
FPGA Prototyping of an AMBA-Based 
 Windows-Compatible SoC 

Kan Huang, Junlin Lu, Jiufeng Pang, Yansong Zheng, Hao Li, Dong Tong, Xu Cheng 
Microprocessor Research and Development Center of Peking University 

Beijing, China 
 {huangkan, lujunlin, pangjiufeng, zhengyansong, lihao, tongdong, chengxu} 

@mprc.pku.edu.cn 
 

ABSTRACT 
For the increasing market of smart phones, mobile internet 
devices, and ultra-mobile PCs, mainstream vendors propose two 
approaches: one is based on ARM SoC, and the other is based on 
power-efficient x86 processor. However, either approach has its 
own limitation. The ARM-based approach lacks application 
software while the x86-based approach does not support flexible 
SoC extension. To overcome the limitations, we propose the 
PKUnity86 SoC architecture, which is based on AMBA bus 
architecture to support fast IP integration. Furthermore, it contains 
a reduced AMD Geode GX2 processor and several specific 
designs to support Microsoft Windows and exploit the massive 
PC software resources.  

This paper presents two FPGA prototypes of PKUnity86: P86-
Core and P86-Min. For P86-Core, which is to verify the core of 
PKUnity86, we change the RTL code of the reduced Geode GX2 
to make it FPGA-synthesizable and implement it on a Xilinx 
Virtex-4 LX200 FPGA device. We connect the FPGA board to a 
Geode SP4GX22 motherboard so that we can do full-system 
emulation. For P86-Min, which is to verify the minimum set of 
PKUnity86, we implement the RTL code on two Xilinx Virtex-4 
LX200 FPGA devices and emulate the full system on a single 
FPGA board. In addition, we adopt a hardware-software co-
development methodology and employ various debug tools to 
facilitate building P86-Min. Both prototypes reach its own 
compatibility goal: P86-Core supports Windows XP and previous 
versions and P86-Min supports Windows 98 and previous 
versions. The evaluation results show that PKUnity86 achieves 
Windows compatibility with small hardware overheads and no 
performance loss. 

Categories and Subject Descriptors 
C.5.3 [Computer System Implementation]: Microcomputers – 
Portable devices 

General Terms 
Design, Measurement, Verification 

Keywords 
x86, AMBA, Microsoft Windows, FPGA 

1. INTRODUCTION 
During the past few years, the market of smart phones, mobile 
internet devices (MIDs), and ultra-mobile PCs (UMPCs) has 
received much attention[1]. Users hope these products can 
provide high performance, multiple functionalities, and low 
power consumption. To meet this multi-objective requirement, 
mainstream processor vendors propose two approaches[2] .  

One approach is building the system based on an embedded 
System-on-a-Chip (SoC), such as Nvidia Tegra, Freescale 
i.MX515, and Qualcomm SnapDragon. These SoCs contain a 
low-power ARM processor for basic tasks and attach some 
dedicated circuitries for specific tasks, such as video decoding 
and data encryption. Moreover, to reduce project time and cost, 
these SoC designs are based on the Intellectual Property (IP) 
reuse methodology[3]. These ARM-based SoCs have advantages 
in terms of power, cost, and scalability, but they have less 
software resources than personal computer (PC) systems. As 
application complexity keeps increasing, this disadvantage will 
become a serious limitation.  

The other approach is building PC-like systems using a power-
efficient processor such as Intel Atom, VIA C7. The biggest 
advantage of this approach is that it can provide PC-like user 
experience and exploit the massive PC software resources. 
However, PC processor vendors do not provide public on-chip 
bus protocol and IP resources for SoC extension. The system can 
be extended by adding on-board peripherals, but it will increase 
cost and power consumption.  

To combine the advantages of the two approaches, we propose the 
PKUnity86 SoC architecture. PKUnity86 contains an x86-
compatible processor, AMD Geode GX2[4], and is built based on 
the most popular on-chip bus architecture, AMBA[5]. The design 
goal of PKUnity86 is twofold: in hardware aspect, PKUnity86 
keeps the scalability of AMBA-based SoCs to support fast IP 
integration and reuse the abundant IP resources[6]; in software 
aspect, PKUnity86 is compatible with the most popular desktop 
operating system (OS), Microsoft Windows, to exploit the 
massive PC software resources. However, since many differences, 
such as address space, resource allocation, and cache coherence 
maintenance, exist between AMBA-based SoC and PC system, 
we have to implement several specific designs in both hardware 
and firmware to bridge this gap.  
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In this paper, we present two full-system FPGA prototypes of 
PKUnity86 project: P86-Core and P86-Min. P86-Core is to verify 
the modifications of the core, the reduced Geode GX2, from IC 
style to FPGA style while P86-Min is to verify the minimum set 
of PKUnity86, which supports legacy Windows such as Windows 
3.1, Windows 95, and Windows 98. All modules in both 
prototypes run at 33MHz except the DDR SDRAM controller, 
which runs at 16.7MHz. 

