
FPGA Prototyping of an AMBA-Based
 Windows-Compatible SoC

Kan Huang, Junlin Lu, Jiufeng Pang, Yansong Zheng, Hao Li, Dong Tong, Xu Cheng
Microprocessor Research and Development Center of Peking University

Beijing, China
 {huangkan, lujunlin, pangjiufeng, zhengyansong, lihao, tongdong, chengxu}

@mprc.pku.edu.cn

ABSTRACT
For the increasing market of smart phones, mobile internet
devices, and ultra-mobile PCs, mainstream vendors propose two
approaches: one is based on ARM SoC, and the other is based on
power-efficient x86 processor. However, either approach has its
own limitation. The ARM-based approach lacks application
software while the x86-based approach does not support flexible
SoC extension. To overcome the limitations, we propose the
PKUnity86 SoC architecture, which is based on AMBA bus
architecture to support fast IP integration. Furthermore, it contains
a reduced AMD Geode GX2 processor and several specific
designs to support Microsoft Windows and exploit the massive
PC software resources.

This paper presents two FPGA prototypes of PKUnity86: P86-
Core and P86-Min. For P86-Core, which is to verify the core of
PKUnity86, we change the RTL code of the reduced Geode GX2
to make it FPGA-synthesizable and implement it on a Xilinx
Virtex-4 LX200 FPGA device. We connect the FPGA board to a
Geode SP4GX22 motherboard so that we can do full-system
emulation. For P86-Min, which is to verify the minimum set of
PKUnity86, we implement the RTL code on two Xilinx Virtex-4
LX200 FPGA devices and emulate the full system on a single
FPGA board. In addition, we adopt a hardware-software co-
development methodology and employ various debug tools to
facilitate building P86-Min. Both prototypes reach its own
compatibility goal: P86-Core supports Windows XP and previous
versions and P86-Min supports Windows 98 and previous
versions. The evaluation results show that PKUnity86 achieves
Windows compatibility with small hardware overheads and no
performance loss.

Categories and Subject Descriptors
C.5.3 [Computer System Implementation]: Microcomputers –
Portable devices

General Terms
Design, Measurement, Verification

Keywords
x86, AMBA, Microsoft Windows, FPGA

1. INTRODUCTION
During the past few years, the market of smart phones, mobile
internet devices (MIDs), and ultra-mobile PCs (UMPCs) has
received much attention[1]. Users hope these products can
provide high performance, multiple functionalities, and low
power consumption. To meet this multi-objective requirement,
mainstream processor vendors propose two approaches[2] .

One approach is building the system based on an embedded
System-on-a-Chip (SoC), such as Nvidia Tegra, Freescale
i.MX515, and Qualcomm SnapDragon. These SoCs contain a
low-power ARM processor for basic tasks and attach some
dedicated circuitries for specific tasks, such as video decoding
and data encryption. Moreover, to reduce project time and cost,
these SoC designs are based on the Intellectual Property (IP)
reuse methodology[3]. These ARM-based SoCs have advantages
in terms of power, cost, and scalability, but they have less
software resources than personal computer (PC) systems. As
application complexity keeps increasing, this disadvantage will
become a serious limitation.

The other approach is building PC-like systems using a power-
efficient processor such as Intel Atom, VIA C7. The biggest
advantage of this approach is that it can provide PC-like user
experience and exploit the massive PC software resources.
However, PC processor vendors do not provide public on-chip
bus protocol and IP resources for SoC extension. The system can
be extended by adding on-board peripherals, but it will increase
cost and power consumption.

To combine the advantages of the two approaches, we propose the
PKUnity86 SoC architecture. PKUnity86 contains an x86-
compatible processor, AMD Geode GX2[4], and is built based on
the most popular on-chip bus architecture, AMBA[5]. The design
goal of PKUnity86 is twofold: in hardware aspect, PKUnity86
keeps the scalability of AMBA-based SoCs to support fast IP
integration and reuse the abundant IP resources[6]; in software
aspect, PKUnity86 is compatible with the most popular desktop
operating system (OS), Microsoft Windows, to exploit the
massive PC software resources. However, since many differences,
such as address space, resource allocation, and cache coherence
maintenance, exist between AMBA-based SoC and PC system,
we have to implement several specific designs in both hardware
and firmware to bridge this gap.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’10, Feb 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02…$10.00.

13

In this paper, we present two full-system FPGA prototypes of
PKUnity86 project: P86-Core and P86-Min. P86-Core is to verify
the modifications of the core, the reduced Geode GX2, from IC
style to FPGA style while P86-Min is to verify the minimum set
of PKUnity86, which supports legacy Windows such as Windows
3.1, Windows 95, and Windows 98. All modules in both
prototypes run at 33MHz except the DDR SDRAM controller,
which runs at 16.7MHz.

We make the following contributions in this paper:

First, we disclose the challenges for an AMBA-based SoC to
achieve Windows compatibility and propose the PKUnity86
architecture to meet the challenges.

Second, we demonstrate that PKUnity86 is compatible with
Windows by successfully running Windows on the P86-Min
prototype.

Third, we share our experience in building complex full-system
prototypes, including modifying RTL and BIOS, building low-
cost emulation platform, using the high-level co-development
methodology, and employing various debug tools.

