
The Journal of Logic and Algebraic Programming 72 (2007) 78–97
www.elsevier.com/locate/jlap

A compositional coalgebraic model of fusion calculus �

Maria Grazia Buscemi a,∗, Ugo Montanari b

a IMT Lucca Institute for Advanced Studies, Via San Micheletto 3, I-55100 Lucca, Italy
b University of Pisa, Italy

Abstract

This paper is a further step in exploring the labelled transitions and bisimulations of fusion calculi. We follow a recent theory
by the same authors and previously applied to the pi-calculus for lifting calculi with structural axioms to bialgebras and, thus, we
provide a compositional model of the fusion calculus with explicit fusions. In such a model, the bisimilarity relation induced by the
unique morphism to the final coalgebra coincides with fusion hyperequivalence and it is a congruence with respect to the operations
of the calculus. The key novelty in our work is that we give an account of explicit fusions through labelled transitions. Interestingly
enough, this approach allows to exploit for the fusion calculus essentially the same algebraic structure used for the pi-calculus.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Process calculi; Algebraic/coalgebraic models

1. Introduction

The design of globally distributed systems is more and more centered around exchange of messages. The main
advantages of message passing are its conceptual simplicity, minimal infrastructure requirements and its neutrality
with respect to back-ends and platforms of services. Both pi-calculus [15] and fusion calculus [19] convey the idea of
message passing in a distilled form and, thus, they seem promising candidates to model foundational aspects of such
a paradigm.

The fusion calculus has been introduced as a variant of the pi-calculus. It makes input and output operations
fully symmetric and enables a more general name matching mechanism during synchronisation. A fusion is a name
equivalence that allows to use interchangeably in a term all names in the same equivalence class. Computationally,
a fusion is generated as a result of a synchronisation between two complementary actions, and it is propagated to
processes running in parallel with the active one. Fusions are ideal for representing, e.g., forwarders for objects that
migrate among locations [12], or forms of pattern matching between pairs of messages.

In the fusion calculus, a fusion, as soon as it is generated, is immediately applied to the whole system and has
the effect of a (possibly non-injective) name substitution. The explicit fusion calculus [25,12] is a variant that aims at

� Research partially supported by the EU IST-FP6 16004 Integrated Project Sensoria.
∗

Corresponding author.
E-mail addresses: marzia.buscemi@imtlucca.it (M.G. Buscemi), ugo@di.unipi.it (U. Montanari).

1567-8326/$ - see front matter (2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2007.05.001

www.elsevier.com/locate/jlap
mailto:marzia.buscemi@imtlucca.it
mailto:ugo@di.unipi.it

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 79

guaranteeing asynchronous broadcasting of name equivalences to the environment. Explicit fusions are processes that
exist concurrently with the rest of the system and enable to freely use two names one for the other.

Structural operational semantics [1,20] is a well-established technique to provide process calculi and specification
languages with an interpretation. A transition system is inductively derived from a set of transition rules that describe
the behaviour of every construct of the language. Coalgebraic models can suitably represent transition systems. A
coalgebraic framework [21] presents several advantages: morphisms between coalgebras (cohomomorphisms) enjoy
the property of “reflecting behaviours” and thus they allow, for example, to characterise bisimulation equivalences as
kernels of morphisms and, in particular, bisimilarity as the kernel of the morphism to the final coalgebra. Also adequate
temporal logics and proof methods by coinduction fit nicely into the picture.

However, in the ordinary coalgebraic framework, the states of transition systems are seen simply as set elements,
i.e. the algebraic structure needed for composing programs and states is disregarded. Bialgebraic models take a step
forward in this direction: they aim at capturing interactive systems which are compositional. Roughly, bialgebras [23] are
structures that can be regarded as coalgebras on a category of algebras rather than on the category Set, or, symmetrically,
as algebras on a category of coalgebras. For them bisimilarity is a congruence, namely compositionality of abstract
semantics is automatically guaranteed.

When considering mobile interactive systems, like pi-calculus and fusion calculus, the ordinary coalgebraic approach
cannot be directly applied, since the generation of new names requires special conditions on the inference rules and
on the definition of bisimulations. The bialgebraic approach, instead, fits well: it is enough to consider the states as
forming an algebra of name permutations [16,17]. However, the interaction of structural axioms with inference rules
makes the application of the bialgebraic approach problematic, if more complex operations are taken into account. To
overcome this difficulty, in [4] it has been proved that calculi defined by De Simone inference rules and equipped with
structural axioms can be lifted to bialgebras, provided that axioms bisimulate. In the same paper, the approach has
been applied to a version of pi-calculus.

In this paper we apply the general theory presented in [4] to provide a bialgebraic model of fusion calculus with
explicit fusions. In such a model, the bisimilarity relation induced by the unique morphism to the final coalgebra
coincides with fusion hyperequivalence and it is a congruence with respect to the operations of the calculus. A key
contribution of this work is to give an account of explicit fusions through labelled transitions which, to our knowledge,
has previously been absent. We argue that this result does not only concern fusion calculi but it could fit within
theoretical foundations of languages based on pattern matching.

Since bisimilarity in the π -calculus fails to be a congruence due to input prefix, the model in [4] is compositional
only with respect to parallel composition and restriction; constants are introduced to representπ -agents whose out-most
operator is neither parallel composition nor restriction. Moreover, the theory in [4] does not apply to late and open
π -calculus as this would require the introduction of arbitrary (i.e., possibly non-injective) name substitutions.

Our present model of the fusion calculus, on the other side, is fully compositional with respect to the operations of
the calculus. This is accomplished by the introduction of explicit fusions into the underlying algebra. The combination
of explicit fusions and restriction allows to derive a name substitution operator which behaves like the standard
capture-avoiding substitution.

We introduce a permutation algebra enriched with the operations of the calculus plus constants modelling explicit
fusions. We then prove that the conditions required by [4] are satisfied. Remarkably enough, explicit fusions enable us
to model substitutions within our theory, while keeping essentially the same permutation algebra considered in [4] for
the pi-calculus. No non-injective substitution operations are introduced in the algebra: rather, their observable effects
are simulated by De Simone inference rules which saturate process behaviours, while still keeping the nice property
of asynchronous propagation typical of explicit fusions. We prove that the translation of fusion agents in our algebra
is fully abstract with respect to Parrow and Victor hyperequivalence. As in [26], closure with respect to substitution is
obtained by adding in parallel at each step any possible fusion.

