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Abstract. The increasing success of massively multi-player online games
(MMOGs) is due to the fact that they allow players to explore huge vir-
tual worlds and to interact in many different ways, either cooperating
or competing. To support the implementation of ultra-scalable real-time
strategy MMOGs, we are developing a middleware, called PATROL, that
is based on a structured peer-to-peer overlay scheme. Among other fea-
tures, PATROL provides AI-based modules to detect cheating attempts,
that the decentralized communication infrastructure may favor. In this
paper we illustrate how we implemented honest and cheating autonomous
players (bots). In particular, we show how honest bots can detect cheat-
ing bots in real-time, thanks to strategies based on neural networks.

1 Introduction

Most research on multi-player online games (MMOGs) focuses on scalability
and high speed, but other issues such as the chance of cheating have an equally
large practical impact on game success. There are significant technical barriers
to achieving all these properties at the same time, and few existing games do so.
Our open source middleware for the development of real-time strategy (RTS)
MMOGs, called PATROL (http://code.google.com/p/patrol/), integrates sev-
eral modules, each of which is highly specialized in one aspect of the game.

In our previous work [1] we focused on the module for peer-to-peer connec-
tivity and communication, and on the module for detecting cheating behaviors.
The former allows one to implement ultra-scalable RTS MMOGs, where each
player’s software installation is a node of a fully distributed structured over-
lay network scheme, which guarantees efficient data sharing, as well as fair and
balanced workload distribution among participants. The latter, based on neural
networks, allows each node to detect cheating behaviors of other players involved
in the game.
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In this paper we focus on the rule engine, a module that allows one to enforce
both general and specific rules into the nodes. Game events can also be managed
by the rule engine, by matching them with existing rules. Such a module allowed
us to implement honest and cheating autonomous playing nodes. Such bots can
play against each other, in a RTS game where participants place and move units
and structures (generally speaking, resources) under their control to secure areas
of the virtual world and/or destroy the assets of their opponents. We show how
honest bots are able to detect misleading ones in real-time, thanks to the AI-
based cheating detection module.

The paper is organized as follows. In section 2 we summarize some recent re-
search work in the context of peer-to-peer RTS MMOGs. In section 3 we describe
the PATROL architecture, with details on the rule engine and on the cheating
detection strategy. In section 4 we illustrate the example of RTS MMOG we
have implemented, based on the proposed architecture, where autonomous bots
play against each other. We focus on the performance of the module for intel-
ligent cheating detection, presenting and discussing many experimental results.
Finally, in section 5, we conclude the paper by specifying plans for extending
our work further.

2 Related Work

MMOG needs a messaging infrastructure for game actions and player communi-
cation. To this purpose, possible paradigms are Client-Server (CS), Peer-to-Peer
(P2P), Client-Multi-Server (CMS), or Peer-to-Peer with Central Arbiter (PP-
CA) [2]. Each solution has pros and cons, with respect to robustness, efficiency,
scalability and security. In particular, when the architecture of the game is de-
centralized (e.g. P2P), facing malicious behaviors to support a large number of
players is particularly challenging.

In [2], the authors propose a Mirrored-Arbiter (MA) architecture that com-
bines the features of CMS and PP-CA. This architecture provides all the benefits
of PP-CA, but also solves the main problems in PP-CA by using interest man-
agement techniques and multicast. Clients are divided into groups, each group
being handled by an arbiter that maintains a global state of the game region and
takes care of the consistency issue. When the arbiter receives an update from a
client which conflicts with its game region state, it ignores the update and sends
the correct region state to all clients in the group. The authors implemented a
multiplayer game called ”TankWar” to validate the design of the proposed MA
architecture. In our opinion, such a scheme is complex in the decision of the ar-
biters and their group assignments, and does not guarantee high scalability and
security. Indeed, an arbiter may be a cheating node itself, which compromises
the game for a large number of nodes.