Fourth, we show that PKUnity86 achieves Windows compatibility
with small hardware overheads and no performance loss.

The remainder of the paper is organized as follows. Section 2
introduces related work. Section 3 describes the challenges of
implementing a Windows-compatible SoC based on AMBA bus
architecture. Section 4 introduces the architecture of PKUnity86
SoC. Section 5 and Section 6 present the prototype work of P86-
Core and P86-Min, respectively. Section 7 shows the evaluation
results and Section 8 concludes.

2. RELATED WORK
Mainstream processor vendors have proposed several x86-based
SoCs such as AMD Geode SC1100[7] and Intel EP80579[8] in
recent years. They integrate processor, northbridge, and
southbridge into a single chip. Because these SoCs have the same
architecture as PC systems, they are compatible with Microsoft
Windows naturally. However, these SoC designs cannot directly
integrate IP modules in the market because they are not based on
popular on-chip bus protocol. In contrast, PKUnity86 is as
scalable as other ARM SoCs since it based on AMBA buses.

Since there are abundant IP products using AMBA interface,
several non-ARM processors support AMBA to enhance their
scalability. Leon3[9] and C68000[10] use AMBA bus interface
directly while Renesas’s SuperH RISC[11] and Tensilica’s
Diamond[12] can connect to AMBA bus through a bridge module.
All above are RISC processors and they have similar architecture
to ARM processor. In contrast, x86 is a legacy CISC ISA that
differs greatly from ARM ISA. To the best of our knowledge, our
work is the first to connect a CISC processor to AMBA
architecture.

Several research groups attempt to prototype commercial x86
processors on FPGA to meet the demand of performance
evaluation and fast design space exploration. Wunderlich and
Hoe[13] prototype Intel Itanium, Lu et al.[14] prototype Intel
Pentium, and Wang et al.[15] prototype Intel Atom. All of them
prototype the standalone processor, and they compose the full
system by plugging the FPGA device into the processor socket on

PC motherboard through a pin-adapter. Compared with their work,
we prototype a full SoC so that it can run Windows without
external chipsets. In addition, we not only implement a
commercial processor on FPGA, we also demonstrate the
feasibility of a brand-new architecture.

3. THE DESIGN CHALLENGES
AMBA bus architecture is designed for ARM-based SoC systems,
which differ greatly from x86-based PC systems. Thus, there are
several challenges in connecting an x86 CPU to AMBA bus
architecture to compose a Windows-compatible system. The
challenges involve six aspects:

Address space: The x86 architecture defines three address spaces:
memory address space, I/O address space and Model Specific
Register (MSR) address space[16], but AMBA is based on an
unified memory space. It is necessary to map the three address
spaces of x86 instructions to the unified address space of AMBA
bus.

Memory, I/O, and interrupt allocation: Unlike embedded
systems, PC systems conform to an unified resource allocation in
memory address space, I/O address space, and interrupt
number[17] to keep software compatibility. As a result,
PKUnity86 must also conform to the unified resource allocation
of PC systems to achieve software compatibility.

Special bus cycles: When certain instructions have been executed
or certain conditions have occurred internally, x86 processors
generate special bus cycles to inform the chipsets to take
corresponding actions[16]. Since PKUnity86 incorporate the
functionalities of chipsets, PKUnity86 must be able to respond to
special bus cycles properly.

External float point unit (FPU) exception: For x86 processors
before 80486, FPU is external to the CPU chip. Although 80486
and subsequent processors put FPU into the CPU chip, the
exception handling mechanism[18] of external FPU has been
inherited for software compatibility. PKUnity86 must support this
legacy mechanism to maintain software compatibility.

Cache coherence: Microsoft Windows leaves the cache
coherence management to hardware. Unfortunately, AMBA bus
does not support hardware management for cache coherence.
Thus, it is necessary add extra logic in PKUnity86 to manage
cache coherence by hardware.

Compatibility of OS-related modules: The design of the timer,
the real-time clock, and the interrupt controller are closely related
to OS kernel. Since Windows is unmodifiable, these modules in
PKUnity86 have to be compatible with Microsoft Windows.
Unfortunately, we cannot find any AMBA IP of these modules
that are compatible with Windows, so we have to design them for
PKUnity86.

Device drivers of non-legacy devices: In PC systems, peripheral
buses such as PCI and PCI-Express specify the way of device
enumeration, which has a close relationship with the device
drivers in Windows. Since AMBA bus does not specify any
mechanism for device enumeration, Windows cannot identify
AMBA device information and drive the devices by itself. We
have to develop special device drivers for AMBA devices. The
device driver issue only exists for non-legacy devices such as
USB controller and Ethernet controller. Since legacy devices such

14

as PS/2 and UART are controlled through the legacy I/O ports,
the drivers for these devices in Windows can work properly.

In current version of PKUnity86 SoC, we have implemented the
solutions to all these challenges except the device driver problem,
which will be solved in the future.

4. PKUnity86
Figure 1 shows the architecture of the prototyped PKUnity86 SoC,
which is the minimum required system to support Microsoft
Windows. P86-Core prototypes all the modules in gray and P86-
Min prototypes the whole SoC.