We make the following contributions in this paper: 

First, we disclose the challenges for an AMBA-based SoC to 
achieve Windows compatibility and propose the PKUnity86 
architecture to meet the challenges. 

Second, we demonstrate that PKUnity86 is compatible with 
Windows by successfully running Windows on the P86-Min 
prototype. 

Third, we share our experience in building complex full-system 
prototypes, including modifying RTL and BIOS, building low-
cost emulation platform, using the high-level co-development 
methodology, and employing various debug tools. 

Fourth, we show that PKUnity86 achieves Windows compatibility 
with small hardware overheads and no performance loss. 

The remainder of the paper is organized as follows. Section 2 
introduces related work. Section 3 describes the challenges of 
implementing a Windows-compatible SoC based on AMBA bus 
architecture. Section 4 introduces the architecture of PKUnity86 
SoC. Section 5 and Section 6 present the prototype work of P86-
Core and P86-Min, respectively. Section 7 shows the evaluation 
results and Section 8 concludes. 

2. RELATED WORK 
Mainstream processor vendors have proposed several x86-based 
SoCs such as AMD Geode SC1100[7] and Intel EP80579[8] in 
recent years. They integrate processor, northbridge, and 
southbridge into a single chip. Because these SoCs have the same 
architecture as PC systems, they are compatible with Microsoft 
Windows naturally. However, these SoC designs cannot directly 
integrate IP modules in the market because they are not based on 
popular on-chip bus protocol. In contrast, PKUnity86 is as 
scalable as other ARM SoCs since it based on AMBA buses. 

Since there are abundant IP products using AMBA interface, 
several non-ARM processors support AMBA to enhance their 
scalability. Leon3[9] and C68000[10] use AMBA bus interface 
directly while Renesas’s SuperH RISC[11] and Tensilica’s 
Diamond[12] can connect to AMBA bus through a bridge module. 
All above are RISC processors and they have similar architecture 
to ARM processor. In contrast, x86 is a legacy CISC ISA that 
differs greatly from ARM ISA. To the best of our knowledge, our 
work is the first to connect a CISC processor to AMBA 
architecture. 

Several research groups attempt to prototype commercial x86 
processors on FPGA to meet the demand of performance 
evaluation and fast design space exploration. Wunderlich and 
Hoe[13] prototype Intel Itanium, Lu et al.[14] prototype Intel 
Pentium, and Wang et al.[15] prototype Intel Atom. All of them 
prototype the standalone processor, and they compose the full 
system by plugging the FPGA device into the processor socket on 

PC motherboard through a pin-adapter. Compared with their work, 
we prototype a full SoC so that it can run Windows without 
external chipsets. In addition, we not only implement a 
commercial processor on FPGA, we also demonstrate the 
feasibility of a brand-new architecture. 

3. THE DESIGN CHALLENGES 
AMBA bus architecture is designed for ARM-based SoC systems, 
which differ greatly from x86-based PC systems. Thus, there are 
several challenges in connecting an x86 CPU to AMBA bus 
architecture to compose a Windows-compatible system. The 
challenges involve six aspects: 

Address space: The x86 architecture defines three address spaces: 
memory address space, I/O address space and Model Specific 
Register (MSR) address space[16], but AMBA is based on an 
unified memory space. It is necessary to map the three address 
spaces of x86 instructions to the unified address space of AMBA 
bus. 

Memory, I/O, and interrupt allocation: Unlike embedded 
systems, PC systems conform to an unified resource allocation in 
memory address space, I/O address space, and interrupt 
number[17] to keep software compatibility. As a result, 
PKUnity86 must also conform to the unified resource allocation 
of PC systems to achieve software compatibility. 

Special bus cycles: When certain instructions have been executed 
or certain conditions have occurred internally, x86 processors 
generate special bus cycles to inform the chipsets to take 
corresponding actions[16]. Since PKUnity86 incorporate the 
functionalities of chipsets, PKUnity86 must be able to respond to 
special bus cycles properly. 

External float point unit (FPU) exception: For x86 processors 
before 80486, FPU is external to the CPU chip. Although 80486 
and subsequent processors put FPU into the CPU chip, the 
exception handling mechanism[18] of external FPU has been 
inherited for software compatibility. PKUnity86 must support this 
legacy mechanism to maintain software compatibility. 

Cache coherence: Microsoft Windows leaves the cache 
coherence management to hardware. Unfortunately, AMBA bus 
does not support hardware management for cache coherence. 
Thus, it is necessary add extra logic in PKUnity86 to manage 
cache coherence by hardware. 

Compatibility of OS-related modules: The design of the timer, 
the real-time clock, and the interrupt controller are closely related 
to OS kernel. Since Windows is unmodifiable, these modules in 
PKUnity86 have to be compatible with Microsoft Windows. 
Unfortunately, we cannot find any AMBA IP of these modules 
that are compatible with Windows, so we have to design them for 
PKUnity86. 