Related work

Several approaches based on presheaves have been recently proposed as meta-models for nominal calculi (see [10,
9,13,14], among others). Presheaves are categories of functors from a given category to Set. In [10], for instance,
presheaves are considered over the category I of finite sets and injective functions while, in the most general case
of [14], they are taken over the category of relations and monotone functions. Our approach is analogous, since it relies

80 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

on a category of algebras and algebras can be seen as cartesian functors from certain cartesian categories (Lawvere
theories) to Set. In particular, in [11], finitely supported permutation algebras have been proved equivalent to sheaves
over I. On the coalgebraic side, our aim is simpler than [10], since fusion hyperequivalence is congruence, while
in the pi-calculus (early and late) bisimilarity is not a congruence and its congruence closure is not a bisimulation.
However, as far as we know, explicit fusions have not been specifically treated in any categorical setting. Mousavi and
Reiners [18] have proposed a syntactic format of structural axioms that guarantees bisimulation to be a congruence.
Testing our ‘bisimulation’ condition on axioms is more involving than performing their syntactic check. The format
required by [18], though, is too restrictive for us as, for instance, standard axioms like those for commutativity and
associativity are ruled out.

Structure of the paper

Section 2 contains the background on permutations, fusion calculus, and theory of bialgebras. In Section 3 we
define a permutation algebra for the fusion calculus, along with a transition system with an algebraic structure lts
and we prove that it can be lifted to a bialgebra. Moreover, we prove that fusion agents can be translated into terms
of our algebra and that such a translation is fully abstract with respect to fusion hyperequivalence. The complete
proof is reported in the appendix. Finally, Section 4 contains some concluding remarks and directions for future work.
A four-page abstract [5] of this work focuses on a fragment of the fusion calculus without replication and restriction.

2. Background

2.1. Names, fusion and permutations

We need some basic definitions and properties on names, fusions and permutations of names. We denote by N =
{x0, x1, x2, . . .} the infinite, countable, totally ordered set of names and we use x, y, z . . . to denote names. For R a
binary relation over N, by R� we denote the reflexive, symmetric and transitive closure of R with respect to N.

Definition 2.1 (fusions). Name fusions (or, simply, fusions) are total equivalence relations on N with only finitely many
non-singular equivalence classes. Fusions are ranged over by ϕ,ψ, We let:
• n(ϕ) denote {x : x ϕ y for some y /= x};
• τ denote the identity fusion (i.e., n(τ) = ∅);
• ϕ + ψ denote the finest fusion which is coarser than ϕ and ψ , that is (ϕ ∪ ψ)�;
• ϕ−z denote ϕ − ({z} × N ∪ N × {z}) ∪ {(z, z)};
• ϕ[x] denote the equivalence class of x in ϕ;
• ϕ � ψ denote that ϕ is finer that ψ , i.e., for all x ∈ N, ϕ[x] ⊆ ψ[x];
• {x = y} denote {(x, y), (y, x)}.

A name substitution is a function σ : N → N. We denote with σ ◦ σ ′ the composition of substitutions σ and σ ′;
that is, σ ◦ σ ′(x) = σ(σ ′(x)). We use σ to range over substitutions and we denote with [y1 �→ x1, . . . , yn �→ xn] the
substitution that maps xi into yi for i = 1, . . . , n and which is the identity on the other names. The identity substitution
is denoted by id.

A substitution σ agrees with a fusion ϕ if ∀ x, y : x ϕ y ⇔ σ(x) = σ(y). A substitutive effect of a fusion ϕ is a
substitution σ agreeing with ϕ such that ∀ x, y : σ(x) = y ⇒ x ϕ y (i.e., σ sends all members of the equivalence class
to one representative of the class).

Name permutations, ranged over by ρ, are bijective name substitutions. We abbreviate by [y ↔ x] the permutation
[y/x, x/y]. Given a permutation ρ, we define permutation ρ+1 as follows:

−
ρ+1(x0) = x0

ρ(xn) = xm

ρ+1(xn+1) = xm+1

Essentially, permutation ρ+1 is obtained from ρ by shifting its correspondences to the right by one position, except for
x0 which is not affected.

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 81

2.2. The fusion calculus

In this section we give an overview of the fusion calculus, which has been introduced in [19]. Here we consider a
monadic version of the calculus.

The fusion calculus agent terms, ranged over by P,Q, . . ., are closed (wrt variablesX) terms defined by the syntax:

P ::= 0
∣∣ π.P

∣∣ P |P ∣∣ (x) P
∣∣ recX.P

∣∣ X

where recursion is guarded,1 and prefixes, ranged over by π , are I/O actions or fusions:

π ::= x̄y
∣∣ xy

∣∣ ϕ

The occurrences of x in (x) P are bound and fusion effects with respect to x are limited to P ; also, in recX.P the
occurrences of the agent variableX are bound in P . Free names and bound names of agent term P are defined as usual
and we denote them with fn(P) and bn(P), respectively. We denote with n(P) and n(π) the sets of (free and bound)
names of agent term P and prefix π , respectively. Two agent terms are alpha equivalent if they only differ by a change
of bound names.

Definition 2.2. We define fusion agents as fusion calculus agent terms up to structural congruence ≡, that is the least
congruence satisfying the following axioms:

(alpha) P ≡ Q if P and Q are alpha equivalent

(par) P | 0 ≡ P P |Q ≡ Q |P P | (Q |R) ≡ (P |Q) |R
(res) (x) 0 ≡ 0 (x) (y) P ≡ (y) (x) P

(x) (P +Q) ≡ (x) P + (x)Q

(scope) P | (z)Q ≡ (z) (P |Q) where z /∈ fn(P)

We denote by F the set of all fusion agents.

Note that the axiom “(x) P ≡ P if x /∈ fn(P)” can be derived.

Definition 2.3. The actions an agent can perform, ranged over by γ , are defined by the following syntax:

γ ::= xy
∣∣ x(z)

∣∣ x̄y
∣∣ x̄(z)

∣∣ ϕ

and are called respectively free input, bound input, free output, bound output actions and fusions. Names x and y are
free in γ (fn(γ)), whereas z is a bound name (bn(γ)); moreover n(γ) = fn(γ) ∪ bn(γ). The notion of substitutive
effect is extended to actions by stating that the only substitutive effect of γ �= ϕ is id.

Definition 2.4. The family of transitions P
γ�−→ Q is the least family satisfying the laws in Table 1.

The crucial difference between the pi-calculus and the fusion calculus shows up in synchronisations: in the fusion
calculus, the effect of a synchronisation is not necessarily local, and it is regulated by the scope of the binder (x).

