other planets and other solar
systems and get a feel for whether life is common or rare, so that even if
theoreticians make no progress space exploration will eventually give us
the answer. In the short term, I expect experiments with “artificial life”
on massively parallel computers will lead to theoretical developments.
[See Steven Levy, Artificial Life, New York: Pantheon Books (1992).]

In summary, I would like to repeat a story from Abraham Pais’s
forthcoming book Niels Bohr’s Times (Oxford University Press, pp
565, £25). According to Pais, Bohr told the following story: “Once
upon a time a young rabbinical student went to hear three lectures
by a famous rabbi. Afterwards he told his friends: ‘The first talk
was brilliant, clear and simple. I understood every word. The second
was even better, deep and subtle. I didn’t understand much, but the
rabbi understood all of it. The third was by far the finest, a great and
unforgettable experience. I understood nothing and the rabbi didn’t
understand much either.’ ”

Information and the Origin of Life belongs to the latter class. It
reminds us that in spite of the splendid achievements of molecular bi-
ology, there is still much that we do not understand and much to be
done. 2

Gregory Chaitin is at IBM’s Thomas J. Watson Research Center
in New York.
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A life is a whirlwind of experiences. Here are some intense experiences
that stick out in my mind:

Making love.
Proving a significant theorem.
Hiking up a mountain all morning in fog, mud and drizzle

then suddenly on rock at summit above cloud in dazzling
sunshine (upstate New York).

Inventing a new mathematical concept.
Crossing a snow bridge in the Argentine Andes, unroped.
Swimming from one British Virgin Island to another.
Making it back to a rowing club sculling against the current

after a long day in the Tigre river delta in Argentina.
Writing a large computer program.
Getting a large computer program to work.

Dancing in the street in Rio de Janiero at Carnival, with la
porta-bandeira of an escola de samba.

Writing my Cambridge University Press book.
Lecturing on randomness in arithmetic in Gödel’s class-

room in the Mathematical Institute of the University of
Vienna.

Meeting the King and Queen of Belgium and Mr Honda

at a Solvay conference in Brussels.

Finding the Ring nebula in Lyra with an 8” f/6 Newtonian
reflector that I built myself.

The aurora shimmering in the frosty sky of northern Quebec
the first week in September.
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The zodiacal light1 after sunset in the British Virgin Islands.
The brilliant Milky Way high in the Andes on the

Argentine-Chile border.
A total eclipse of the sun breaking the searing noonday heat

in southern India.
The white nights and the snow and ice in early May north

of the arctic circle in Sweden.

Hearing God’s thoughts in Bach’s The Art of the Fugue.
The suffering and madness in Shostakovich’s First Violin

Concerto.
A sumptuous rather than stark performance of Jacques

Offenbach’s The Tales of Hoffmann at the Colon
Opera House in Buenos Aires.

To Life!

Gregory Chaitin

April 1992

1Sunlight scattered from dust particles in the plane of the solar system.
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whether an exponential diophantine equation has finitely or infinitely
many solutions is in some cases absolutely random, and the theory of
program size for Turing machines and for LISP. He is the author of the
monograph “Algorithmic Information Theory” published by Cambridge
University Press in 1987.
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INFORMATION-
THEORETIC
INCOMPLETENESS

World Scientific Series in Computer Sci-

ence — Vol. 35

by Gregory J Chaitin (IBM)

In this mathematical autobiography Gregory Chaitin presents a tech-
nical survey of his work and a nontechnical discussion of its signif-
icance. The volume is an essential companion to the earlier collec-
tion of Chaitin’s papers INFORMATION, RANDOMNESS & INCOM-
PLETENESS, also published by World Scientific.

The technical survey contains many new results, including a de-
tailed discussion of LISP program size and new versions of Chaitin’s
most fundamental information-theoretic incompleteness theorems. The
nontechnical part includes the lecture given by Chaitin in Gödel’s class-
room at the University of Vienna, a transcript of a BBC TV interview,
and articles from NEW SCIENTIST, LA RECHERCHE, and THE
MATHEMATICAL INTELLIGENCER.
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