Device drivers of non-legacy devices: In PC systems, peripheral 
buses such as PCI and PCI-Express specify the way of device 
enumeration, which has a close relationship with the device 
drivers in Windows. Since AMBA bus does not specify any 
mechanism for device enumeration, Windows cannot identify 
AMBA device information and drive the devices by itself. We 
have to develop special device drivers for AMBA devices. The 
device driver issue only exists for non-legacy devices such as 
USB controller and Ethernet controller. Since legacy devices such 
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as PS/2 and UART are controlled through the legacy I/O ports, 
the drivers for these devices in Windows can work properly.  

In current version of PKUnity86 SoC, we have implemented the 
solutions to all these challenges except the device driver problem, 
which will be solved in the future.  

4. PKUnity86 
Figure 1 shows the architecture of the prototyped PKUnity86 SoC, 
which is the minimum required system to support Microsoft 
Windows. P86-Core prototypes all the modules in gray and P86-
Min prototypes the whole SoC.  

 
Figure 1: The block diagram of the prototyped PKUnity86 

4.1 Architecture 
The whole SoC is divided into two domains, the x86 domain and 
the AMBA domain, connected through the x86-to-AMBA Bridge 
(XAB) module. The x86 domain, which is the whole Geode GX2 
excluding display-related modules, consists of the CPU, the DDR 
SDRAM controller, the Host-to-PCI bridge, and their connection 
module, GeodeLink Interface Unit (GLIU). The CPU is a low-
power design, whose primary features are shown Table 1. The 
AMBA domain contains a typical AMBA bus architecture: a 32-
bit Advanced High-performance Bus (AHB) and a 32-bit 
Advanced Peripheral Bus (APB), connected through the AHB-to-
APB bridge. The 32-bit AHB bus connects high-speed modules 
while the 32-bit APB bus connects low-speed modules.  
To compose a full system, PKUnity86 includes four subsystems. 
The memory subsystem is to access different memory hierarchies; 
the I/O subsystem is to support human-computer interaction; the 
OS support subsystem is to provide essential functionalities to OS; 
and the debug subsystem is to facilitate debugging. These 
subsystems contain modules that belong to northbridge or 
southbridge chipsets in PC systems. Because of the device driver 
limitation, PKUnity86 only contains two types of devices. One 
type is the legacy devices such as the programmable interval 
timer (PIT), the programmable interrupt controller (PIC), the real-
time clock (RTC), the UART, and the PS/2 controller. The other 
type is the devices that do not require device drivers in OS, such 

as the DDR SDRAM controller, the Host-to-PCI bridge, the flash 
controller, the Inter-Integrated Circuit (IIC) controller, the reset 
controller, and the general-purpose I/O (GPIO). Non-legacy 
devices requiring OS drivers can only be connected through the 
on-board PCI bus now. The following subsections first describe 
the XAB module, and then detail these subsystems. 

Table 1: The primary features of the Geode CPU 

Item Feature Description 

ISA x86/x87 compatible 

Integer pipeline Single issue, eight stages 

FPU Support Intel MMX and AMD 3DNow!  

I-cache 16KB, four-way set associative 

D-cache 16KB, four-way set associative 

L1 I-TLB Full-associate, eight-entry 

L1 D-TLB Full-associate, eight-entry 

Unified L2-TLB Two-way set associate, 64-entry 

4.2 XAB 
XAB is the connection module, translating transactions between 
the x86 domain and the AMBA domain. In addition, it contains 
logic for special bus cycles and FPU exception handling. 

4.2.1 Transaction translation 
The basic task of XAB is translating transaction, which involves 
two aspects: bus protocol and address space. For bus protocol, 
XAB translates GeodeLink[19] transactions to AHB transactions. 
Although AHB transactions cannot cover all information in 
GeodeLink transactions, all the critical information that ensures 
system work properly is transferred. For address space, XAB 
translates the three address spaces in the x86 domain to the 
unified memory-mapped address space in the AMBA domain. 
The details of translation are as below. 

I/O
0000h

FFFFh

FFFF_FFFFh

0000_0000h

8000_0000h

System RAM

000A_0000h
 Interrupt vector table

VGA memory
System BIOS code

000E_0000h
0010_0000h

8000_0000h

0000_0000h

C000_0000h

PCI devices

C001_0000h

AMBA devices 
(memory accesses)

FFFF_FFFFh

AMBA devices
(I/O accesses)

x86 address space AMBA address space

Mapped
memory

Unmapped 
memory

 
Figure 2: The translations from the x86 address space to the 
AMBA address space 
First, the AMBA domain does not implement any MSRs for 
simplicity since the MSR design of any x86 implementations can 
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be arbitrary. XAB ignores all MSR write transactions. When 
receiving MSR read transactions, XAB returns a safe value to 
avoid system crash. Second, as shown in Figure 2, the I/O address 
space and the memory address space in x86 ISA are mapped to 
the unified memory-mapped address space of AMBA bus. 
Interrupt vector table, BIOS code, legacy VGA memory, and 
system RAM are in the lowest 2GB space to be compatible with 
PC. The upper 1GB space is allocated to PCI devices. AMBA 
devices occupy the highest 1GB space. The 64KB I/O address 
space in x86 ISA is directly mapped to the memory region 
C000_0000h – C000_FFFFh. PKUnity86 only maps the lowest 
2GB memory because 2GB memory is big enough for mobile 
applications. 