Example 2.5. The interaction between the agents uv.P and ux.Q results in a fusion of v and x. This fusion also
affects any further process R running in parallel, as illustrated below:

R | uv.P | ux.Q {x=v}�−→ R |P |Q
The binding operator (x) can be used to limit the scope of the fusion, that is:

R | (x) (uv.P | ux.Q) τ�−→ R | [v/x](P |Q)

1 Recursion is guarded in P iff in every subterm recX.Q of P , variable X appears within a context π._.

82 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

Table 1
LTS for fusion

(F-Pre) π.P
π�−→ P (F-Par)

P
γ�−→ Q

P |R γ�−→ Q |R
if bn(γ) ∩ fn(R) = ∅

(F-Com)
P

x̄y�−→ P ′ Q
xz�−→ Q′

P |Q {y=z}�−→ P ′ |Q′ (F-Scope)
P

ϕ�−→ Q zϕ x, z �= x

(z) P
ϕ−z�−→ [x/z]Q

(F-Open)
P

az�−→ Q a /∈ {z, z̄}
(z) P

a(z)�−→ Q

(F-Pass) P
γ�−→ P ′

(z) P
γ�−→ (z) P ′ z /∈ n(γ)

(F-Rec)
P [recX.P/X] γ�−→ Q

recX.P
γ�−→ Q

(F-Cong)
P ≡ P ′ P ′ γ�−→ Q′ Q′ ≡ Q

P
γ�−→ Q

Definition 2.6 (fusion bisimilarity). A fusion bisimulation is a binary symmetric relation S between fusion agents such
that P S Q implies:

If P
γ�−→ P ′ with bn(γ) ∩ fn(Q) = ∅ then Q

γ�−→ Q′ and σ(P ′) S σ(Q′) for some fusion agent Q′ and
substitutive effect σ of γ .
P is bisimilar to Q, written P

.∼ Q, if P S Q for some fusion bisimulation S.

Definition 2.7 (hyperequivalence). A hyperbisimulation is a substitution closed fusion bisimulation, i.e., a fusion
bisimulation S with the property that P S Q implies σ(P) S σ(Q) for any substitution σ . Two agents P and Q are
hyperequivalent, written P ∼he Q, if they are related by a hyperbisimulation.

2.3. Bialgebras

In this section we present the relevant definitions and results about coalgebras and bialgebras. We start reviewing
notions about algebras and algebraic specifications.

We recall that, for 	 a signature, a 	-algebra A = 〈|A|, (opA)op∈	〉 consists of a carrier set |A| and a family of
operations such that opA : |A|n → |A| if op ∈ 	 of arity n. We assume to have a countable set X of the variables
that can be used in the terms of the algebra. A 	-homomorphism (or simply a morphism) between two 	-algebras
A and B is a function h : |A| → |B| that commutes with all the operations in 	, namely, for each operator op ∈ 	
of arity n, we have opB(h(a1), . . . , h(an)) = h(opA(a1, . . . , an)). We denote by Alg() the category of 	-algebras
and 	-morphisms. A 	-algebra A satisfies an algebraic specification
 = 〈	,E〉, if A satisfies all axioms in E. In
this case, A is called a
-algebra. The category of
-algebras and homomorphisms is the full subcategory Alg(
) ⊆
Alg().

The basic idea behind SOS specifications is to specify a transition relation by induction over the structure of the
system’s states. In order to make explicit this structure, rather than ordinary labelled transition systems we consider
transition systems whose sets of states have an algebraic structure.

Definition 2.8 (transition systems). Let
 = 〈	,E〉 be an algebraic specification, and L be a set of labels. A (labelled)
transition system over
 andL is a pair lts = 〈A,−→lts〉 whereA is a nonempty
-algebra and −→lts ⊆ |A| × L× |A|
is a relation. For 〈p, l, q〉 ∈ −→lts we write p

l−→lts q.
Let lts = 〈A,−→lts〉 and lts′ = 〈B,−→lts′ 〉 be two transition systems. A morphism h : lts → lts′ of transition

systems over
 and L (lts morphism, in brief) is a
-morphism h : A → B such that p
l−→lts q implies f (p)

l−→lts′
f (q).

The notion of bisimulation and congruence on transition systems with an algebraic structure are the classical ones.
Given an algebraic specification
 = 〈	,E〉 and a set of labels L, a collection of SOS rules can be regarded as a

specification of those transition systems over
 and L that have a transition relation closed under the given rules.

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 83

Definition 2.9 (SOS rules). Given an algebraic specification
 = 〈	,E〉 and a set of labelsL, a sequent p
l−→ q (over

L and
) is a triple where l ∈ L is a label and p, q are 	-terms with variables in a given set X. An SOS rule r over

and L takes the form:

p1
l1−→ q1 · · · pn ln−→ qn

p
l−→ q

where pi
li−→ qi for all i = 1, . . . , n as well as p

l−→ q are sequents.
We say that transition system lts = 〈A,−→lts〉 satisfies a rule r like above if each assignment to the variables in X

that is a solution2 to pi
li−→ qi for i = 1, . . . , n is also a solution to p

l−→ q.

Definition 2.10 (transition specifications). A transition specification is a tuple� = 〈
,L,R〉 consisting of an algebraic
specification
, a set of labels L, and a set of SOS rules R over
 and L. We abbreviate � = 〈
 = 〈	,∅〉, L,R〉 by
� = 〈	,L,R〉.

A transition system over � is a transition system over
 and L that satisfies rules R.

It is well known that ordinary transition systems (i.e., transition systems whose states do not have an algebraic
structure) can be represented as coalgebras for a suitable functor [21].

Definition 2.11 (coalgebras). Let F : C → C be a functor on a category C. A coalgebra for F , or F -coalgebra, is a
pair 〈A, f 〉 whereA is an object and f : A → F(A) is an arrow of C. A F -cohomomorphism (or simply F -morphism)
h : 〈A, f 〉 → 〈B, g〉 is an arrow h : A → B of C such that

h; g = f ;F(h) (1)

We denote with Coalg(F) the category of F -coalgebras and F -morphisms.

Proposition 2.12. For a fixed set of labels L, let PL : Set → Set be the co-pointed functor defined on objects as
PL(X) = X ∪ P(L×X), where P denotes the countable powerset functor, and on arrows as PL(h)(S) = {〈l, h(p)〉 |
〈l, p〉 ∈ S ∩ (L×X)} ∪ {h(p) | p ∈ S ∩X}, for h : X → Y and S ⊆ (L×X)+X. Then (co-pointed) PL-
coal gebras f such that

f (x) ∩X = {x}, ∀x ∈ X (2)

are in a one-to-one correspondence with transition systems3 on L, given by flts(p) = {〈l, q〉 | p l−→lts q} ∪ {p} and,

conversely, by p
l−→ltsf q if and only if 〈l, q〉 ∈ f (p).