Figure 1: The block diagram of the prototyped PKUnity86

4.1 Architecture
The whole SoC is divided into two domains, the x86 domain and
the AMBA domain, connected through the x86-to-AMBA Bridge
(XAB) module. The x86 domain, which is the whole Geode GX2
excluding display-related modules, consists of the CPU, the DDR
SDRAM controller, the Host-to-PCI bridge, and their connection
module, GeodeLink Interface Unit (GLIU). The CPU is a low-
power design, whose primary features are shown Table 1. The
AMBA domain contains a typical AMBA bus architecture: a 32-
bit Advanced High-performance Bus (AHB) and a 32-bit
Advanced Peripheral Bus (APB), connected through the AHB-to-
APB bridge. The 32-bit AHB bus connects high-speed modules
while the 32-bit APB bus connects low-speed modules.
To compose a full system, PKUnity86 includes four subsystems.
The memory subsystem is to access different memory hierarchies;
the I/O subsystem is to support human-computer interaction; the
OS support subsystem is to provide essential functionalities to OS;
and the debug subsystem is to facilitate debugging. These
subsystems contain modules that belong to northbridge or
southbridge chipsets in PC systems. Because of the device driver
limitation, PKUnity86 only contains two types of devices. One
type is the legacy devices such as the programmable interval
timer (PIT), the programmable interrupt controller (PIC), the real-
time clock (RTC), the UART, and the PS/2 controller. The other
type is the devices that do not require device drivers in OS, such

as the DDR SDRAM controller, the Host-to-PCI bridge, the flash
controller, the Inter-Integrated Circuit (IIC) controller, the reset
controller, and the general-purpose I/O (GPIO). Non-legacy
devices requiring OS drivers can only be connected through the
on-board PCI bus now. The following subsections first describe
the XAB module, and then detail these subsystems.

Table 1: The primary features of the Geode CPU

Item Feature Description

ISA x86/x87 compatible

Integer pipeline Single issue, eight stages

FPU Support Intel MMX and AMD 3DNow!

I-cache 16KB, four-way set associative

D-cache 16KB, four-way set associative

L1 I-TLB Full-associate, eight-entry

L1 D-TLB Full-associate, eight-entry

Unified L2-TLB Two-way set associate, 64-entry

4.2 XAB
XAB is the connection module, translating transactions between
the x86 domain and the AMBA domain. In addition, it contains
logic for special bus cycles and FPU exception handling.

4.2.1 Transaction translation
The basic task of XAB is translating transaction, which involves
two aspects: bus protocol and address space. For bus protocol,
XAB translates GeodeLink[19] transactions to AHB transactions.
Although AHB transactions cannot cover all information in
GeodeLink transactions, all the critical information that ensures
system work properly is transferred. For address space, XAB
translates the three address spaces in the x86 domain to the
unified memory-mapped address space in the AMBA domain.
The details of translation are as below.

I/O
0000h

FFFFh

FFFF_FFFFh

0000_0000h

8000_0000h

System RAM

000A_0000h
 Interrupt vector table

VGA memory
System BIOS code

000E_0000h
0010_0000h

8000_0000h

0000_0000h

C000_0000h

PCI devices

C001_0000h

AMBA devices
(memory accesses)

FFFF_FFFFh

AMBA devices
(I/O accesses)

x86 address space AMBA address space

Mapped
memory

Unmapped
memory

Figure 2: The translations from the x86 address space to the
AMBA address space
First, the AMBA domain does not implement any MSRs for
simplicity since the MSR design of any x86 implementations can

15

be arbitrary. XAB ignores all MSR write transactions. When
receiving MSR read transactions, XAB returns a safe value to
avoid system crash. Second, as shown in Figure 2, the I/O address
space and the memory address space in x86 ISA are mapped to
the unified memory-mapped address space of AMBA bus.
Interrupt vector table, BIOS code, legacy VGA memory, and
system RAM are in the lowest 2GB space to be compatible with
PC. The upper 1GB space is allocated to PCI devices. AMBA
devices occupy the highest 1GB space. The 64KB I/O address
space in x86 ISA is directly mapped to the memory region
C000_0000h – C000_FFFFh. PKUnity86 only maps the lowest
2GB memory because 2GB memory is big enough for mobile
applications.

4.2.2 Special bus cycles handling
When CPU generates special bus cycles, GLIU will forward
corresponding messages to XAB. XAB must take corresponding
actions according to the messages. The ways how XAB handles
different types of special bus cycles are listed as below:

SHUTDOWN: X86 processors generate a SHUTDOWN cycle
when it experiences a triple fault condition or internal processor
errors. XAB informs the power manager to reset the entire system
when receiving a SHUTDOWN cycle.

HALT: X86 processors generate a HALT cycle when a HLT
instruction is executed. XAB ignores it directly because no
modules in PKUnity86 need to know this message.

WBINVD: X86 processors generate a WBINVD cycle to indicate
that the modified lines in L1 data cache have already been written
back and the modified lines in external caches should be written
back. Since PKUnity86 does not contain external cache, XAB
ignores the WBINVD cycle directly.

INTA: X86 processors generate an INTA special cycle to read
the interrupt vector number when receiving an interrupt request
from the interrupt controller. To be compatible with this interrupt
handling mechanism, XAB has a direct connection to the interrupt
controller to get the interrupt vector number. When receiving a
INTA cycle, XAB pass the interrupt vector number to the CPU.
Then, the CPU jumps to the corresponding interrupt service entry.