4.2.2 Special bus cycles handling 
When CPU generates special bus cycles, GLIU will forward 
corresponding messages to XAB. XAB must take corresponding 
actions according to the messages. The ways how XAB handles 
different types of special bus cycles are listed as below: 

SHUTDOWN: X86 processors generate a SHUTDOWN cycle 
when it experiences a triple fault condition or internal processor 
errors. XAB informs the power manager to reset the entire system 
when receiving a SHUTDOWN cycle. 

HALT: X86 processors generate a HALT cycle when a HLT 
instruction is executed. XAB ignores it directly because no 
modules in PKUnity86 need to know this message. 

WBINVD: X86 processors generate a WBINVD cycle to indicate 
that the modified lines in L1 data cache have already been written 
back and the modified lines in external caches should be written 
back. Since PKUnity86 does not contain external cache, XAB 
ignores the WBINVD cycle directly. 

INTA: X86 processors generate an INTA special cycle to read 
the interrupt vector number when receiving an interrupt request 
from the interrupt controller. To be compatible with this interrupt 
handling mechanism, XAB has a direct connection to the interrupt 
controller to get the interrupt vector number. When receiving a 
INTA cycle, XAB pass the interrupt vector number to the CPU. 
Then, the CPU jumps to the corresponding interrupt service entry. 

4.2.3 External FPU exceptions support 
When a FPU exception occurs, Windows requires a series of 
interactions between CPU and interrupt controller to handle the 
exception properly. In PKUnity86, XAB provide supports for 
these interactions as below: First, when a FPU exception occurs, 
CPU outputs the active FERR# signal XAB. Next, XAB generates 
an interrupt request to the interrupt controller. After CPU 
completes handling the exception, XAB receives an I/O write 
with the port F0h. Then, XAB deasserts the IGNNE# input signal 
of CPU to let CPU continue executing from the exception point. 

4.3 Memory subsystem 
The memory subsystem should provide interfaces to access main 
memory, BIOS flash, and hard disks. To access the main memory, 
PKUnity86 reuses the DDR SDRAM controller from Geode GX2. 
An IIC controller is integrated to read the Serial Presence Detect 
(SPD) information of DDR Dual Inline Memory Module (DIMM). 
To access the BIOS flash, a flash controller is connected to the 
AHB bus. Because the prototyped PKUnity86 does not provide 
direct interfaces to hard disks, the prototype system requires an 

off-chip hard disk controller. Furthermore, there are several 
important design considerations for the memory subsystem. 
First, as mentioned in Section 3, the memory subsystem must 
maintain cache coherence by hardware. When DMA transactions 
access the main memory, the data in the cache might be 
inconsistent with the data in the main memory. PKUnity86 reuses 
the GLIU module in Geode GX2 to maintain cache coherence. 
When the memory accesses from devices go through GLIU, 
GLIU decides whether to issue a snoop request to the processor 
cache. If no coherence issue occurs, GLIU route the transactions 
to the memory controller. Otherwise, GLIU store these 
transactions temporarily until all coherence issues are solved. 
Second, the bus protocol between the memory controller and the 
CPU should support two features to attain high performance. One 
feature is supporting multiple outstanding transfers, which 
protects the memory-level parallelism[20] of processor. The other 
feature is supporting unaligned accesses. Because x86 is a CISC 
ISA, whose instruction length is variant, many instruction fetches 
are unaligned. If the bus does not support unaligned accesses, 
every unaligned access must be split into multiple aligned 
accesses and hence the performance degrades significantly. Thus, 
because GeodeLink supports the two features above but AHB 
does not, we choose the memory controller with the GeodeLink 
interface. In the future, we will consider updating memory 
controller IPs with Advanced eXtensible Interface (AXI), which 
is the only bus protocol in AMBA family that supports the two 
features above. 
Third, the memory subsystem should support BIOS shadowing, 
which is a common technique to speed up BIOS execution. To 
support BIOS shadowing, PKUnity86 has two memory accessing 
modes, the normal mode and the shadowing mode. In the normal 
mode, all read requests to the shadowing memory region are 
routed to the flash controller while all write requests to this region 
are routed to the DDR SDRAM controller. Thus, the processor 
can copy the instructions and the data in BIOS to the DDR 
SDRAM. In the shadowing mode, both read and write requests to 
the shadowing memory region are routed to the DDR SDRAM 
controller so that shadowed BIOS program can execute in the 
DDR SDRAM.  