Definition 2.13 (De Simone format). Given an algebraic specification
 = 〈	,E〉 and a set of labels L, a rule r over
� and L is in (unary) De Simone format if it has the form:

{xi li−→ yi | i ∈ I }
op(x1, . . . , xn)

l−→ p

where op ∈ 	, I ⊆ {1, . . . , n}, p is linear and the variables yi occurring in p are distinct from variables xi , except for
yi = xi if i /∈ I .

A De Simone proof of a sequent s
l−→ t from premises {xi li−→ yi}i∈I is a proof of s

l−→ t from {xi li−→ yi}i∈I
that is obtained using only De Simone rules in R and without using axioms in E.

The following results are due to Turi and Plotkin [23] and concern bialgebras, that is, coalgebras in Alg(). As
noted in the introduction, bialgebras enjoy the property that the unique morphism to the final bialgebra, which exists

2 Given h : X → A and its extension ĥ : T(,E)(X) → A, h is a solution to p
l−→ q for lts if and only if ĥ(p)

l−→lts ĥ(q).
3 Notice that this correspondence is well defined also for transition systems with sets of states, rather than with algebras of states as required in

Definition 2.8.

84 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

under reasonable conditions, induces a bisimulation that is a congruence with respect to the operations. For our needs,
it will be enough to recall a simplified theory with De Simone rules, rather than in GSOS format.

Proposition 2.14 (lifting of PL). Let � = 〈	,L,R〉 be a transition specification with De Simone rules. Define P� :
Alg() → Alg() as follows:
• |P�(A)| = PL(|A|);
• If t ∈ A then t ∈ P�(A);
• whenever

{
xi

li−→ yi | i ∈ I}

op(x1, . . . , xn)
l−→ p

∈ R then

〈li , pi〉 ∈ Si, i ∈ I qj ∈ Sj , qj is not a pair, j /∈ I
〈l, p[pi/yi, i ∈ I, qj /yj , j /∈ I]〉 ∈ opP�(A)(S1, . . . , Sn)

;

• if h : A → B is a morphism in Alg() then P�(h) : P�(A) → P�(B) and P�(h)(S) = { 〈l, h(p)〉 | 〈l, p〉 ∈ S ∩
(L× |A|) } ∪ {h(p) |p ∈ S ∩ |A| }.

Then P� is a well-defined functor on Alg().

Corollary 2.15. Let � = 〈	,L,R〉 be a transition specification with rules R in De Simone format.
Any morphism h : f → g in Coalg(P�) entails a bisimulation ∼h on ltsf , that coincides with the kernel of the

morphism. Bisimulation ∼h is a congruence for the operations of the algebra.
Moreover, the category Coalg(P�) has a final object. Finally, the kernel of the unique P�-morphism from f to the

final object of Coalg(P�) is a relation on the states of f which coincides with bisimilarity on ltsf and is a congruence.

Note that the above corollary assumes that a PL-coalgebra can be lifted to a P�-coalgebra. Indeed, such assumption
is obvious in the particular case of f : A → P�(A), with A = T	 and f unique by initiality, namely when A has no
structural axioms and no additional constants, and ltsf is the minimal transition system satisfying �. The following
result is due to [4] and generalises the theory described so far to transition systems with structural axioms.

Theorem 2.16 (initial lts). Let� = 〈
 = 〈	,E〉, L,R〉 be a transition specification with rulesR in De Simone format,
B be a
-algebra and LTS�,B be a class of transition systems lts�,B = 〈B, �−→lts�,B〉 over �.

Then, there exists an initial transition system lts�,B in LTS�,B such that for all lts�,B in LTS�,B and for all p ∈ B,

p
l�−→lts�,B q implies p

l�−→lts�,B q.
Furthermore, the transitions of lts�,B can be derived using the rules R and the following additional rule:

(Struct)
t1 =E t

′
1 t ′1

l�−→lts�,B t
′
2 t ′2 =E t2

t1
l�−→lts�,B t2

where terms t1, t ′1, t2, t ′2 are in T	 .

Theorem 2.17. Let � = 〈
 = 〈	,E〉, L,R〉 be a transition specification with rules R in De Simone format, B be a

-algebra and glts�,B be the coalgebra associated to the initial transition system lts�,B, as specified by Theorem 2.16.
Let:
• A = T	 and h : A → B be the unique morphism in Alg() from the initial object;
• f : A → P�(A) be the unique arrow in Alg() from the initial object.

Then, the coalgebra f satisfies the condition 2 of Proposition 2.12.
Let us assume that for all equations t1 = t2 in E, with free variables {xi}i∈I , we have De Simone proofs as follows

(for t1, t ′1, t2, t ′2 terms of T):
xi

li−→ yi i ∈ I
t1

l−→ t ′1
implies

xi
li−→ yi i ∈ I
t2

l−→ t ′2
and t ′1 =E t

′
2 (3)

and viceversa, only using the rules inR. Then, glts�,B can be lifted to be a coalgebra on Alg(). Moreover, bisimilarity
on lts�,B is a congruence.

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 85

Proof (Hint). The proof mainly consists in proving that =E is a bisimulation. The thesis then follows by noting that h
is surjective and by the fact that f , h, and PL(h) can be lifted from Set to Alg() and, thus, so can glts�,B . �

3. A transition system for fusion calculus

In this section, following the approach adopted in [4] for the pi-calculus, we provide a transition system ltsF for the
fusion calculus and apply the general result recalled in Section 2.3 to lift ltsF to a bialgebra.

We first define a permutation algebra [4,16] enriched with the operations of fusion calculus and with constants
modelling explicit fusions x = y. The introduction of explicit fusions is intended to model substitutive effects of
fusion calculus while keeping essentially the same permutation algebra as in [4]. Indeed, an explicit fusion x = y

allows to represent the global effect of a name fusion resulting from a synchronisation without need of replacing x to y
or viceversa in the processes in parallel: names x and y can be used interchangeably in the context x = y | _. In practice,
rather than applying to an agent the substitutive effect of a fusion, the agent is run in parallel with the fusion itself. For
this reason, the combination of explicit fusions and permutations is enough to accommodate (possibly, non-injective)
substitutions within the permutation algebra model.

Definition 3.1. A signature 	F for the fusion calculus is defined as follows:

	F ::= 0
∣∣ π._

∣∣ _ | _
∣∣ ν. _

∣∣ ρ_
∣∣ δ. _

∣∣ x = y
∣∣ crecX.P

with prefixes π ::= x y, xy, ϕ, and for each fusion agent recX.P .