In [3], the authors present a Peer-to-Peer (P2P) MMOG design framework,
Mediator, based on a super-peer network with multiple super-peer (Mediator)
roles. In this framework, the functionalities of a traditional game server are dis-
tributed, capitalizing on the potential of P2P networks, and enabling the MMOG
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to scale better with respect to both communication and computation. Mediator
integrates four elements: a reward scheme, distributed resource discovery, load
management, and super-peer selection. The reward scheme differentiates a peer’s
contribution from their reputation, and pursues symmetrical reciprocity as well
as discouraging misdemeanors. The authors suggest to adopt the EigenTrust rep-
utation management algorithm [4] and the DCRC anti-free-riding algorithm [5]
as possible implementations for the reward scheme. Unfortunately, such schemes
are complex and bandwidth-consuming.

The other aspect on which our paper focuses is the game engine. We believe
that games are made of three elements: nouns (i.e. elements of the game, and
variables related to them), verbs (the actions that players and player stand-ins
can enact), and rules (limiting the nature of the existence of the nouns and
creating relationships and interactions between them; limiting also which verbs
can be enacted, when and in which context). Current programming paradigms
do not provide an appropriate language for expressing these structures. Object-
Oriented Programming (OOP) is very good at representing different types of
objects (”nouns”) and the relationships they may have between each other, with
minimal duplicated code or wasted work. Unfortunately, OOP dictates that each
class must encapsulate methods, i.e. actions that are strictly related to the class
itself. Thus, OOP is not suitable for expressing verbs and rules as entities sep-
arated from nouns. In general, imperative languages (that are mostly used in
game programming) are not good for clearly expressing verbs and rules. In-
stead, declarative languages based on first-order logic, like Prolog, are much
more suitable.

Currently, one of the best known rule engines is Drools Expert [6], that uses
the rule-based approach to implement an Expert System and is more correctly
classified as a Production Rule System. A Production Rule System is Turing
complete, with a focus on knowledge representation to express propositional and
first order logic in a concise, non-ambiguous and declarative manner. The core of
a Production Rules System is an Inference Engine that is able to scale to a large
number of rules and facts. The Inference Engine matches facts and data against
Production Rules — also called Productions or just Rules — to infer conclusions
which result in actions. A Production Rule is a two-part structure that uses First
Order Logic for reasoning over knowledge representation. There are a number
of algorithms used for Pattern Matching by Inference Engines including Linear,
Rete, Treat, Leaps. Drools implements and extends the Rete algorithm; Leaps
used to be provided but was retired as it became unmaintained. While Drools
Expert is a sound product, it is quite large and cannot be installed on portable
devices. For this reason, we decided to adopt tuProlog [7], as discussed in next
section.

3 PATROL middleware

In order to increase security, the game infrastructure should properly manage
the interaction events among nodes. In RTS games, the most frequent events
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are those for: i) moving resources, ii) receiving updates about the virtual world,
and iii) submitting the attacks. Our PATROL middleware manages these events
through protocols that are appropriate for maintaining an adequate level of
efficiency and security.

PATROL provides the following modules (illustrated in figure 1):

– Rule Engine
– Cheating Detector
– Overlay Manager
– GUI/GamePeer Connector

Since the Overlay Manager and the Cheating Detector have been already
described in details in our previous work [1], here we just recall them shortly
and we devote more space to the Rule Engine. The GUI/GamePeer Connector
decouples the (game-specific) GUI from the GamePeer, which integrates the
three previously listed general-purpose modules. For lack of space, we omit its
description, but we emphasize that GUI decoupling also allows to implement
games for mobile devices, where only the visualization may be running locally,
while most computation processes may be executed remotely.

Fig. 1. A PATROL-based gaming node: PATROL modules are those in light color.

3.1 Overlay Manager

PATROL’s Overlay Manager adopts the Chord P2P overlay scheme [8] to sup-
port fair and robust information sharing among available players. Chord is a
highly structured P2P architecture where all peers are assigned the same role
and amount of work. It is based on the DHT approach for an efficient alloca-
tion and recovery of resources. The overlay network in PATROL also supports
a distributed algorithm for cheater detection, based on feedbacks among peers
and AI tools such as neural networks. This approach allows one to dynamically
recognize malicious behaviors, collectively performed by peers without the need
of specific and centralized control components.
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Chord [8] is probably the best known peer-to-peer protocol based on the
Structured Model (SM), which uses DHTs as infrastructures for building large
scale applications. Data are divided into blocks, each identified by a unique key
(a hash of the block’s name) and described by a value (typically a pointer to the
block’s owner). Each peer is assigned a random ID in same space of data block
keys, and is responsible for storing key/value pairs for a limited subset of the
entire key space.