4.4 I/O subsystem 
The I/O subsystem contains a PS/2 controller and a Host-to-PCI 
bridge. The PS/2 controller is connected on the 32-bit APB bus to 
support keyboard and mouse inputs. The Host-to-PCI bridge is 
reused from Geode GX2 for on-board functional extension.  
For the Host-to-PCI bridge, we choose the GeodeLink interface 
rather than the AHB interface because the GeodeLink can avoid 
unnecessary address translation. Because AMBA architecture 
does not provide I/O address space, XAB must translate the I/O 
address to AMBA memory address, and then Host-to-PCI bridge 
translates AMBA memory address to PCI I/O address when CPU 
issues I/O transactions to PCI devices. Since GeodeLink 
connection can transfer the I/O address directly, using a 
GeodeLink connection can avoid translating address twice.  

4.5 OS support subsystem 
As mentioned in Section 3, PKUnity86 must make the software 
interface of timer, interrupt controller and real-time clock 
compatible with Microsoft Windows. Table 2 lists the reference 
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designs of these OS-related modules. In PKUnity86, all these 
modules use the APB bus interface so that they can be reused in 
other AMBA-based SoCs. Since Windows accesses these 
modules through I/O transactions, XAB translates these I/O 
transactions to the corresponding AMBA transactions, and then 
the APB bus route the bus transactions to the corresponding 
modules. 

Table 2: Reference design of OS support modules 

Module name Reference design 

Programmable Interval Timer Intel 82C54[21] 

Programmable Interrupt Controller Intel 8259A[22] 

Real-time Clock (RTC) Motorola MC146818A[23] 

4.6 Debug subsystem 
To support both local debug and remote debug, the debug 
subsystem consists of the GPIO module and the UART module. 
The outputs of GPIO are connected to Light Emitting Diodes 
(LEDs) on the PCB board to indicate the current running status. 
The UART module is for the remote debug feature in GDB and 
WinDBG tools. We choose an UART IP that has a compatible 
program interface with Intel 8251[24] to reuse the standard device 
driver. Besides the above two debug facilities, the CPU has an 
EJTAG interface to support advanced debugging. 

5. P86-Core 
P86-Core prototypes the x86 domain, which is the whole Geode 
GX2 excluding display-related modules. Similar to other x86 
processors[15], the original RTL design of Geode GX2 contains 
circuitries that are not suitable for FPGA implementation, such as 
gated clocks, custom RAMs, and custom ROMs. We modify the 
RTL code to make it FPGA-synthesizable. Verifying the RTL 
modification for FPGA implementation is the main purpose of 
P86-Core. Since P86-Core has similar architecture and BIOS 
program to Geode GX2, it has the same OS compatibility, 
supporting Windows XP and previous versions. In this section, we 
will first describe the emulation platform and the workflow of 
building P86-Core, and then detail the modifications of the RTL 
design and the BIOS program. 

5.1 Emulation Platform 
As shown in Figure 3, the P86-Core emulation platform consists 
of two boards, a Geode SP4GX22 motherboard and a FPGA 
board. The Geode SP4GX22 motherboard provides the 
southbridge chipset CS5535[25] and other peripheral interfaces 
such as IDE socket and USB connector to compose a full 
computer system. The FPGA board contains a DDR socket, four 
PCI slots, and two Xilinx Virtex-4 LX200 FPGA device to 
emulate the x86 domain of PKUnity86. Since both DDR and PCI 
are industrial standard interfaces that many FPGA boards have, 
we reuse an existed FPGA board to save the project cost. In 
addition, a low pin count (LPC) card is plugged on the 
motherboard to connect the PS/2 keyboard and mouse. 

In previous work[14, 15], it is challenging to replace the processor 
with the FPGA device because the processor communicates with 
the chipset via the front side bus (FSB). Since FPGA devices and 
the processor are not pin-compatible, they design a special pin-
adapter. For P86-Core, since the connection between the 

processor and the chipset is the standard PCI bus, the replacement 
is simple. We plug out the Geode GX2 chip from the motherboard 
and use a PCI-to-PCI connector to connect the emulation FPGA 
device to the southbridge chipset. Besides the PCI connection, 
several sideband signals such as clock and reset are wired directly 
between the two boards. 

In addition, since the DDR DIMM is moved to the FPGA board, 
the BIOS program cannot get the DIMM’s SPD information, 
which is essential to set the DDR SDRAM controller properly. To 
solve this problem, we choose a DDR DIMM that is the same as 
the one on the FPGA board and plugged it into the DIMM socket 
on the motherboard to provide the SPD information. This method 
avoids modifications of the board and the BIOS program. 