We adopt the convention that operators have decreasing binding power, in the following order: π , ρ, |, ν and δ.
Thus, for example, ν. δ. ρp |π.q means ν. (δ. ((ρp) | (π.q))).

Restriction ν corresponds to (x) in fusion calculus. The argument of ν is omitted because we assume that the
extruded or restricted name in ν is always x0. In fact, this idea resembles de Bruijn indexes, where the innermost bound
variable is always denoted by index 0. Operators ρ are generic, finite name permutations, as described in Section 2.1;
δ is meant to represent the substitution [xi �→ xi+1], for i = 0, 1, Of course, this substitution is not finite, but, at
least in the case of an ordinary term p, it replaces a finite number of names, i.e., the free names of p.

The signature also contains a constant crecX.P for each fusion agent recX.P . Further on, we will equip every
constant with a set of operational rules that mimic any possible transition the corresponding agent can perform.

Definition 3.2 (permutation algebra for fusion calculus). A permutation algebra BF for fusion calculus is the initial
algebra BF = T	F ,EF where:
• 	F is the signature defined above;
• EF is the set of axioms below:

(group) (ρ′ ◦ ρ)p .= ρ′(ρp) id p
.= p

(par) p | 0 .= p p | q .= q |p p | (q | r) .= (p | q) | r
(res) ν. 0 .= 0 ν. ((δ. p) | q) .= p | ν. q ν. ν. [x0 ↔ x1]p .= ν. ν. p

(perm) ρ 0 .= 0 ρ(π.p)
.= ρ(π).ρp ρ(p | q) .= ρp | ρq

ρν. p
.= ν. ρ+1p ρ crecX.P

.= cρ(recX.P)

(delta) δ. 0 .= 0 δ. (π.p)
.= δ (π).δ. p δ. p | q .= (δ. p) | δ. q

δ. ν. p
.= ν. [x0 ↔ x1]δ. p δ. ρp

.= ρ+1δ. p

δ. crecX.P
.= cδ (recX.P)

(fus) x = x
.= 0 ν. (x0 = x)

.= 0 ρ(x = y)
.= ρ(x) = ρ(y)

δ. x = y
.= δ (x) = δ (y)

In the above axioms, by ρ(z) and δ (z), for z = x, y, we mean the syntactical application of permutations ρ and
δ, respectively, to z; similarly, for ρ(π) and δ (π). Axioms (par) and (res) correspond to the analogous axioms for
fusion calculus and, in particular, the second (res) rule is the counterpart of the scope extrusion law. Axioms (perm)

86 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

and (delta) rule how to invert the order of operators among each other, following the intuition that ν and δ decrease
and increase variable indexes, respectively. By axioms (fus) permutations can be syntactically applied to explicit
fusions and fusions of syntactically equal names are discarded. The other expected properties like ν. δ. p = p and
[x0 ↔ x1]δ. δ. p = δ. δ. p can be derived from these axioms.

Note that the above axioms can be applied from left to right to reduce every term p into a canonical form
in which ρ and δ only occur as syntactically applied to explicit fusions and prefixes. For example, a term p =
ρ
(
ν. x2x0.ϕ.0 | δ. x 2x3.0 | x3 = x4 | crecX.Q

)
, with ρ = [x1 ↔ x4], can be reduced to the normal form p′ =

ν. x5x0.ρ(ϕ).0 | x 3x1.0 | x3 = x1 | cρ(recX.Q)
)
.

We give below a translation of fusion agents into terms of algebra BF . Then, we define a transition system lts for
the algebra BF and show that axioms in EF satisfy the bisimilarity condition for lifting coalgebras to bialgebras, as
required by Theorem 2.17.

Definition 3.3 (translation [[·]]). We define a translation of fusion agents [[·]] : F → |BF | as follows:

[[0]] = 0 [[π.P]] = π.[[P]] [[P |Q]] = [[P]] | [[Q]]
[[(x) P]] = ν. [δ(x) ↔ x0]δ. [[P]] [[recX.P]] = crecX.P

The translation is straightforward, except for restriction ν that gives the flavour of the De Bruijn notation. The idea
is to split standard restriction in three steps. First, one shifts all names up-wards to generate a fresh name x0, then
swaps δ (x) and x0, and, finally, applies restriction on x0, which now stands for what ‘used to be’ x. For example,
the translation of a fusion agent P = (x2) ({x2 =x4}. x̄7x2. 0) is [[P]] = ν. [x0 ↔ x3]δ. {x2 =x4}. x̄7x2.0 = ν. [x0 ↔
x3]{x3 =x5}. x̄8x3.0 = ν. {x0 =x5}. x̄8x0.0.

Theorem 3.4. Let P and Q be two fusion agents. If P ≡ Q then [[P]] .= [[Q]].

Theorem 3.5. Let [[·]] be the translation defined in Def. 3.3 and let BF be the algebra BF without explicit fu-
sions. Let {[·]} : |BF | → � be a translation defined as follows: {[0]} = 0; {[π.p]} = π.{[p]}; {[p|q]} = {[p]}|{[q]}; {[ν. p]} =
(�xi) ν ()[δ (xi) ↔ x0]{[p]}, where xi is chosen such that δ (xi) /∈ fn({[p]}); {[crecX.P]} = recX.P ; {[ρp]} = ρ({[p]});
{[δ. p]} = δ ({[p]}). Then, for every fusion agent P , {[[[P]]]} ≡ P , and for every term p in B̄F , [[{[p]}]] .= p.

Definition 3.6. We let LF be the set of labels LF = �×�, where � = {xy, x y, x, x, ϕ, − | x, y, n(ϕ) ∈ N}
and − denotes a null action, and � is the set of all fusions over N. We let α, β, . . . range over �.

The correspondence between the left components of the labels LF and the actions of the fusion calculus is
the obvious one for xy, x y, ϕ. Bound input and bound output are denoted by x and x, respectively, where the
bound name is implicitly assumed to be x0. Unlike standard actions in transition systems, the null action does
not represent any observation that the environment can perform on a process. The reason for introducing the null
action is mainly technical. In fact, we include explicit fusions among the terms of our algebra although they be-
have differently from standard processes. Thus, as we will see below, we need to introduce special transitions
like

x = y
(−, x=y)−−−−→ x = y

that are not intended to model the evolution of a system but rather to specify the unifications that are available to the
processes running in parallel.