4.2.3 External FPU exceptions support
When a FPU exception occurs, Windows requires a series of
interactions between CPU and interrupt controller to handle the
exception properly. In PKUnity86, XAB provide supports for
these interactions as below: First, when a FPU exception occurs,
CPU outputs the active FERR# signal XAB. Next, XAB generates
an interrupt request to the interrupt controller. After CPU
completes handling the exception, XAB receives an I/O write
with the port F0h. Then, XAB deasserts the IGNNE# input signal
of CPU to let CPU continue executing from the exception point.

4.3 Memory subsystem
The memory subsystem should provide interfaces to access main
memory, BIOS flash, and hard disks. To access the main memory,
PKUnity86 reuses the DDR SDRAM controller from Geode GX2.
An IIC controller is integrated to read the Serial Presence Detect
(SPD) information of DDR Dual Inline Memory Module (DIMM).
To access the BIOS flash, a flash controller is connected to the
AHB bus. Because the prototyped PKUnity86 does not provide
direct interfaces to hard disks, the prototype system requires an

off-chip hard disk controller. Furthermore, there are several
important design considerations for the memory subsystem.
First, as mentioned in Section 3, the memory subsystem must
maintain cache coherence by hardware. When DMA transactions
access the main memory, the data in the cache might be
inconsistent with the data in the main memory. PKUnity86 reuses
the GLIU module in Geode GX2 to maintain cache coherence.
When the memory accesses from devices go through GLIU,
GLIU decides whether to issue a snoop request to the processor
cache. If no coherence issue occurs, GLIU route the transactions
to the memory controller. Otherwise, GLIU store these
transactions temporarily until all coherence issues are solved.
Second, the bus protocol between the memory controller and the
CPU should support two features to attain high performance. One
feature is supporting multiple outstanding transfers, which
protects the memory-level parallelism[20] of processor. The other
feature is supporting unaligned accesses. Because x86 is a CISC
ISA, whose instruction length is variant, many instruction fetches
are unaligned. If the bus does not support unaligned accesses,
every unaligned access must be split into multiple aligned
accesses and hence the performance degrades significantly. Thus,
because GeodeLink supports the two features above but AHB
does not, we choose the memory controller with the GeodeLink
interface. In the future, we will consider updating memory
controller IPs with Advanced eXtensible Interface (AXI), which
is the only bus protocol in AMBA family that supports the two
features above.
Third, the memory subsystem should support BIOS shadowing,
which is a common technique to speed up BIOS execution. To
support BIOS shadowing, PKUnity86 has two memory accessing
modes, the normal mode and the shadowing mode. In the normal
mode, all read requests to the shadowing memory region are
routed to the flash controller while all write requests to this region
are routed to the DDR SDRAM controller. Thus, the processor
can copy the instructions and the data in BIOS to the DDR
SDRAM. In the shadowing mode, both read and write requests to
the shadowing memory region are routed to the DDR SDRAM
controller so that shadowed BIOS program can execute in the
DDR SDRAM.

4.4 I/O subsystem
The I/O subsystem contains a PS/2 controller and a Host-to-PCI
bridge. The PS/2 controller is connected on the 32-bit APB bus to
support keyboard and mouse inputs. The Host-to-PCI bridge is
reused from Geode GX2 for on-board functional extension.
For the Host-to-PCI bridge, we choose the GeodeLink interface
rather than the AHB interface because the GeodeLink can avoid
unnecessary address translation. Because AMBA architecture
does not provide I/O address space, XAB must translate the I/O
address to AMBA memory address, and then Host-to-PCI bridge
translates AMBA memory address to PCI I/O address when CPU
issues I/O transactions to PCI devices. Since GeodeLink
connection can transfer the I/O address directly, using a
GeodeLink connection can avoid translating address twice.

4.5 OS support subsystem
As mentioned in Section 3, PKUnity86 must make the software
interface of timer, interrupt controller and real-time clock
compatible with Microsoft Windows. Table 2 lists the reference

16

designs of these OS-related modules. In PKUnity86, all these
modules use the APB bus interface so that they can be reused in
other AMBA-based SoCs. Since Windows accesses these
modules through I/O transactions, XAB translates these I/O
transactions to the corresponding AMBA transactions, and then
the APB bus route the bus transactions to the corresponding
modules.

Table 2: Reference design of OS support modules

Module name Reference design

Programmable Interval Timer Intel 82C54[21]

Programmable Interrupt Controller Intel 8259A[22]

Real-time Clock (RTC) Motorola MC146818A[23]

4.6 Debug subsystem
To support both local debug and remote debug, the debug
subsystem consists of the GPIO module and the UART module.
The outputs of GPIO are connected to Light Emitting Diodes
(LEDs) on the PCB board to indicate the current running status.
The UART module is for the remote debug feature in GDB and
WinDBG tools. We choose an UART IP that has a compatible
program interface with Intel 8251[24] to reuse the standard device
driver. Besides the above two debug facilities, the CPU has an
EJTAG interface to support advanced debugging.

