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Abstract

We characterize the compensation demanded by investors in equilibrium for in-

cremental exposure to growth-rate risk. Given an underlying Markov diffusion that

governs the state variables in the economy, the economic model implies a stochas-

tic discount factor process S and a reference stochastic growth process G for the

macroeconomy. Both are modeled conveniently as multiplicative functionals of a multi-

dimensional Brownian motion. To study pricing we consider the pricing implications

of parameterized family of growth processes Gε, with G0 = G, as ε is made small. This

parameterization defines a direction of growth-rate risk exposure that is priced using

the stochastic discount factor S. By changing the investment horizon we trace a term

structure of risk prices that shows how the valuation of risky cash flows depends on the

investment horizon. Using methods of Hansen and Scheinkman (2009), we characterize

the limiting behavior of the risk prices as the investment horizon is made arbitrarily

long.

1 Introduction

A standard result from asset pricing theories is the characterization of the local risk-return

tradeoff. This tradeoff is particularly simple in the case of Brownian information structures.

In mathematical finance the risk prices are embedded in the transformation to a risk-neutral

measure. Applying Girsanov’s Theorem, this change of measure adds a drift vector to the

multivariate standard Brownian motion. The vector of local risk prices is the negative of the

drift vector used in constructing the risk neutral transformation. This price vector reflects

the local compensation in terms of the drift for exposure to alternative components of the

Brownian motion. With these local prices, we price exposure to linear combinations of the

Brownian risks by forming the corresponding linear combination of prices.
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While derivative claims are often priced using the risk neutral measure, structural models

of asset prices interpret these prices in terms of the fundamentals of the underlying economy.

In this paper, as in Hansen and Scheinkman (2009) and Hansen (2008), we characterize the

compensation demanded by investors for a added risk at different time horizons, that is

a term-structure of risk prices. This compensation will typically depend on how investors

discount risky payoffs and the risk they already face. Our approach is as follows. There

is an underlying Markov diffusion X that governs the state variables in the economy. The

economic model implies a stochastic discount factor process S and a reference stochastic

growth process G for the macroeconomy. Both are modeled conveniently as multiplicative

functionals of a multi-dimensional Brownian motion. To feature the role of price dynamics,

we normalize the reference growth functional to a be a martingale. More generaly this

martingale can be the martingale component in a factorization of the growth functional (as

in Hansen and Scheinkman (2009)). To study pricing we consider a parameterized family of

growth processes Gε, with G0 = G and study its pricing implications for payoffs at different

horizons. We define the price of growth-rate risk as:

ρt = − d

dε

1

t
logE [Gε

tSt|X0 = x] |ε=0.

It is the elasticity of the expected rate of return (per unit of time) with respect to the exposure

to growth-rate risk. The expected return implicit in this calculation is the reciprocal of the

price E [Gε
tSt|X0 = x] since Gε

t has expectation one by construction.

The resulting prices of growth-rate risk extend the local prices to arbitrary investment

horizons. While we focus on scalar parameterizations, we can interpret our calculations as

producing prices for an arbitrary linear combination of exposure to the Brownian motion

risks. By changing the exposure weights, we feature alternative components of the Brownian

increments and thus construct the counterpart to the local risk-price vector.

For a given investment horizon, we characterize our risk prices by applying tools that are

used to compute sensitivities of option prices (the “Greeks”). The prices we compute reveal

the local risk prices as the horizon t shrinks to zero:

lim
t↓0

ρt = ρ0

We add to this a characterization of the limit prices as the investment horizon tends to ∞:

lim
t↑∞

ρt = ρ∞,

along with formulas for the intermediate investment horizons.
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2 Mathematical setup

The underlying state vector process X is n-dimensional and satisfies,

dXt = β(Xt)dt+ α(Xt)dWt.

We use multiplicative functionals M of the form

Mt = exp

[∫ t

0

δ(Xu)du+

∫ t

0

γ(Xu)dWu

]
where ∫ t

0

|δ(Xu)|du <∞∫ t

0

|γ(Xu)|2du <∞

for all t with probability one.1 Let G and S be two such multiplicative functionals. The pro-

cess G captures stochastic growth and the process S stochastic discounting. Asset valuation

over a horizon t is represented as:

E [StGt|X0 = x]

where Gt is the asset payoff that is priced. Thus there are two channels by which the term

structure of risk premia the associated prices are altered over alternative investment horizons:

a stochastic discount factor channel and a stochastic growth channel. Our aim is to focus

on the latter channel.