By ρ(α), for α /= −, we denote the syntactic application of ρ to the names of α; by δ (α) and ν (α), for α /= −, we
denote the labels obtained from α by respectively applying substitutions δ and ν to its names, where ν (xi+1) = xi ,
δ (xi) = xi+1, and in ν (ϕ) the equivalence class of x0 is a singleton. Moreover, ρ(−) = δ (−) = ν (−) = −. For
instance, [x3 ↔ x5]x̄5x1 = x̄3x1, δ (x 1x3) = x 2x4 and, for ϕ = {x0 = x2 = x5}, ν (ϕ) = {x1 = x4}.

The following notion of entailment relation will be useful in the definition of the operational rules below.

Definition 3.7. The entailment relation � is defined as follows: ϕ � α = β if α, β are not fusions and σ(α) = σ(β),
for a substitutive effect σ of ϕ; ϕ � α = β if α, β are fusions and ϕ + α = ϕ + β.

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 87

Table 2
Basic SOS rules

(Rho)
p
(α, ϕ)−−→ q α /= x, x̄

ρp
(ρ(α), ρ(ϕ))−−−−−−→ ρq

(Rho′) p
(α, ϕ)−−→ q α = x̄, x

ρp
(ρ+1(α), ρ+1(ϕ))−−−−−−−−−−→ ρ+1q

(Del)
p
(α, ϕ)−−→ q α /= x, x̄

δ. p
(δ (α), δ (ϕ))−−−−−−→ δ. q

(Del′) p
(α, ϕ)−−→ q α = x̄, x

δ. p
(δ (α), δ (ϕ))−−−−−−→ [x0 ↔ x1]δ. q

(Par)
p
(α, ϕ)−−→ q α /= x, x̄,−
p | r (α, ϕ)−−→ q | r

(Par′) p
(α, ϕ)−−→ q α = x, x̄

p | r (α, ϕ)−−→ q | δ. r

(Res)
p
(δ (α), ϕ)−−−−→ q α = x̄y, xy,−

ν. p
(α, ν (ϕ))−−−−→ ν. q

(Res′) p
(δ (α), ϕ)−−−−→ q α = x̄, x

ν. p
(α, ν (ϕ))−−−−→ ν. [x0 ↔ x1]q

(Open)
p
(xx0, δ (ϕ))−−−−−−→ q x �= x0

ν. p
(x, δ (ϕ))−−−−→ q

(Scope)
p
(ϕ,ψ)−−→ q

ν. p
(ν (ϕ), ν (ψ))−−−−−−−→ ν. q

(Com)
p1

(xy, ϕ)−−−→ q1 p2
(x̄z, ϕ)−−−→ q2

p1 |p2
(y=z, ϕ)−−−−→ q1 | q2 | y = z

(Com′) p1
(xy, ϕ)−−−→ q1 p2

(δ (x̄), δ (ϕ))−−−−−−→ q2

p1 |p2
(τ , ϕ)−−→ q1 | ν. (q2 | δ (y) = x0)

(Close)
p1

(x, ϕ)−−→ q1 p2
(x̄, ϕ)−−→ q2

p1 |p2
(τ , ν (ϕ))−−−−→ ν. (q1 | q2)

(Rec)
[[P [recX.P /X]]] (α, ϕ)−−→ q

crecX.P
(α, ϕ)−−→ q

There is also a rule analogous to Rule (Open) but with output actions; rule (Com′) has a symmetric counterpart.

Definition 3.8 (transition specification �F). The transition specification �F is the tuple 〈	F ,LF ,RF 〉, where the
signature	F is as in Definition 3.2, labels LF are defined in Definition 3.6 and RF is the set of SOS rules in Tables 2,

3 and 4. Transitions take the form p
(α, ϕ)−−→ q, where (α, ϕ) ranges over L.

The rules in Table 2 concern permutations, restriction, parallel composition and replication, and are essentially the
same as those given in [4] for the pi-calculus. The most interesting among them are those with bound I/O actions ((Rho′),
(Del′), (Par′), (Res′), and (Com′)): they follow the intuition that substitutions on the source of a transition must be reflected
on its target by restoring the extruded or fresh name to x0. Thus, for example, rule (Del′) applies δ to q and then permutes
x0 and x1, in order to have the extruded name back to x0. Conversely, rule (Res′) permutes x0 and x1 to make sure that
the restriction operation applies to x0 and not to the extruded name x1. In rule (Par′) side condition bn(α) ∩ fn(r) = ∅
is not necessary, since δ shifts any name in r to the right and, thus, x0 does not appear in δ. r . Note that neither (Par)

nor (Par′) are applied with α = −. In fact, the transitions performed by the combination of explicit fusions with each
other and with other terms are regulated by the rules in Table 3.

Axiom (Rec) is an axiom schema, that is, for each constant crecX.P , there is an axiom instance that provides a
concrete way to build all the possible transitions that crecX.P undergoes; the fact that recursion is guarded ensures
(Rec) to be well defined. Note that any axiom instance is in De Simone format. Moreover it can be proved that, for each
fusion agent P , the number of constants and associated axioms (Rec) needed in all derivations of [[P [recX.P /X]]] is
finite, up to name permutations. The proof is analogous to the proof given in [4] for the pi-calculus.

The rules in Tables 3 are suited to deal with explicit fusions. Transitions of the form p
(−, ϕ)−−→ q are special transitions,

which are meant to express that two names in the same equivalence class of ϕ can be used interchangeably in p. By
rule (Exp) explicit fusions are propagated and by rules (Par1), (Par′

1), and (Parf) they are combined with each other and
with other agents running in parallel. Rule (Nil) is justified by the fact that we expect ν. (x = x0) be bisimilar to 0, in
accordance with the semantics of the explicit fusion calculus. In fact, since neither in ν. (x = x0) nor in 0 there is a

pair of names that can be used one for the other, both the terms only have a transition
(−, τ)−−→.