According to Chord’s lookup algorithm, each node n maintains a routing
table with up to m entries, called the finger table. The ith entry in the table at
node n contains the identity of the first node s that follows n by at least 2i−1 on
the identifier circle; i.e. s = successor(n + 2i−1), where 1 ≤ i ≤ m and all the
arithmetic is module 2m. We call node s the ith finger of node n, and denote
it by n.finger[i]. A finger table entry includes both the Chord identifier and
the IP address (and port number) of the relevant node. Figure 2 illustrates the
scalable lookup algorithm based on finger tables. In general, if node n searches
for a key whose ID falls between n and the successor of n, node n finds the
key in the successor of n; otherwise, n searches its finger table for the node n′

whose ID most immediately precedes the one of the desired key, and then the
basic algorithm is executed starting from n′. It is demonstrated that, with high
probability, the number of nodes that must be contacted to find a successor in
an N -node network is O(logN) [8].

Fig. 2. The finger table entries for node N1 and the path taken by a query from N1,
searching for key K12 using the scalable lookup algorithm.
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PATROL distributes uniformly among the peers the responsibility to main-
tain knowledge about resources (i.e. items, war units, structures, etc.), using
the DHT to share information about whom is responsible for what (each peer
is responsible for a subset of the key space). In a game, each existing resource
has a position in the virtual world. Such a position is hashed, and the resulting
key is assigned to the peer whose key subset includes the resource key. It is very
unlikely that two resources that are close in the virtual world have keys that
are also close in the key space (and viceversa). Moreover, Chord foresees data
replication, in order to improve robustness against unexpected node departures.

Importantly, no peer has full control over a region of the game space (like,
for example, in [2]), so the damages that a hacked peer can do are very lim-
ited. Moreover, our approach is much more robust than existing decentralized
solutions, because the departure of a node does not affect the games too much,
thanks to the proactive data replication dictated by the Chord protocol.

3.2 Rule Engine

In general, a rule engine is a software system that, depending on the context,
decides which rules to apply, and computes the result of their application, that
may be a new knowledge item, or an action to perform. Usually, a rule engine
includes the following components:

– a rule base, containing production rules whose structure is WHEN 〈conditions〉
THEN 〈actions〉;

– a knowledge base, also known as work area, that contains known facts;
– an inference engine, for processing rules.

Rules operate on facts of the knowledge base, that is dynamic as it can
change over time, with new facts being added, and old facts being removed.
Conditions of production rules are evaluated against facts. If a condition is true,
the resulting action is the insertion of a new fact in the knowledge base, and
possibly an action on the environment (e.g., an action within the game).

PATROL’s Rule Engine (from now on, RE) can be used for implementing sev-
eral RTS MMOG: it is sufficient to set the appropriate rule base and knowledge
base. Rules and facts must be written in Prolog, chosen because of its intuitive-
ness. RE’s inference engine is based on tuProlog, a Java-based lightweight Pro-
log reasoner for Internet applications and infrastructures [7]. tuProlog provides
a straightforward API to implement simple or more complex Prolog programs
within Java code, or to read existing Prolog expressions from a file or from a
database. Once one or more Prolog theories (i.e. ensembles of rule base and
initial knowledge base) have been acquired, it is possible to use them to evaluate
facts and derive new facts.

The RE can be used to decide which actions are allowed to the player, de-
pending on his/her state and on the state of the game. Moreover, the RE can
be used to implement bots, whose purpose is to allow real players to test their
strategies before entering a game against other real players. A bot must be able



PATROL

to make decisions in all typical RTS situations, such as: resource accumulation,
resource purchasing or building, resource improvement, displacement of mobile
resources, attack against an enemy’s resources, defense from an enemy’s attack,
goal checking.

The RE includes a PrologEngine class that provides methods for setting and
managing a theory, and for solving queries. Such a class can be specialized (by
means of inheritance) into different classes, each referring to an aspect of the
game. Such specialized classes can be reused with different theories, and within
different RTS MMOGs.

Game Events The system uses a bootstrap server to support peers in joining
the network (which includes authentication, as well as Chord initialization) and
configuring themselves for entering a game. In this way the bootstrap server has
control over the accounts of the players and consequently provides a basic level
of security.