5. P86-Core
P86-Core prototypes the x86 domain, which is the whole Geode
GX2 excluding display-related modules. Similar to other x86
processors[15], the original RTL design of Geode GX2 contains
circuitries that are not suitable for FPGA implementation, such as
gated clocks, custom RAMs, and custom ROMs. We modify the
RTL code to make it FPGA-synthesizable. Verifying the RTL
modification for FPGA implementation is the main purpose of
P86-Core. Since P86-Core has similar architecture and BIOS
program to Geode GX2, it has the same OS compatibility,
supporting Windows XP and previous versions. In this section, we
will first describe the emulation platform and the workflow of
building P86-Core, and then detail the modifications of the RTL
design and the BIOS program.

5.1 Emulation Platform
As shown in Figure 3, the P86-Core emulation platform consists
of two boards, a Geode SP4GX22 motherboard and a FPGA
board. The Geode SP4GX22 motherboard provides the
southbridge chipset CS5535[25] and other peripheral interfaces
such as IDE socket and USB connector to compose a full
computer system. The FPGA board contains a DDR socket, four
PCI slots, and two Xilinx Virtex-4 LX200 FPGA device to
emulate the x86 domain of PKUnity86. Since both DDR and PCI
are industrial standard interfaces that many FPGA boards have,
we reuse an existed FPGA board to save the project cost. In
addition, a low pin count (LPC) card is plugged on the
motherboard to connect the PS/2 keyboard and mouse.

In previous work[14, 15], it is challenging to replace the processor
with the FPGA device because the processor communicates with
the chipset via the front side bus (FSB). Since FPGA devices and
the processor are not pin-compatible, they design a special pin-
adapter. For P86-Core, since the connection between the

processor and the chipset is the standard PCI bus, the replacement
is simple. We plug out the Geode GX2 chip from the motherboard
and use a PCI-to-PCI connector to connect the emulation FPGA
device to the southbridge chipset. Besides the PCI connection,
several sideband signals such as clock and reset are wired directly
between the two boards.

In addition, since the DDR DIMM is moved to the FPGA board,
the BIOS program cannot get the DIMM’s SPD information,
which is essential to set the DDR SDRAM controller properly. To
solve this problem, we choose a DDR DIMM that is the same as
the one on the FPGA board and plugged it into the DIMM socket
on the motherboard to provide the SPD information. This method
avoids modifications of the board and the BIOS program.

Figure 3: The emulation platform of P86-Core

5.2 Workflow

Modifications
for FPGA

Original
RTL

FPGA
implementation

Full system emulation

Geode
BIOS

Modifications
for FPGARTL simulation

P86-Core
BIOS

FPGA-synthesizable
RTL

Bitstream

Figure 4: The workflow of building P86-Core

17

Figure 4 shows the overall workflow of building the P86-Core
prototype. First, we modify the RTL code to make the design
FPGA-synthesizable, and then we verify the modifications. Since
the modifications are small, we only do module-level equivalence
check and system-level connectivity test in RTL simulation using
Synopsys VCS 2006.06 simulator. For module-level equivalence
check, we traverse all the possible input sequences for each
modified module to make sure that the modified modules have
equal behavior as the original designs. For system-level
connectivity test, we write some assembly programs to test
whether the basic interactions between modules are correct. After
the RTL code become FPGA-synthesizable and verified, we use
Xilinx ISE Design Suite 10.1 to synthesis, place, and route the
design and generate the final bitstream file. Meanwhile, we
modify the Geode GX2 BIOS to match with the design changes
for FPGA. After both the bitstream file and the BIOS are ready,
we could run Windows on the emulation platform.

5.3 RTL Modification
To make the design FPGA-synthesizable, first, we replace the
custom circuits such as RAMs, ROMs, and Phase-Locked Loops
(PLLs) with corresponding FPGA primitives. Next, we convert
the clock-gating logic to clock-enabling counterparts, because the
clock-gating logic will cause failure in timing convergence for
FPGA implementations. The details of these two jobs can refer to
Wang et al.’s work[15]. Last, because we find that the design
requires more resources than a Xilinx Virtex-4 LX200 device can
provide, we remove several unused modules such as Built-in Self
Test (BIST) circuits to make the whole design fit in a FPGA
device.
Moreover, the DDR SDRAM controller has to be modified to
meet the requirement of FPGA synthesis because the interface
logics of DDR SDRAM controller are special. According to the
JEDEC DDR specification[26], there are four key requirements
about the I/O logic. First, the working clocks of DDR SDRAM
devices are three pairs of differential clocks (CLK and CLK_N).
Second, the data signals (DQ) and the data mask signals (DM) are
transferred at double data rate. Third, DDR SDRAM devices
capture the write data using the data strobe signals (DQS), which
have a 90-degree phase shift relative to the data signals. Fourth,
the data and the data strobe signals returned from DDR SDRAM
devices are phase-aligned, so controller should delay the data
strobe signals by one-quarter clock cycle to capture the data
properly. These four requirements complicate the clock structure
of the original DDR SDRAM controller. Since FPGA device does
not support complex clock logic, the original DDR SDRAM
controller must be modified for FPGA.
As shown in Figure 5, we modify I/O logic of DDR SDRAM
controller using FPGA primitives. All clocks are derived from the
Digital Clock Manager (DCM) [27] module in place of the
original clock tree so that the clock delays to all flip-flops are as
close as possible. To generate high-quality differential clocks, we
replace the non-synthesizable differential pads with the FPGA
primitives OBUFDS[27]. For write data output logic, we output
the working clock as the DQS signals and generate the write data
(FF_W) with an inverted double-frequency clock (CLK_W).
Therefore, the data (DQ) and the data mask (DM) are at double
data rate and have a 90-degree phase shift relative to the DQS
signals. For read data capture logic, since the frequency of the
working clock on FPGA, 16.7MHz, is much lower than the

normal frequency, the valid data window is large enough to
tolerate on-board skews. Thus, we use a pair of phase-delayed
differential clocks, CLK_RP and CLK_RN, to capture the
returned data instead of using the DQS signals. The write and
read timings of the modified logic are shown in Figure 6.