According to the rules in Table 4, a term can perform a non-null action as long as the action in the label can be
‘unified’ with the prefix; the unification ϕ is included in the target term and any unification ϕ′ which is smaller than ϕ

88 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

Table 3
SOS rules for explicit fusions

(Exp) x = y
(−, ϕ)−−→ x = y x /= y; ϕ � x = y (Nil) 0

(−, τ)−−→ 0

(Par1)
p1

(α, ϕ1)−−−→ q1 p2
(−, ϕ2)−−−→ q2 α = x̄y, xy, ϕ

p1 |p2
(β, ϕ′)−−−→ q1 | q2

ϕ′ � ϕ1 + ϕ2; ϕ1 + ϕ2 � α = β

(Par′
1)

p1
(α, ϕ1)−−−→ q1 p2

(−, ϕ2)−−−→ q2 α = x̄, x

p1 |p2
(β, ϕ′)−−−→ q1 | δ. q2

ϕ′ � ϕ1 + δ (ϕ2); ϕ1 + δ (ϕ2) � α = β

(Parf)
p1

(−, ϕ1)−−−→ q1 p2
(−, ϕ2)−−−→ q2

p1 |p2
(−, ϕ′)−−−→ q1 | q2

ϕ′ � ϕ1 + ϕ2

Table 4
SOS rules for closure wrt fusion contexts

(Pre) xy.p
(x′y′, ϕ′)−−−−→ p |ϕ ϕ′ � ϕ; ϕ � xy = x′y′

(Pre′) xy.p (δ (x
′), δ (ϕ′))−−−−−−−→ (δ. (p |ϕ)) | x0 = δ (y) ϕ′ � ϕ; ϕ � x = x′

(Fus) ϕ.p
(ϕ′, ψ ′)−−−→ p |ψ + ϕ ψ ′ � ψ; ψ � ϕ = ϕ′

Rules (Pre), (Pre′) are analogous with output actions.

is observed as a ‘side-effect ’. For example, in rule (Pre) the prefix xy and the action x′y′ must be identified by a name
fusion ϕ (ϕ � xy = x′y′) and the right-hand component of the label is any fusion ϕ′ such that ϕ′ � ϕ.

As we will see below, the rules in Table 4 guarantee that the associated bisimilarity is preserved by closure with
respect to fusions running in parallel. As an example, consider the term p = x y.y w.0. By rule (Pre) p can take any of
the following steps:

p
(x y, τ)−−−→ y w.0 p

(z y, τ)−−→ y w.0 | z = x p
(x ′y′, ψ)−−−−→ y w.0 |ϕ

for all ϕ, for all x′, y′ such that ϕ � xy = x′y′, and for all ψ such that ψ � ϕ.
The presence of two rules for I/O prefixes, (Pre) and (Pre′), is required in order to have a fully abstract translation of

fusion agents into terms of the algebra, as shown in the following Example 3.9. Note that all side conditions of the
rules in Tables 3 and 4 are meant to ensure closure of process behaviours with respect to the explicit fusions. This
form of saturation is formalised in Proposition 3.12. Note that the rules in Tables 2, 3 and 4 yield an infinite branching
transition system.

Example 3.9. Consider two fusion agents P = (x2) ({x2 =x4}. x̄7x2. 0) and Q = τ . x̄7x4. 0. Of course, P and Q
are hyperequivalent. Let us now translate P and Q in terms of algebra BF : [[P]] = ν. {x0 =x5}. x̄8x0.0 and [[Q]] =
τ .x̄7x4.0. The terms [[P]] and [[Q]] have the same transitions. Indeed, the only possible transitions of [[P]] are in the

form P
(τ,ψ ′)−−→ ν. (x̄8x0.0 | x0 = x8) |ψ , for any ψ and ψ ′ such that ψ ′ � ψ ; thus, they can be mimicked by [[Q]] (τ , ψ

′)−−→
x̄7x4.0 |ψ . Next, suppose ν. (x̄8x0. 0 | x0 =x8) |ψ (x̄8, ϕ

′)−−−→ x0 = x5 |ψ |ϕ with ϕ′ � ϕ. By rule (Pre′), x̄7x4.0 also have
the same transition.

Proposition 3.10. Rules R are in De Simone format.

In virtue of the above proposition, the hypotheses of Theorem 2.16 are satisfied and, thus, there exists the initial
transition system lts�F ,BF . In the following, we will abbreviate lts�F ,BF by ltsF and its associated notion of bisimilarity
∼lts�F ,BF

by ∼F .

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 89

We remark that the bisimilarity ∼F is very close in spirit to the inside-outside bisimulation defined in [25], which
satisfies the following properties: (1) two equivalent terms must contain the same explicit fusions and (2) two equivalent
names must behave in the same way under explicit fusions contexts.

We now introduce a notion of equivalence relation Eq(p), induced by the explicit fusions in a term p. The notation
given for fusions in Def. 2.1 also applies to Eq(p): this holds in particular for ν(Eq(p)), δ (Eq(p)), and Eq(p) � α = β.

Definition 3.11. Let p be a term of algebra B. The equivalence relation Eq(p) obtained as the sum of all explicit
fusions in p is inductively defined as follows:

Eq(0) = τ Eq(π.p) = τ Eq(p | q) = Eq(p)+ Eq(q)

Eq(ν. p) = ν (Eq(p)) Eq(ρp) = ρ(Eq(p)) Eq(δ. p) = δ (Eq(p))

Eq(x = y) = {x = y} Eq(crecX.P) = τ

For example, forp = (x = y) | (y = z) |p′, Eq(p) = {x = y = z} + Eq(p′)while, forq = x3x2.0 | ν. (x4 = x0 | x4 =
x6), Eq(q) = x3 = x5.

Proposition 3.12

1. If p
(α, ϕ)−−→ q then p

(β, Eq(p)+ϕ)−−−−−−→ q, for all β such that Eq(p)+ ϕ � α = β.

2. If p
(α, ϕ)−−→ q then p

(α,ψ)−−→ q, for all ψ such that ψ � ϕ.

Example 3.13

• The terms p1 = (x = y) | (y = k) | p and p2 = (x = y) | (x = k) | p have the same transitions. For instance, if

p1
(α, y=k)−−−→ then, by rules (Exp) and (Parf), p2

(α, ϕ)−−→, for any ϕ � x = y + x = k and, in particular, for ϕ = y = k.

• Let p = x̄y.p1 | zk.p2. By rules (Pre) and (Com), p
(y=k, ϕ)−−−→ p1 |p2 |ψ | y = k, for all ϕ and ψ such that x = z � ψ

and ϕ � ψ + (y = k); in other words, a synchronisation in p can take place in any context where x and z can be
used interchangeably and, moreover, any ‘smaller’ fusion ϕ can be observed.

Theorem 3.14. If we consider�F as transition specification�, BF as algebra B and ltsF as initial transition system
then Condition 3 in Theorem 2.17 holds.

Proof. See the appendix. �

Corollary 3.15. The coalgebra gltsF can be lifted to be a bialgebra in Alg(F) and, thus, bisimilarity in ltsF is a
congruence.

Proof. It follows by Theorems 3.14 and 2.17. �

Our next claim is that the translation [[·]] of fusion agents into terms of the permutation algebra BF is fully abstract
with respect to hyperequivalence. Here we provide the reader with some intuition behind the proof. The formal proof
is given in the appendix.