 
Figure 3: The emulation platform of P86-Core  

5.2 Workflow 

Modifications
for FPGA

Original 
RTL

FPGA 
implementation

Full system emulation

Geode 
BIOS

Modifications 
for FPGARTL simulation

P86-Core 
BIOS

FPGA-synthesizable 
RTL

Bitstream

 
Figure 4: The workflow of building P86-Core 
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Figure 4 shows the overall workflow of building the P86-Core 
prototype. First, we modify the RTL code to make the design 
FPGA-synthesizable, and then we verify the modifications. Since 
the modifications are small, we only do module-level equivalence 
check and system-level connectivity test in RTL simulation using 
Synopsys VCS 2006.06 simulator. For module-level equivalence 
check, we traverse all the possible input sequences for each 
modified module to make sure that the modified modules have 
equal behavior as the original designs. For system-level 
connectivity test, we write some assembly programs to test 
whether the basic interactions between modules are correct. After 
the RTL code become FPGA-synthesizable and verified, we use 
Xilinx ISE Design Suite 10.1 to synthesis, place, and route the 
design and generate the final bitstream file. Meanwhile, we 
modify the Geode GX2 BIOS to match with the design changes 
for FPGA. After both the bitstream file and the BIOS are ready, 
we could run Windows on the emulation platform. 

5.3 RTL Modification 
To make the design FPGA-synthesizable, first, we replace the 
custom circuits such as RAMs, ROMs, and Phase-Locked Loops 
(PLLs) with corresponding FPGA primitives. Next, we convert 
the clock-gating logic to clock-enabling counterparts, because the 
clock-gating logic will cause failure in timing convergence for 
FPGA implementations. The details of these two jobs can refer to 
Wang et al.’s work[15]. Last, because we find that the design 
requires more resources than a Xilinx Virtex-4 LX200 device can 
provide, we remove several unused modules such as Built-in Self 
Test (BIST) circuits to make the whole design fit in a FPGA 
device.  
Moreover, the DDR SDRAM controller has to be modified to 
meet the requirement of FPGA synthesis because the interface 
logics of DDR SDRAM controller are special. According to the 
JEDEC DDR specification[26], there are four key requirements 
about the I/O logic. First, the working clocks of DDR SDRAM 
devices are three pairs of differential clocks (CLK and CLK_N). 
Second, the data signals (DQ) and the data mask signals (DM) are 
transferred at double data rate. Third, DDR SDRAM devices 
capture the write data using the data strobe signals (DQS), which 
have a 90-degree phase shift relative to the data signals. Fourth, 
the data and the data strobe signals returned from DDR SDRAM 
devices are phase-aligned, so controller should delay the data 
strobe signals by one-quarter clock cycle to capture the data 
properly.  These four requirements complicate the clock structure 
of the original DDR SDRAM controller. Since FPGA device does 
not support complex clock logic, the original DDR SDRAM 
controller must be modified for FPGA. 
As shown in Figure 5, we modify I/O logic of DDR SDRAM 
controller using FPGA primitives. All clocks are derived from the 
Digital Clock Manager (DCM) [27] module in place of the 
original clock tree so that the clock delays to all flip-flops are as 
close as possible. To generate high-quality differential clocks, we 
replace the non-synthesizable differential pads with the FPGA 
primitives OBUFDS[27]. For write data output logic, we output 
the working clock as the DQS signals and generate the write data 
(FF_W) with an inverted double-frequency clock (CLK_W). 
Therefore, the data (DQ) and the data mask (DM) are at double 
data rate and have a 90-degree phase shift relative to the DQS 
signals. For read data capture logic, since the frequency of the 
working clock on FPGA, 16.7MHz, is much lower than the 

normal frequency, the valid data window is large enough to 
tolerate on-board skews. Thus, we use a pair of phase-delayed 
differential clocks, CLK_RP and CLK_RN, to capture the 
returned data instead of using the DQS signals. The write and 
read timings of the modified logic are shown in Figure 6. 

DCM

CLK90

CLK2X_180

CLK270

CLK

DQS

FF_W
D Q

FF_RN
Q D

FF_RP
Q D

OBUFDS
CLK_N

DQ/DM

CLK_RP

CLK_RN

CLK_W

CLK0

 
Figure 5: The interface logic of the modified DDR SDRAM 
controller 

 
Figure 6: The write and read timing of the modified DDR 
SDRAM controller 

5.4 BIOS Modification 
The BIOS program should also be modified to match with the 
RTL changes. The BIOS modifications are twofold. First, since 
the frequency of the DDR SDRAM controller, 16.7MHz, is out of 
the working frequency range of the Delay-Locked Loop (DLL) 
module on DIMMs, the DLL module cannot work correctly. Thus, 
we disable the DLL module on DIMMs by setting the related 
functional register of the DDR SDRAM controller. Second, since 
P86-Core is only part of Geode GX2, the configuration of the 
unimplemented modules such as the display controller, the clock 
manager, and the BIST module, may lead to uncertain results. 
Thus, we remove or disable these configurations in the BIOS 
program.  