Hansen and Scheinkman (2009) (Corollary 6.1) establishes a multiplicative factorization

of G:

Gt = exp(ηt)G∗t

[
f(X0)

f(Xt)

]
where G∗ is a multiplicative martingale.2 The exponential growth term exp(ηt) is of no

consequence for risk prices and can be omitted. Since predictability in S and G alter the

term structure of risk premia, one possibility is to feature the role of pricing dynamics by

abstracting from the the “transient term” to stochastic growth:
[
f(X0)
f(Xt)

]
. Alternatively, we

may absorb this term into the stochastic discount factor S (replace St by St

[
f(X0)
f(Xt)

]
). In what

1Contrary to the usual treatment, we allow for multiplicative functionals that do not have bounded
variation.

2Strictly speaking, this corollary produces a local martingale rather than a martingale.
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follows we will assume that G is a martingale and use it to change probability measures.

To construct risk prices for any given payoff horizon, we parameterize a family of growth

functionals as Gε with G = G0 where Gε is a martingale for each ε. The parameterized

martingale is constructed to feature exposures to specific combination of shocks. By altering

the parameterization, we can feature sensitivity to alternative shocks thereby constructing

counterparts to local risk prices.

Recall that the stochastic exponential of a semi-martingale N is a semi-martingale E(N)

that solves E(N)t = 1 +
∫ t

0
E(N)s−dNs. Since sample paths are continuous,

E(N) = exp

(
N − 1

2
[N,N ]

)
. (1)

We assume that the positive martingale G is the stochastic exponential E(Zo) of a martingale

Zo
t =

∫ t
0
γg(Xt)dWt. Consider a family of perturbabtions Gε of the form:

Gε = E(Zo + εZ), (2)

ε ∈ (−1, 1) where Zt =
∫ t

0
γd(Xt)dWt. For the stochastic integrals to be well behaved,∫ t

0
|γg(Xu)|2 <∞ and

∫ t
0
|γd(Xu)|2du <∞ with probability one.

The process Z used to construct the perturbation can feature any of the individual com-

ponents of the underlying Brownian motion. The resulting parameterized family expressed

in logarithms is:

logGε
t =

∫ t

0

γg(Xu)dWu + ε

∫ t

0

γd(Xu)dWu −
1

2

∫ t

0

|γg(Xu) + εγd(Xu)|2du

In this specification ε
∫ t

0
γd(Xu)dWu parameterizes the (growth rate) risk exposure. By chang-

ing γd we alter which Brownian increments are featured in the pricing.

3 Finite-Horizon Prices

In this section we apply an approach developed by Fournia et al. (1999, 2001) to show that

ρt(x) = −
E
[
StGt

(∫ t
0
γd(Xu)dWu −

∫ t
0
γd(Xu) · γg(Xu)du

)
|X0 = x

]
tE (StGt|X0 = x)

. (3)

We start by using the multiplicative martingale G to change measure. Then Girsanov’s

Theorem guarantees that Gε

G
= E [εZ̃], and Z̃t =

∫ t
0
γd(Xu)dW̃u, with W̃ a Brownian motion
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under the changed measure P̃r. Let Ẽ denote the associated expectations operator. Hence,

Gεt
Gt
− 1

ε
=

∫ t

0

Gε
u

Gu

dZ̃u, or

=

∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u (4)

If the right-hand side has a well-defined limit, then necessarily this limit is:

Gεt
Gt
− 1

ε
→
∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u

We may write the price of an asset as a function of the perturbation on the growth factor

as:

U(ε) = E [Gε
tSt|X0 = x]

= Ẽ

[
Gε
t

Gt

St|X0 = x

]
.

Hence,

U ′(0) = lim
ε→0

Ẽ
[
(
Gεt
Gt
− 1)St|X0 = x

]
ε

= lim
ε→0

Ẽ

[
St

∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u|X0 = x

]
Next we impose two assumptions that are sufficient for the main result in this section.

