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Abstract 
 

Our purpose was to separate bony structures such 

as ribs and clavicles from soft tissue in chest 

radiographs (CXRs). Although massive-training 

artificial neural networks (MTANNs) have been 

developed for suppression of ribs, they did not 

suppress rib edges, ribs close to the lung wall, and the 

clavicles well. To address this issue, we developed 

anatomically specific multiple MTANNs that are 

designed to suppress bones in different anatomic 

segments in the lungs. Each of 8 anatomically specific 

MTANNs was trained with the corresponding anatomic 

segment in the teaching bone images. The output 

segmental images from the 8 MTANNs were merged to 

produce a whole bone image. Total variation 

minimization smoothing was applied to the bone image 

for reduction of noise while edges were preserved;, 

then this bone image was subtracted from the original 

CXR to produce a soft-tissue image where bones are 

suppressed. We compared our new method with the 

conventional MTANNs by using a database of 110 

CXRs with pulmonary nodules. Our anatomically 

specific MTANNs suppressed rib edges, ribs close to 

the lung wall, and the clavicles in CXRs substantially 

better than did the conventional MTANNs. 

 

 

1. Introduction 
 

Although chest radiography (CXR) is widely used 

for the detection of pulmonary nodules, the false-

negative rate for nodules on CXRs is relatively high, 

and CXR is inferior to CT with respect to detectability 

of small nodules. Failure to detect nodules has been 

attributed to their size and density and to obscuring by 

structures such as ribs, clavicles, mediastinum, and 

pulmonary vessels. Studies have shown that up to 30% 

of nodules in CXRs could be missed by radiologists, 

and that 82%-95% of the missed nodules were partly 

obscured by overlying bones such as ribs and clavicles 

[1]. If such bony structures are suppressed in CXR, it 

would help radiologists improve their performance in 

lung nodule detection [2]. Suzuki et al. developed a 

supervised image-processing technique for suppressing 

ribs in CXRs by means of a multi-resolution MTANN 

[3-4]. Loog et al. proposed a supervised learning 

technique for suppression of ribs in CXRs [5]. The 

MTANN was able to suppress ribs in CXRs; however, 

rib edges, ribs close to the lung wall, and clavicles 

were not suppressed well. 

Our purpose in this study was substantially to 

suppress bony structures such as rib edges, ribs close to 

the lung wall, and clavicles in CXRs. To achieve this 

goal, we developed anatomically specific multiple 

MTANNs, each of which was designed to process the 

corresponding anatomic segment in the lung field. We 

evaluated our new MTANNs by applying them to a 

test database of 110 CXRs with pulmonary nodules. 

We compared our new MTANNs with conventional 

MTANNs.  

 

2. Method 
 

2.1. Anatomically specific multiple MTANNs 
 

An MTANN consists of a machine-learning 

regression model such as a linear-output artificial 

neural network (ANN) regression model that is capable 

of operating on pixel data directly [6]. The inputs to the 

MTANN are pixel values in a subregion, R, extracted 

from an input image. The output of the MTANN is a 

continuous scalar value, which is associated with the 

center pixel in the subregion, represented by 

O(x, y) =ML I(x ! i, y! j) | (i, j)" R{ } ,         (1) 

where ML(!) is the output of the machine-learning 

regression model, and I(x,y) is a pixel value of the 
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input image. For suppression of bones in CXRs, the 

MTANN is trained with input images and the 

corresponding “teaching” images. First, a CXR is 

divided pixel by pixel into a large number of 

overlapping subregions. Single pixels corresponding to 

the input subregions are extracted from the teaching 

images as teaching values. The error to be minimized 

by training of the MTANN is represented by 

E =
1

P
Tc (x, y)!Oc (x, y){ }

(x,y)"RT

#
2

c

# ,            (2) 

where c is the training case number, Oc is the output of 

the MTANN for the c
th

 case, Tc is the teaching value 

for the MTANN for the c
th

 case, and P is the number of 

total training pixels in the training region for the 

MTANN, RT. 
Although an MTANN was able to suppress ribs in 

CXRs[3-4], the single MTANN did not suppress rib 

edges, ribs close to the lung wall, and the clavicles well, 

because the orientation, width, contrast, and density of 

bones are different from location to location, and 

because the capability of a single MTANN is limited. 

To improve the suppression of bones at different 

locations, we extended the capability of a single 

MTANN and developed an anatomically specific 

multiple-MTANN scheme that consisted of 8 

MTANNs arranged in parallel, as shown in Fig. 1a. 

Each anatomically specific MTANN was trained 

independently by use of normal cases and of nodule 

cases in which the nodules were located in the 

corresponding anatomic segment. We divided the lung 

field into 8 anatomic segments: a left upper segment 

for suppression of left clavicles and ribs, a left hilar 

segment for suppression of bone in the hilar area, a left 

middle segment for suppression of ribs in the middle of 

the lung field, a left lower segment for suppression of 

ribs in the left lower lobe, a right upper segment, a 

right hilar segment, a right middle segment, and a right 

lower segment. For each anatomically specific 

MTANN, the training samples were extracted 

specifically from the corresponding anatomic segment 

mask (the training region in Eq. 2).  