Information about the virtual world may not be granted indiscriminately to
any peer. Each peer has its own resources, which are placed in different positions
of the virtual world, and has the right to receive information that refers to areas
that are within the field of view of such resources, according to the rules of the
game. Periodically, each peer needs to update its view on the virtual world. To do
so, it sends specific requests to peers that are responsible for the positions that
are visible. Before responding to such a request, peer j, that is responsible for
position (x, y, z), checks his cache for updated information, and sends a request
to verify the credentials for peer k. If everything is ok, it finally sends the response
message.

Before performing any action that involves a change of game state, players
must submit a request to the responsible of the resource that is affected by the
action. For example, suppose player k can select a resource to be displaced in the
virtual world; to perform the action ”displacing resource to position (x, y, z)”
the peer must submit the request to the node responsible for the key resulting
from the hash of that position, i.e. h(x, y, z). The peer that must become the
new responsible for the displaced resource of peer k searches for the manager of
the resource’s current position (declared by peer k). Such peer is discovered by
means of the hash of the current position. Thus the old manager checks in its
cache whether it has the information on peer k and whether this information
corresponds to what was declared to j. If the check is successful, peer j can
decide, according to the game rules and considering the time elapsed between
the changes of game state following the transition between the two positions,
if it can accept the move and execute it, becoming the new responsible for
the resource. If the position declared by k is not true, the request for resource
displacement submitted by peer k is ignored and the state of the game remains
the same.

While troops can be moved asynchronously by each player, attacks must be
either asynchronous or synchronous (i.e. with a turn-based approach). In case
of synchronous attacks, knowing the decisions of other players before submitting
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his own move may be a considerable advantage for a player. But, of course, this
would be unfair.

To avoid cheating, PATROL uses request hashing, a mechanism that is widely
adopted in other P2P architectures and derives from distributed security sys-
tems. Players who submit their decisions have to send a hash of the message
describing the attack concatenated with a nonce. The nonce is used to prevent a
cheater from storing in a table all matches between hash values and attack deci-
sions, revealing the decisions of honest players. The nonce is a use-once random
value, chosen by the first player that submits a decision. The last player that
submits its decision may send it manifestly. At this point, all players that have
previously sent the hash must send their nonce and attack decision manifestly.
Thus, other players can re-calculate the hash and verify that it corresponds to
what was previously declared. The properties of hash functions guarantee that
it is almost impossible for two different attacks to have the same hash, and
therefore for a player to submit a different attack, with respect to the encrypted
one.

3.3 Intelligent Cheater Detection

PATROL provides a good level of security for the overall state of the game.
However, the DHT does not prevent the game from offering cheaters (provided
with hacked clients) the possibility to alter the information for which they are
responsible. In a RTS game, a modified client that saves a history of recent
attacks and their outcomes may estimate the current level of resources available
to other players and take advantage over them.

Using artificial intelligence techniques, a PATROL-based peer can detect
anomalies in the behavior of other peers, compared to typical behavioral profiles,
by means of temporal analysis of interaction events. Moreover, using the power
of direct communication typical of P2P approaches, a peer may ask other peers
their ”opinion” about a given peer in order to improve the evaluation process.

Peer x calculates the probability P{y|x} that peer y is cheating. Then x
sends a request to peers that have interacted with y, in order to match their
probabilities and understand whether y is considered to be a cheater: P{y|i}
∀i 6= x, y. If the global probability exceeds a certain threshold, there is the
option to contact other peers and the bootstrap server to promote a collective
motion against the cheating player in order to ban him from future games. If all
peers agree with the ”Ban Proposal”, peer y is gracefully disconnected from the
Chord ring.

The artificial intelligence module analyzes all action events coming from an
opponent. The opinions of the other players are requested only at the end of
the local evaluation process, if the peer estimates a high probability of cheating.
Of course, the peer must be careful since other peers may provide false reports
related to their interactions with a given peer.

There are different strategies for a peer to learn from a sequence of events: se-
quence recognition, sequence playback, and temporal association. Among others,
we focused on the following tools:
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– Multi Layer Perceptrons (MLPs)

– Time Delay Neural Networks (TDNNs)

– Back-Propagation Through Time (BPTT) learning algorithms

that fit very well our needs. We analyzed their features in details in our previous
work [1].