DCM

CLK90

CLK2X_180

CLK270

CLK

DQS

FF_W
D Q

FF_RN
Q D

FF_RP
Q D

OBUFDS
CLK_N

DQ/DM

CLK_RP

CLK_RN

CLK_W

CLK0

Figure 5: The interface logic of the modified DDR SDRAM
controller

Figure 6: The write and read timing of the modified DDR
SDRAM controller

5.4 BIOS Modification
The BIOS program should also be modified to match with the
RTL changes. The BIOS modifications are twofold. First, since
the frequency of the DDR SDRAM controller, 16.7MHz, is out of
the working frequency range of the Delay-Locked Loop (DLL)
module on DIMMs, the DLL module cannot work correctly. Thus,
we disable the DLL module on DIMMs by setting the related
functional register of the DDR SDRAM controller. Second, since
P86-Core is only part of Geode GX2, the configuration of the
unimplemented modules such as the display controller, the clock
manager, and the BIST module, may lead to uncertain results.
Thus, we remove or disable these configurations in the BIOS
program.

6. P86-Min
After P86-Core, we build P86-Min to prototype both the
minimum set of PKUnity86 and the PKUnity86 BIOS on a single-
board emulation platform. We design the PKUnity86 BIOS
because our final products cannot use the Geode BIOS for
business reasons. Since both the RTL and the BIOS are new
designs, it is challenging to build P86-Min. Therefore, we add a

18

hardware-software co-development stage in our workflow and
employ various debug tools at different development stages to
facilitate building P86-Min. The goal of P86-Min is to support
legacy Windows such as Windows 3.1, Windows 95 and
Windows 98. Recent Windows that have higher hardware
requirements such as Windows 2000 and Windows XP, will be
supported in the future.

6.1 Emulation Platform
Since PKUnity86 includes the functionalities of CPU, northbridge,
and southbridge, we can prototype it on an single FPGA board
without PC motherboard. As shown in Figure 7, P86-Min uses the
same type of the FPGA board as P86-Core. The FPGA board
contains all the standard I/O interfaces required in PKUnity86
such as DDR slots, PCI slots, BIOS flash, PS/2, and UART. In
addition, a IDE card and a video card are plugged in the PCI slots.

Figure 7: The emulation platform of P86-Min

6.2 Workflow
Figure 8 shows the overall workflow of building the P86-Min
prototype, which consist of three stages: the high-level hardware-
software co-development stage, the RTL development stage, and
the FPGA implementation stage. At the high-level hardware-
software co-development stage, we first develop the draft C++
models of PKUnity86 and the draft PKUnity86 BIOS. Then, we
merge both the C++ models and the BIOS program into a x86-
based full-system simulator, and test whether Windows could run
correctly based on them. We keep revising the models and the
BIOS program until we successfully run Windows in the Bochs
simulator. After that, the BIOS program implements all the core
functionalities for Windows compatibility and our BIOS
designers can add extra functionalities based on the core BIOS. At
the RTL development stage, we develop the RTL code by
referring to the final C++ models and merge the x86 domain RTL,
which has been verified in P86-Core. At the FPGA
implementation stage, we implement the RTL design on the
FPGA devices. Owing to the limitation of FPGA resources, we
have to implement the whole design into two separate FPGA
devices. One device only implements the processor while the
other device implements the rest parts. Finally, we could run

Windows using the bitstream files and the BIOS code on the
emulation platform.

FPGA implementation

High-level HW/SW co-development

RTL development

Bitstream

Core
PKUnity86 BIOS

Draft
PKUnity86 BIOS

Draft PKUnity86
C++ models

Final PKUnity86
C++ models

PKUnity86 RTL

x86 domain
RTL

Full system emulation

Final
PKUnity86 BIOS

BIOS
improvement

Figure 8: The workflow of building P86-Min

6.3 High-level Co-development
We build the high-level hardware-software co-development
platform using Bochs simulator[28]. Bochs is an x86 full-system
simulator that is capable of running off-the-shelf Microsoft
Windows and many desktop applications. To build the high-level
model of PKUnity86, we reuse the x86 processor model and the
memory model in Bochs, create the high-level model of XAB and
modify several device models in Bochs such as the keyboard, the
mouse, the timer, the interrupt controller, the real-time clock. All
these models are written in C++. Since each model only
implements the software interface and the basic behaviors, it takes
less time than the RTL design. After the high-level models are
ready, we can develop the PKUnity86 BIOS in the simulator.
We gain the several benefits from the high-level co-development
platform. First, the co-development platform allows quick design
modifications to reduce iteration cycle length. Because the public
documents of Windows do not cover all detailed requirements
about hardware and BIOS, we have to repeatedly test and modify
our designs to get the final design. High-level models in the
simulator are easier to debug than RTL design on FPGA. Second,
since Bochs is an open-source simulator, both the device model
and the BIOS in Bochs are good reference designs, which provide
much concrete information for PKUnity86. Third, the co-
development platform allows the BIOS development to be parallel
with the RTL development. In traditional flow, most BIOS
developing jobs cannot start until hardware design is ready. Since
the behavioral model has the same software interface as the final
design, BIOS developers can test the BIOS program in the full-
system simulator before the detailed hardware design is ready.