After establishing this result, we provide sufficient conditions for the second of these assump-

tions.

Assumption 3.1. E [(St)
2Gt|X0 = x] <∞.

Imposing this restriction is equivalent to assuming that St has a finite conditional second

moment (in the P̃r measure) for each x.

Assumption 3.2.

lim
ε→0

Gεt
Gt
− 1

ε
→
∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u.

in mean-square.
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Proposition 3.3. Suppose that Assumptions 3.1 and 3.2 are satisfied. Then

U ′(0) = Ẽ

[
St

∫ t

0

γd(Xu)dW̃u|X0 = x

]
= E

(
StGt

[∫ t

0

γd(Xu)dWu −
∫ t

0

γd(Xu) · γg(Xu)du

]
|X0 = x

)
Proof. This follows directly from Holder’s Inequality.

The elasticity of interest is the ratio of U ′(0)/U(0) and is given by (3).

We now provide sufficient conditions for Assumption 3.2. To insure that Gε

G
is a martingale

we assume Novikov’s condition:

Assumption 3.4.

Ẽ

[
exp

(
1

2

∫ t

0

|γd(Xu)|2du
)
|X0 = x

]
<∞.

Equation (1) implies that,

Gε

G
= E(εZ̃) = [E(Z̃)]ε exp

(
1

2
(ε− ε2)[Z̃, Z̃]

)
. (5)

Notice that for a fixed t, E(εZ̃) converges to 1 for each ω as ε → 0. For fixed integer

1 ≤ m < ∞ and t > 0, consider the space Lm of adapted stochastic processes f(u, ω),

0 ≤ u ≤ t with norm ||f || =
(
Ẽ
∫ t

0
|f(u, ω)|mdu

)1/m

A stronger form of convergence is

established in the following Lemma.

Lemma 3.5. Suppose Assumption 3.4 is satisfied. Then limε→0
Gεt
Gt

= 1 in Lm for any m ≥ 1

and any t > 0.

Proof. : We first consider the limit for ε > 0. We will show that we can choose ε̄ small such

that for ε ≤ ε̄ there is a bound to the 2m moment of each of the terms in the RHS of (5)

that holds for all t < T. From Jensen’s Inequality, provided ε ≤ 1
2m

, for all t ≤ T,

E[[E(Z̃)t]
4mε] ≤ 1

Also for ε small ,

exp[
1

2
(ε− ε2)[Z̃, Z̃]t] ≤ exp

(
1

4m
[Z̃, Z̃]t

)
.

Hence the bound on the 2m-th moment follows from Assumption 3.4.

To deal with the limit from the left, we note that from our assumptions there exists an

c > 0 such that E(−cZ̃) is a martingale in the measure formed using G, for some c > 0.
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Thus for ε < c,

E(−εZ̃) = [E(−cZ̃)]
ε
c exp

(
1

2
(εc− ε2)[Z̃, Z̃]

)
(6)

The proof now proceeds as before.

To control the term in γd(Xt) we need to assume

Assumption 3.6. There exists a constant Γ such that

Ẽ|γd(Xu)|4 ≤ Γ

for u ≤ t.

Lemma 3.7. Suppose Assumptions 3.4 and 3.6 are satisfied. Then Assumption 3.2 holds.

Proof. Use (4) to represent

Gεt
Gt
− 1

ε
=

∫ t

0

(
Gε
u

Gu

)
γd(Xu)dW̃u.

Thus we must show that
∫ t

0

(
Gεu
Gu
− 1
)
γd(Xu)dW̃u converges in mean-square to zero. Notice

that the stochastic integral
∫ t

0

(
Gεu
Gu
− 1
)
γd(Xu)dW̃u has second moment

Ẽ

∫ t

0

(
Gε
u

Gu

− 1

)2

|γd(Xu)|2dt. (7)

As ε→ 0, expression (7) converges to zero from the assumptions, Lemma 3.7 for m = 4 and

Holder’s inequality.