6. P86-Min 
After P86-Core, we build P86-Min to prototype both the 
minimum set of PKUnity86 and the PKUnity86 BIOS on a single-
board emulation platform. We design the PKUnity86 BIOS 
because our final products cannot use the Geode BIOS for 
business reasons. Since both the RTL and the BIOS are new 
designs, it is challenging to build P86-Min. Therefore, we add a 
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hardware-software co-development stage in our workflow and 
employ various debug tools at different development stages to 
facilitate building P86-Min. The goal of P86-Min is to support 
legacy Windows such as Windows 3.1, Windows 95 and 
Windows 98. Recent Windows that have higher hardware 
requirements such as Windows 2000 and Windows XP, will be 
supported in the future.  

6.1 Emulation Platform 
Since PKUnity86 includes the functionalities of CPU, northbridge, 
and southbridge, we can prototype it on an single FPGA board 
without PC motherboard. As shown in Figure 7, P86-Min uses the 
same type of the FPGA board as P86-Core. The FPGA board 
contains all the standard I/O interfaces required in PKUnity86 
such as DDR slots, PCI slots, BIOS flash, PS/2, and UART. In 
addition, a IDE card and a video card are plugged in the PCI slots. 

 
Figure 7: The emulation platform of P86-Min 

6.2 Workflow 
Figure 8 shows the overall workflow of building the P86-Min 
prototype, which consist of three stages: the high-level hardware-
software co-development stage, the RTL development stage, and 
the FPGA implementation stage. At the high-level hardware-
software co-development stage, we first develop the draft C++ 
models of PKUnity86 and the draft PKUnity86 BIOS. Then, we 
merge both the C++ models and the BIOS program into a x86-
based full-system simulator, and test whether Windows could run 
correctly based on them. We keep revising the models and the 
BIOS program until we successfully run Windows in the Bochs 
simulator. After that, the BIOS program implements all the core 
functionalities for Windows compatibility and our BIOS 
designers can add extra functionalities based on the core BIOS. At 
the RTL development stage, we develop the RTL code by 
referring to the final C++ models and merge the x86 domain RTL, 
which has been verified in P86-Core. At the FPGA 
implementation stage, we implement the RTL design on the 
FPGA devices. Owing to the limitation of FPGA resources, we 
have to implement the whole design into two separate FPGA 
devices. One device only implements the processor while the 
other device implements the rest parts. Finally, we could run 

Windows using the bitstream files and the BIOS code on the 
emulation platform. 

FPGA implementation

High-level HW/SW co-development

RTL development

Bitstream

Core 
PKUnity86 BIOS

Draft 
PKUnity86 BIOS

Draft PKUnity86
C++ models

Final PKUnity86
C++ models

PKUnity86 RTL

x86 domain
RTL

Full system emulation

Final 
PKUnity86 BIOS

BIOS 
improvement

 
Figure 8: The workflow of building P86-Min 

6.3 High-level Co-development 
We build the high-level hardware-software co-development 
platform using Bochs simulator[28]. Bochs is an x86 full-system 
simulator that is capable of running off-the-shelf Microsoft 
Windows and many desktop applications. To build the high-level 
model of PKUnity86, we reuse the x86 processor model and the 
memory model in Bochs, create the high-level model of XAB and 
modify several device models in Bochs such as the keyboard, the 
mouse, the timer, the interrupt controller, the real-time clock. All 
these models are written in C++. Since each model only 
implements the software interface and the basic behaviors, it takes 
less time than the RTL design. After the high-level models are 
ready, we can develop the PKUnity86 BIOS in the simulator. 
We gain the several benefits from the high-level co-development 
platform. First, the co-development platform allows quick design 
modifications to reduce iteration cycle length. Because the public 
documents of Windows do not cover all detailed requirements 
about hardware and BIOS, we have to repeatedly test and modify 
our designs to get the final design. High-level models in the 
simulator are easier to debug than RTL design on FPGA. Second, 
since Bochs is an open-source simulator, both the device model 
and the BIOS in Bochs are good reference designs, which provide 
much concrete information for PKUnity86. Third, the co-
development platform allows the BIOS development to be parallel 
with the RTL development. In traditional flow, most BIOS 
developing jobs cannot start until hardware design is ready. Since 
the behavioral model has the same software interface as the final 
design, BIOS developers can test the BIOS program in the full-
system simulator before the detailed hardware design is ready. 