4 Experimental evaluation

We have extended the PrologEngine class of the RE into specialized classes, to
implement a spatial RTS MMOG for testing purposes. The goal of the RTS
MMOG is to find and conquest all the planets that are in the game space.

Players are provided with a mine resource that allows them to make money
for buying two types of resources: defense and attack. The resources for attack
(starships) are used to explore the virtual world, to the purpose of finding the
planets and to tackle the starships of other players. Every resource has an asso-
ciated velocity and a field of view. The resources for defense are used to protect
the owned planets from incoming attacks of other players’ starships.

Thus, we have implemented ExtractionEngine for managing the extraction
of mineral resources of a planet, BuyResourceEngine for purchasing resources,
MovementEngine for moving mobile resources (like starships), VisibilityEngine for
deciding if a resource (e.g. a planet, or an enemy’s starship) is visible to the
player, GameEvolutionEngine for deciding next operation depending on current
state (own state, and game state), GameEngine for checking if intermediate or
final goals have been met.

Based on such engines, each bot passes through three different phases:

– resource accumulation

– space exploration

– planet conquest

These phases are repeated in an infinite loop. The time periods each bots
spends in such phases are random variables A,E and C.

We have defined two different types of bot profiles: honest and cheater. The
latter reproduces the behavior of a hacked client. It owns a mine which is five
times as powerful as the others and more initial money. Moreover, it has a halved
cycle decision period (i.e. it can take more decisions in the same time).

In fig.3, we report the distribution of honest and cheating bots’ actions during
the recorded matches. On the horizontal axis we have the time at which the
action is performed, considering 0 as the start time of the game, while on the
vertical axis there is the value associated to the used resource. Here we can note
that cheater bots, thanks to the speed hack, prefer to first explore the space and
to perform its actions later than the honest bots. Moreover, the value associated
to their resources is higher since the more money is available, the more they can
spend for buying higher-valued resources.
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Fig. 3. Time distribution of bots’ actions, considering all the games that have been
played to collect a significant number of actions.

4.1 Performance of neural networks

We have collected 2800 player profiles. Each profile consists of a sequence of
three actions performed by the opponent. The choice of the three moves for the
profile duration appears as a good trade-off between quickness and accuracy of
decisions about the opponent’s behavior. The overall dataset has been split into
two equally-sized sets, each including 700 honest and 700 cheater profiles. One
set is used to train neural networks, and the other as a test set.

We have defined different configurations for the three types of neural networks
that we took in consideration. Then we have compared these nets evaluating
their Root Mean Square Error (RMSE). After a series of preliminary tests, we
observed that larger nets tend to overfit and are less able to generalize. This
observation comes from a comparison between RMSE on the training and test
sets that, in some case, shows that the performance on the test set is significantly
worse than the peformance on the training set.

Finally, comparing the best performances achieved on the test set (in table
4.1) over a large number of attempts, we can see that the best performance is
obtained by the TDNN, followed by BPTT and MLP. This result confirms that,
not surprisingly, the neural networks that are specifically designed for analysis
over time perform best.
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Neural Networks Free parameters RMSE Test Set

MLP 6,3,1 21 0.4851

TDNN 6,6,15,1 117 0.4451

BPTT 6,7,15,1 133 0.4455
Table 1. RMSE values on the test set.

5 Conclusions

In this work we illustrated the most recent improvements of our PATROL frame-
work for creating peer-to-peer online RTS games, characterized by a high degree
of robustness, efficiency and effectiveness against cheating behaviors. In partic-
ular, we focused on the rule engine that allows to set manage the rules of a
game, and also to develop autonomous virtual players (bots). We have shown
how cheating bots can be detected by means of a PATROL module that uses
neural networks.

Preliminary tests have been encouraging. In the future, we will perform a
more accurate evaluation, considering different values of learning rate for the
neural networks. Moreover, it is possible to envisage the use of other means of
temporal analysis based on neural networks (such as Real Time Recurrent Learn-
ing and Context Units like Elman and Jordan nets) and on other techniques. It
would also be possible to investigate the effects of adding a component capable
of evaluating the trust of peers based on the past history of players.
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