Finally, we consider a sufficient condition for Assumption 3.6. When the functions |γd(x)|
are bounded by a polynomial in |x| Assumption 3.6 follows from the following assumption

on the coefficients of the diffusion X

Assumption 3.8.

dXt = β(Xt)dt+ α(Xt)dWt (8)

with the coefficients β and γ satisfying sublinear growth

|β(x)|2 + ‖α(x)‖2 ≤ K(1 + |x|2),

for some constant K.
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When Assumption 3.8 holds, for each for each m ≥ 1 there exists a C = C(d,K, T,m)

such that E[maxs≤t ||Xt||2m] ≤ C(1 + E||X0||2m)eCt, if t ≤ T. (A more general result than

this is problem 3.15 in Karatzas and Shreve (1991) page 306). Hence Assumption 3.6 obtains

from the polynomial bound in |γi(Xt)| .

4 Short-term limits

We now use the formula:

ρt(x) =
E
[
StGt

(∫ t
0
γd(Xu) · γg(Xu)du−

∫ t
0
γd(Xu)dWu

)
|X0 = x

]
tE (StGt|X0 = x)

to study valuation over short time intervals. Formally we calculate short-horizon limits by

computing the drift of an Ito process .

Recall that the SG has continuous sample paths that converge to one as t declines to

zero. We add to this the assumption

Assumption 4.1. limt↓0E (StGt|X0 = x) = 1.

This assumption follows from the Dominated Convergence Theorem provided that we can

dominate SG uniformly for small t.

With this restriction, we are lead to compute

ρ(x) = lim
t↓0

1

t
E

[
StGt

(∫ t

0

γd(Xu) · γg(Xu)du−
∫ t

0

γd(Xu)dWu

)
|X0 = x

]
.

We calculate this limit as the drift of the Ito process

StGt

(∫ t

0

γd(Xu) · γg(Xu)du−
∫ t

0

γd(Xu)dWu

)
at t = 0. Since

ρ(0) = γd(x) · γg(x)− γd(x) · [γg(x) + γs(x)],

the following proposition holds.

Proposition 4.2. Suppose Assumption 4.1 is satisfied. Then

ρ(0) = −γs(x) · γd(x). (9)

As we vary the risk exposure vector γd, we trace out the local risk prices. This results in
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the interpretation of −γs a vector of local risk prices.3 As is well known, the local risk price

vector is the risk exposure of the stochastic discount factor S. The risk exposure of the

stochastic growth process plays no role in this calculation.

5 Long-term limits

Following Hansen and Scheinkman (2009), use the factorization:

StGt = exp(δt)M̂t
e(X0)

e(Xt)

where M̂ is a multiplicative martingale. Change measure using this martingale and express

the finite t derivative of interest as:

ρt(x) =
E
[
StGt

(∫ t
0
γd(Xu) · γg(Xu)du−

∫ t
0
γd(Xu)dWu

)
|X0 = x

]
tE (StGt|X0 = x)

= −
Ê
(

1
e(Xt)

[∫ t
0
γd(Xu) · κ(Xu)du+

∫ t
0
γd(Xu)dŴu

]
|X0 = x

)
tÊ
(

1
e(Xt)
|X0 = x

) .

Under the ·̂ change of measure,

dWu = [κ(Xu) + γg(Xu)]du+ dŴu

where Ŵ is a multivariate standard Brownian motion.

As a precursor to studying the large horizon behavior of ρt, consider the class functions

f̂ that are in the space

L̂2 .
=

{
f̂ :

∫
f̂ 2dQ̂ <∞

}
where Q̂ is a stationary distribution for X under this change of measure.

Assumption 5.1. The process X has a stationary distribution under the P̂r probability

measure.

There are many well known results for the existence of stationary distributions. See for

example Meyn and Tweedie (1993).

3In general this limit is computed as in Ito’s Lemma by using stopping times. When the associated local
martingale is in fact a square integrable martingale, stopping times can be dispensed with.
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Assumption 5.2. The only eigenfunctions associated with the generator Â defined on a

dense subset of L̂2 are the constant functions.4

As discussed in Hansen and Scheinkman (1995), under Assumption 5.2, the Markov process

X is ergodic.