6.4 Debug Support
Compared with P86-Core, P86-Min involves massive debug tasks
because of the significant architecture changes. As shown in

19

Table 3, we employ various debug tools at different stages to
improve debug efficiency. At the co-development stage, GDB and
the internal debugger of Bochs simulator is enough because all
the code is written in C++. At the RTL development stage, the
RTL design is simulated in Synopsys VCS and debugged in
Springsoft Verdi. Debugging at the FPGA implementation stage
is challenging, because the error messages generated by Windows
are too imprecise to locate the bugs. Therefore, we employ
multiple tools for both hardware and software debug at this stage.
For hardware debug, we monitor the internal signals using Xilinx
ChipScope Pro and change the list of monitored signals using
Xilinx FPGA Editor. For simple software debug, we insert
instructions that set the GPIO LEDs to indicate current running
states. For complex software debug, we exploit the advanced
features of First Silicon Solutions for Geode[29], such as stepping
program execution, setting program breakpoints, reporting
register values, and watching specific instructions. In addition, we
use Microsoft WinDBG to trace the execution path, which is
helpful to figure out the causes of faults. Since the debug jobs
takes the most time of our project, it is crucial to use these debug
tools efficiently.

Table 3: Debug tools on different development stages

Stage Debug Tools

High-level HW/SW
co-development

Bochs internal debugger 2.3.7
GNU GDB 6.8

RTL development
Synopsys VCS Y-2006-06-SP2
Springsoft Verdi 2008.04

FPGA
implementation

Xilinx ChipScope Pro 10.1
Xilinx FPGA Editor 10.1
GPIO LEDs
First Silicon Solutions for Geode
Microsoft WinDBG 6.11

7. EVALUATION
The evaluation of P86-Core and P86-Min covers three aspects:
the OS compatibility, the resource utilization, and the
performance.

7.1 OS Compatibility
Windows compatibility is the biggest concern for the two
prototypes. The OS compatibility test shows that both prototypes
reach its own goal: P86-Core supports Windows XP and previous
versions while P86-Min supports Windows 98 and previous
versions. Figure 9 and Figure 10 show the real scene that we
succeeded in booting up Windows XP on P86-Core and Windows
98 on P86-Min, respectively.

7.2 Resource Utilization
Table 4 shows the FPGA resource utilization of P86-Core, P86-
Min and the single XAB module. The FPGA resources occupied
by XAB are negligible relative the whole SoC. This result shows
that the hardware overheads for Windows compatibility are small.
In addition, since the non-CPU device of P86-Min only occupies
34% of LUTs, there are rich resources to support SoC extension
in the future.

Figure 9: Image of running Solitaire and Windows Media
Player under Windows XP on P86-Core

Figure 10: Image of running Solitaire and WordPad under
Windows 98 on P86-Min
Table 4 The FPGA resource utilization of P86-Core, P86-Min
and the XAB module.

P86-Min
Resource P86-

Core CPU Non-CPU
XAB

Slice 98% 84% 47% 3%

LUT 93% 72% 34% 3%

Slice Register 32% 19% 19% 1%

Block RAM 22% 22% 11% 0%

DSP48 8% 0 8% 0%

7.3 Performance
We compare the performance of P86-Core and P86-Min with a
Geode GX2 on a Geode SP4GX22 motherboard to see the

20

performance impacts of the architectural changes. All the three
platforms run at 33MHz. We run three benchmarks, Dhrystone
2.1, STREAM 5.8[30], and HDBench 1.1[31], under Windows 98
to evaluate the performance of CPU, memory, and disk,
respectively. In addition, we compare the booting up time of
Windows 98 for overall performance. To eliminate the non-
deterministic of the real system, we run each benchmark for 5
times and take the average.
As shown in Figure 11, three platforms have similar CPU
performance and memory performance, and P86-Min has better
disk performance and booting up speed than Geode GX2 and P86-
Core. This result is as expected because the most performance-
related part of PKUnity86 is the x86 domain, which have no
architectural changes. The different hard disk controller results in
the performance enhancement of P86-Min. The hard disk
controller on P86-Min has a larger data buffer than the one
integrated in CS5535. The results show that the architectural
changes do not degrade the system performance.