6.4 Debug Support 
Compared with P86-Core, P86-Min involves massive debug tasks 
because of the significant architecture changes. As shown in 
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Table 3, we employ various debug tools at different stages to 
improve debug efficiency. At the co-development stage, GDB and 
the internal debugger of Bochs simulator is enough because all 
the code is written in C++. At the RTL development stage, the 
RTL design is simulated in Synopsys VCS and debugged in 
Springsoft Verdi. Debugging at the FPGA implementation stage 
is challenging, because the error messages generated by Windows 
are too imprecise to locate the bugs. Therefore, we employ 
multiple tools for both hardware and software debug at this stage. 
For hardware debug, we monitor the internal signals using Xilinx 
ChipScope Pro and change the list of monitored signals using 
Xilinx FPGA Editor. For simple software debug, we insert 
instructions that set the GPIO LEDs to indicate current running 
states. For complex software debug, we exploit the advanced 
features of First Silicon Solutions for Geode[29], such as stepping 
program execution, setting program breakpoints, reporting 
register values, and watching specific instructions. In addition, we 
use Microsoft WinDBG to trace the execution path, which is 
helpful to figure out the causes of faults. Since the debug jobs 
takes the most time of our project, it is crucial to use these debug 
tools efficiently. 

Table 3: Debug tools on different development stages 

Stage Debug Tools 

High-level HW/SW 
co-development 

Bochs internal debugger 2.3.7 
GNU GDB 6.8 

RTL development 
Synopsys VCS Y-2006-06-SP2 
Springsoft Verdi 2008.04 

FPGA 
implementation 

Xilinx ChipScope Pro 10.1 
Xilinx FPGA Editor 10.1 
GPIO LEDs 
First Silicon Solutions for Geode 
Microsoft WinDBG 6.11 

7. EVALUATION 
The evaluation of P86-Core and P86-Min covers three aspects: 
the OS compatibility, the resource utilization, and the 
performance. 

7.1 OS Compatibility 
Windows compatibility is the biggest concern for the two 
prototypes. The OS compatibility test shows that both prototypes 
reach its own goal: P86-Core supports Windows XP and previous 
versions while P86-Min supports Windows 98 and previous 
versions. Figure 9 and Figure 10 show the real scene that we 
succeeded in booting up Windows XP on P86-Core and Windows 
98 on P86-Min, respectively.  

7.2 Resource Utilization 
Table 4 shows the FPGA resource utilization of P86-Core, P86-
Min and the single XAB module. The FPGA resources occupied 
by XAB are negligible relative the whole SoC. This result shows 
that the hardware overheads for Windows compatibility are small. 
In addition, since the non-CPU device of P86-Min only occupies 
34% of LUTs, there are rich resources to support SoC extension 
in the future. 

 
Figure 9: Image of running Solitaire and Windows Media 
Player under Windows XP on P86-Core 

 
Figure 10: Image of running Solitaire and WordPad under 
Windows 98 on P86-Min 
Table 4 The FPGA resource utilization of P86-Core, P86-Min 
and the XAB module.  

P86-Min 
Resource P86-

Core CPU Non-CPU 
XAB 

Slice 98% 84% 47% 3% 

LUT 93% 72% 34% 3% 

Slice Register 32% 19% 19% 1% 

Block RAM 22% 22% 11% 0% 

DSP48 8% 0 8% 0% 

7.3 Performance 
We compare the performance of P86-Core and P86-Min with a 
Geode GX2 on a Geode SP4GX22 motherboard to see the 
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performance impacts of the architectural changes. All the three 
platforms run at 33MHz. We run three benchmarks, Dhrystone 
2.1, STREAM 5.8[30], and HDBench 1.1[31], under Windows 98 
to evaluate the performance of CPU, memory, and disk, 
respectively. In addition, we compare the booting up time of 
Windows 98 for overall performance. To eliminate the non-
deterministic of the real system, we run each benchmark for 5 
times and take the average. 
As shown in Figure 11, three platforms have similar CPU 
performance and memory performance, and P86-Min has better 
disk performance and booting up speed than Geode GX2 and P86-
Core. This result is as expected because the most performance-
related part of PKUnity86 is the x86 domain, which have no 
architectural changes. The different hard disk controller results in 
the performance enhancement of P86-Min. The hard disk 
controller on P86-Min has a larger data buffer than the one 
integrated in CS5535. The results show that the architectural 
changes do not degrade the system performance.  

0
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0.6

0.8

1

1.2

Dhrystone STREAM HDBench Win98

Geode GX2 P86-Core P86-Min

 
Figure 11 The normalized benchmark grades and OS booting 
up time of Geode GX2, P86-Core, and P86-Min 

8. CONCLUSIONS AND FUTURE WORK 
PKUnity86 is the first AMBA-based and Windows-compatible 
SoC. It can both support flexible SoC extension by reusing the 
abundant AMBA IP resources and exploit the massive PC 
software resources. This paper presents two FPGA prototypes of 
PKUnity86: P86-Core and P86-Min. P86-Core prototypes the 
core of PKUnity86 while P86-Min prototypes the minimum set of 
PKUnity86. By successfully running Windows on them, we 
demonstrate that the gap between ARM-based SoC and PC 
system can be resolved by specific hardware and software designs. 
Furthermore, the evaluation results show that PKUnity86 achieves 
Windows compatibility with small hardware overheads and no 
performance loss. In the future, we will improve PKUnity86 to 
support recent Windows such as Windows XP, Windows Vista, 
and Windows 7. 
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