To study limiting behavior we impose an even stronger restriction. Later we will comment

on its relaxation. Let

Ẑ
.
=

{
f̂ ∈ L̂2 :

∫
f̂dQ̂ = 0

}
Assumption 5.3. The semigroup of conditional expectation operators associated with X

under the change of measure implied by M̂ is a strong contraction semigroup.

As discussed by Rosenblatt (1971) and Hansen and Scheinkman (1995), Assumption 5.3 is

ρ-mixing with mixing coefficients that necessarily decay exponentially to zero.

Proposition 5.4. Suppose that γd · κ, γd and 1
e

are in L̂2. Then

lim
t→∞

ρt(x)→ −
∫
γd · κdQ̂.

Thus long-term risk prices are obtained by changing the state-dependent risk exposure

γd in the representation given by (5.4). As in local counterpart given in Proposition 4.2, we

think of γd as parameterizing the exposure to (growth-rate) risk, which we allow to be state

dependent. The vector (κ + γg) is the risk exposure of the martingale component of SG

and γg is the risk exposure of the multiplicative martingale growth functional. In effect, the

state dependent vector κ in conjunction with the probability distribution Q̂ determine the

long-term counterpart to the local risk price vector −γs given in Proposition 4.2.

Proof. Recall that if ê = 1
e

then,

ρt(x) =

1
t
Ê
(
ê(Xt)

[∫ t
0
γd(Xu) · κ(Xu)du+

∫ t
0
γd(Xu)dŴu

]
|X0 = x

)
Ê (ê(Xt)|X0 = x)

.

First notice that

1

t
Ê

([∫ t

0

γd(Xu) · κ(Xu)du+

∫ t

0

γd(Xu)dŴu

]
|X0 = x

)
=

1

t
Ê

(∫ t

0

γd(Xu) · κ(Xu)du|X0 = x

)
→
∫
γd · κdQ̂

(10)

4See Hansen and Scheinkman (1995) for a discussion of the L̂2 construction of the semigroup of conditional
expectation operators associated with the Markov process and the construction of its associated generator.
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given the ergodicity of X under the ·̂ probability measure.

It remains to show that

1
t
Ê
([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] [∫ t
0
γd(Xu) · κ(Xu)du+

∫ t
0
γd(Xu)dŴu

]
|X0 = x

)
Ê
(

1
e(Xt)
|X0 = x

) → 0.

We consider this in three parts.

i)

Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] [∫ t

0

γd(Xu) · κ(Xu)du

]
|X0 = x

)
= Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] ∫ t

0

[
γd(Xu) · κ(Xu)− Ê (γd(Xu) · κ(Xu))

]
du|X0 = x

)
Notice that

Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

]2
|X0 = x

)
≤ Ê

([
ê(Xt)− Ê (ê(Xt))

]2
|X0 = x

)
≤ c1(x)

<∞

when ê(Xt) has finite second moment under the ·̂ stationary distribution. The bound

c1(x) can be chosen to be independent of t. Moreover,

1

t
Ê

[(∫ t

0

[
γd(Xu) · κ(Xu)− Êγd(Xu) · κ(Xu)

])2

|X0 = x

]
< c2(x) <∞

for c2(x) independent of t. It follows from the conditional version of the Cauchy-Schwarz

Inequality that

1

t
Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] [∫ t

0

γd(Xu) · κ(Xu)du

]
|X0 = x

)
→ 0

for each x.
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ii) Consider next

1

t
Ê

([
ê(Xt)− Ê (ê(Xt)|X0 = x)

] [∫ t

0

γd(Xu)dŴu

]
|X0 = x

)
≤ 1√

t

√
Ê

([
ê(Xt)− Êê(Xt)

]2
|X0 = x

)

×

√(
Ê

[
1

t

∫ t

0

|γd(Xu)|2du|X0 = x

])
where the inequality is application of the Cauchy-Schwarz Inequality. Provided that

γd(Xu) has a finite second moment under the ·̂ distribution, the right-hand side converges

to zero for each x.

iii) Finally,

Ê [ê(Xt)|X0 = x]→
∫
êdQ̂

for each x.

Given these three intermediate results, the conclusion follows from (10).
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