0

0.2

0.4

0.6

0.8

1

1.2

Dhrystone STREAM HDBench Win98

Geode GX2 P86-Core P86-Min

Figure 11 The normalized benchmark grades and OS booting
up time of Geode GX2, P86-Core, and P86-Min

8. CONCLUSIONS AND FUTURE WORK
PKUnity86 is the first AMBA-based and Windows-compatible
SoC. It can both support flexible SoC extension by reusing the
abundant AMBA IP resources and exploit the massive PC
software resources. This paper presents two FPGA prototypes of
PKUnity86: P86-Core and P86-Min. P86-Core prototypes the
core of PKUnity86 while P86-Min prototypes the minimum set of
PKUnity86. By successfully running Windows on them, we
demonstrate that the gap between ARM-based SoC and PC
system can be resolved by specific hardware and software designs.
Furthermore, the evaluation results show that PKUnity86 achieves
Windows compatibility with small hardware overheads and no
performance loss. In the future, we will improve PKUnity86 to
support recent Windows such as Windows XP, Windows Vista,
and Windows 7.

9. ACKNOWLEDGMENTS
We wish to thank AMD for transferring the x86 processor
technique. Special thanks go to former AMD CEO Hector Ruiz
and AMD senior vice president Karen Guo for their concerns and
supports for this research. We also appreciate the help of AMD
colleagues Rich McCloskey, Don Zhao, Thomas Lukas, and
Jennifer Yuan. In addition, we thank all the teachers and students
in Microprocessor Research and Development Center of Peking
University who have helped this research.

REFERENCES
[1] Aaron Weiss, “Ultra-mobile PCs: slow but small and

specialized computers are a surprise hit for the industry,”
netWorker, 12(2), p. 22-30, 2008.

[2] Brad Smith, “ARM and Intel Battle over the Mobile Chip's
Future,” Computer, 41(5), p. 15-18, 2008.

[3] Michael Keating and Pierre Bricaud, “Reuse methodology
manual: for system-on-a-chip designs (3rd Edition)”:
Springer Publishing Company, Incorporated, 2007.

[4] AMD Inc., “AMD Geode™ GX Processors Data Book,” 2005.
[5] “AMBA overview”. http://www.arm.com/products/solutions/

AMBAHomePage.html
[6] Power.org, Embedded Bus Architecture Report

http://www.power.org/resources/downloads/
Embedded_Bus_Arch_Report_1.0.pdf, 2008.

[7] AMD Inc., “AMD Geode™ SC1100 Processor Data Book,”
2004.

[8] Intel Corp., The embedded processor for an embedded world,
2008.

[9] Aeroflex Gaisler AB., “LEON3 multiprocessing CPU core,”
2008.

[10] CAST Inc., “CAST C68000-AHB 32-bit Microprocessor
Core”.

[11] “SuperH RISC engine Family”. http://www.renesas.com/
[12] “Easy Integration with Standard System Interfaces”.

http://www.tensilica.com/products/diamond-
controllers/amba-bridges.htm

[13] Roland E. Wunderlich and James C. Hoe. “In-system FPGA
prototyping of an Itanium microarchitecture,” In ICCD '04:
Proceedings of IEEE International Conference on Computer
Design. San Jose, CA, United states, 2004.

[14] Shih, Peter Yiannacouras, Rolf Kassa, et al. “An FPGA-
based Pentium in a complete desktop system,” In FPGA '07:
Proceedings of the 2007 ACM/SIGDA 15th international
symposium on Field programmable gate arrays. Monterey,
California, USA, 2007.

[15] Perry Wang, Jamison Collins, Christopher Weaver, et al.
“Intel Atom processor core made FPGA-synthesizable,” In
FPGA '09: Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays. Monterey,
California, USA, 2009.

[16] Intel Corp., “Pentium® Processor Family Developer’s
Manual,” p. 6-32, 1997.

[17] Intel Corp. and Microsoft Corp., “PC 2001 System Design
Guide,” 2000.

[18] Intel Corp., “Software and Hardware Considerations for FPU
Exception Handlers for Intel Architecture Processors,” 1997.

[19] AMD Inc., “AMD GeodeLink™ Architecture - Processor
Architecture Facilitates Integration, Efficiency,
Performance,” Editor. Vol., 2003.

[20] Yuan Chou, Brian Fahs, and Santosh Abraham.
“Microarchitecture optimizations for exploiting memory-
level parallelism,” In ISCA '04: Proceedings of 31st Annual

21

International Symposium on Computer Architecture. Munich,
Germany, 2004.

[21] Intel Corp., 82C54 CHMOS Programmable Interval Timer,
1994.

[22] Intel Corp., 8259A Programmable Interrupt Controller, 1988.
[23] Motorola Inc., “Real-time Clock Plus RAM,” 1984.
[24] Intel Corp., “8251A Programmable Communication

Interface,” 1986.
[25] AMD Inc., AMD Geode™ CS5535 Companion Device Data

Book, 2005.
[26] JEDEC Solid State Technology Association, JEDEC

Standard - Double Data Rate (DDR) SDRAM Specification,
2003.

[27] Xilinx Inc., Virtex-4 FPGA User Guide, 2008.
[28] “Bochs IA-32 Emulator Project”.

http://bochs.sourceforge.net/
[29] First Silicon Solutions, Technical Data for System Navigator

OE for AMD Geode GX2 Processors
[30] J. D. McCalpin., “Memory bandwidth and machine balance

in high performance computers,” IEEE Computer Society
Technical Committee on Computer Architecture (TCCA)
Newsletter, 1995.

[31] “HDBench”. http://www.hdbench.net/

22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