After training, each of the segments in a non-

training CXR was inputted to the corresponding 

trained anatomically specific MTANN for processing 

of the special anatomic segment in the lung field, e.g., 

MTANN no. 1 is trained to process the left-upper 

segment in the lung field in which clavicle lies; 

MTANN no. 2 is trained to process the left hilar 

segment, and so on, as illustrated in Fig. 1b. Then, the 

8 segmental output subimages from the anatomically 

specific multiple MTANNs were composited to a 

whole bone image by use of the 8 anatomic segment 

masks which had been smoothed by a Gaussian filter 

to blend the subimages smoothly near their boundaries, 

represented by 

fb(x, y) = Oi (x, y)! fG M i (x, y)[ ]
i=1

8

" ,             (3) 

where fb(x,y) is the composite bone image, Oi is the i
th

 

trained MTANN, fG(.) is a Gaussian filtering operator, 

and Mi is the i
th

 anatomic segmentation mask. 

 

 
(a) Training phase 

 
(b) Execution phase 

Figure 1. Architecture and training of our new 

anatomically specific MTANNs. 
 

2.2. Training of anatomically specific MTANNs 
 

To train 8 anatomically specific MTANNs, we used 

one normal CXR and 8 CXRs with nodules, each of 

which was located in a specific anatomic segment.  

Namely, we trained each MTANN with the normal 

case and the corresponding nodule case. We trained 8 

MTANNs with input CXRs and the corresponding 

dual-energy bone images acquired with a dual-energy 

imaging system. For training of features in each 

anatomic segment in the lung field, 10,000 pairs of 

training samples were extracted randomly from the 

anatomic segment for each anatomically specific 

MTANN: 5,000 samples from the normal case, and 
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5,000 samples from the corresponding nodule case. We 

used a three-layered MTANN where the numbers of 

input, hidden, and output units were 81, 20, and 1, 

respectively. Once MTANNs were trained, the dual-

energy imaging system was not necessary any more. 

The trained MTANNs are applicable to standard CXRs 

for suppression of bones; thus the term “virtual dual-

energy” (VDE) technology. The advantages of this 

technology over real dual-energy imaging are that there 

is no need for special equipment to produce dual-

energy images and no additional radiation dose to 

patients. 

  

2.3. Automated anatomic segmentation 
 

To determine the 8 anatomic segments, we 

developed an automated anatomic segmentation 

method based on active shape models (ASMs) [7]. 

First, we segmented the lung fields automatically by 

using our multi-segment ASM (M-ASM) scheme [8] 

which can be adapted to each of the segments of the 

lung boundaries (which we call a multi-segment 

adaptation approach), as illustrated in Fig. 2. Because 

the nodes in the conventional ASM are equally spaced 

along the entire lung shape, they do not fit lung shape 

parts with high curvatures. In our method, the model 

was improved by fixating of selected nodes at specific 

structural boundaries which we call transitional 

landmarks. Transitional landmarks identified the 

change from one boundary type (e.g., a boundary 

between the lung field and the heart) to another (e.g., a 

boundary between the lung field and the diaphragm). 

This resulted in multiple segmented lung-field 

boundaries where each segment is correlated with a 

specific boundary type (heart, aorta, rib cage, 

diaphragm, etc.). The node-specific ASM was built by 

using a fixed set of equally spaced nodes for each 

boundary segment. After the lungs were segmented, 

they were automatically divided into 8 anatomic 

segments by using the boundary types and of the 

transitional landmarks. By using the landmark points, 

we obtained the upper region, lower region, and hilar 

region in each lung, as illustrated in Fig. 2. We merged 

the 8 output segmental images from the multiple 

MTANNs into a single VDE bone image. 

 

2.3 Creation of soft-tissue images  
 

To reduce noise while preserving edges of bony 

structures in VDE bone images, we employed a total 

variation-minimization smoothing method. To create a 

VDE soft-tissue image, we subtracted the VDE bone 

image fb(x,y) from the corresponding original CXR 

g(x,y) with a lung field mask image m(x,y) as follows: 

),(),(),(),( yxmyxfwyxgyxf bCS !!"=     (4) 

where wC is a weighting parameter for determining the 

contrast of ribs.  

 

 
Figure 2. Result of automated anatomic 

segmentation based on our M-ASM. 
 

3. Results 
 

3.1. Database 
 

The database used in our study consisted of 119 

posterior-anterior CXRs acquired with a computed 

radiography (CR) system with a dual-energy 

subtraction unit (FCR 9501 ES; Fujifilm Medical 

Systems, Stamford, CT) at the University of Chicago 

Medical Center. The CXRs included 118 abnormal 

cases with pulmonary nodules and a “normal” case (i.e., 

a nodule-free case). Among them, 8 nodule cases and 

the normal case were used as a training set, and the rest 

were used as a test set. The matrix size of the CXRs 

was 1,760 x 1,760 pixels (pixel size: 0.2 mm; gray 

scale; 10 bits). Most nodules overlapped with ribs 

and/or clavicles in CXRs. 

   

3.2 Evaluation 
 

We applied our anatomically specific multiple 

MTANNs to a validation test set that included 110 

nodule cases. Figure 3 illustrates the results of bone 

suppression. Compared to the old VDE soft-tissue 

images obtained by use of our conventional technique 

[4], rib edges, the clavicles, and ribs close to the lung 

wall are suppressed substantially, while the visibility of 

soft tissue such as lung nodules and vessels is 

maintained. The quality of the VDE soft-tissue images 

is comparable to that of the “gold-standard” dual-

energy soft-tissue images. We evaluated the bone 
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