Theorem 3.16. Let P and Q be two fusion agents. Then, P ∼he Q iff [[P]] ∼F [[Q]].

Proof (Hint). The proof relies on the definition of three intermediate transition systems and their notions of bisimulation,
which aim at providing a notion of equivalence closed with respect to substitutions, akin to fusion hyperequivalence.
We briefly introduce the transition systems and the associated equivalence relations; the main features of each of them
are summarised in Table 5.

The first transition system lts1 is defined by the rules given in Table B.1. The first group of rules is similar to those
in Table 2, while rules for prefixes ((Pre), (Pre′), and (Fus)) do not consider all the possible fusions running in parallel
and, thus, they differ from those given in Table 4. In fact, the aim of lts1 is to ensure saturation of behaviours of a term

90 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

Table 5
Transition systems summary

lts1 lts2 lts3 ltsF

Fusion combination and propagation (Eq) (Eq) (Eq) (Exp), (Nil), (Par1), (Par′
1), (Parf)

Closure wrt fusions in parallel no (Ctx) (Pre), (Pre′), (Fus) (Pre), (Pre′), (Fus)

Correspondence with fusion calculus ∼1 = .∼ ∼2 = ∼he ∼3 = ∼he ∼F = ∼he

only with respect to the explicit fusions contained in the term, but lts1 is not intended to guarantee that its associated
bisimilarity is preserved by closure with respect to fusions contexts. Moreover, lts1 contains a rule

(Eq)
p
α−→1 p

′ Eq(p) � α = β

p
β−→1 p

′

which replaces the rules for propagation and combination of explicit fusions in Table 3. The fact that (Eq) has the same
effect of the rules in Table 3 easily follows by observing that by (Eq) lts1 enjoys a special case of the saturation property

(Proposition 3.12.1), disregarding ϕ. Thus, for example, x = y | x̄z. 0 has a transition
x̄z−→1 as well as

ȳz−→1 . The notion
of bisimilarity ∼1 is the standard one, except for the fact that bisimilar terms are also required to contain the same
explicit fusions. Our first claim is that, for P and Q two fusion agents, P

.∼ Q if and only if [[P]] ∼1 [[Q]], being
.∼

the notion of fusion bisimulation given in Definition 2.6.
Next, we define a second transition system lts2 by adding to lts1 a rule for closing with respect to fusions in parallel:

(Ctx)
p |ϕ α−→1 q

p
α,ϕ−→2 q

Bisimilarity ∼2 is analogous to ∼1 (with −→2 in place of −→1). We argue that, P ∼he Q if and only if [[P]] ∼2 [[Q]],
where ∼he denotes fusion hyperequivalence. The intuition behind this result is that we are able to model in ∼2 closure
with respect to substitutions, by considering any possible fusion context (rule (Ctx)).

The third transition system lts3 is defined by the rules in Table 2 and 4 plus rule

(Eq)
p
(α, ϕ)−−→3 p

′ Eq(p) � α = β

p
(β, ϕ)−−→3 p

′

Bisimilarity ∼3 is analogous to ∼2 (−→3 replaces −→2).
The proof of the theorem is concluded by showing that ∼3 is equivalent to both ∼2 and ∼F . As to the equivalence

of ∼2 and ∼3, the intuition is that ∼2 and ∼3 are both contained in ∼1 and are preserved by fusion contexts: this is
achieved in lts2 by means of rule (Ctx), while in lts3 by the rules for prefixes in Table 4.

Finally, the equivalence of ∼3 and ∼F follows from the fact that lts3 satisfies the saturation property stated in
Proposition 3.12, by means of the combined use of rules in Table 4 and (Eq). �

4. Conclusions

In this paper, we have provided a bialgebraic model of the fusion calculus, such that the bisimilarity relation induced
by the unique morphism to the final coalgebra coincides with fusion hyperequivalence and it is a congruence with
respect to the operations of the calculus. Specifically, we have introduced a permutation algebra with the operations
of the fusion calculus along with constants modelling explicit fusions and recursion. Subsequently, we have defined
a transition system for the enriched permutation algebra and we have proved that the conditions required by the
result presented in [4] for lifting calculi with structural axioms to bialgebras are satisfied. Unfortunately, the proposed
transition system is infinite branching. We plan to develop an alternative symbolic transition system to cope with this
problem.

We would also like to investigate whether our approach can be applied to the pi-calculus open bisimulation [22] and
to generalisations of the fusion calculus, such as D-Fusion [2] and U-Calculus [3]. We argue that the theory developed
in [4] cannot be straightforwardly applied, because these extended calculi exploit a notion of ‘distinction’ to express
that two names in a process cannot be fused. Our proposal is to cast distinctions within our model following the

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 91

approach developed in [6] for generalising name fusions to arbitrary constraints, and to extend the above theory with
types, by defining an underlying multi-sorted permutation algebra, whose sorts are the distinctions. This is in line with
the approach of [14], where distinctions are represented as objects of the category over which functors are taken.

We are also interested in studying the relation with other meta-models of nominal calculi and, in particular, with
the approaches based on presheaf categories.

A further challenge would be to consider general substitutions (on some first order signature), yielding models rather
close to logic programming. We expect that the approach in [4] be flexible enough to allow varying the underlying
algebra while employing similar constructions.

Acknowledgments

We are grateful to an anonymous referee for very helpful comments.

Appendix

A. Proof of Theorem 3.14

The proof consists in showing that for each t1
.= t2 in EF , for each t1

(α, ϕ)−−→ p there exists t2
(α, ϕ)−−→ q with p

.= q, and
viceversa. The proof is quite long, because there are several cases that have to be taken into account, depending on the
transition rules that can be applied to t1 and t2, for all t1

.= t2.
Ax. ν. (δ. p) | q .= p|ν. q. There are four possible cases.

(1) By rule (Res), ν. (δ. p)|q (α, ν (ϕ))−−−−→ ν. p′, with α = xy, x̄y,−. Necessarily, (δ. p)|q (δ (α), ϕ)−−−−→ p′ and there are the
following possible cases.

(a) By rule (Par), suppose δ. p
(δ (α), ϕ)−−−−→ p′′ (similarly, otherwise) and p′ = p′′|q. Then, p

(α, ν (ϕ))−−−−→ p′′′ and p′′ =
δ. p′′′.
On the other hand, by rule (Par), p|ν. q (α, ν (ϕ))−−−−→ p′′′|ν. q.

(b) By rule (Par1) δ. p
(δ (β), ϕ1)−−−−→ p′′, q (−, ϕ2)−−→ q ′, with ϕ � ϕ1 + ϕ2 and ϕ1 + ϕ2 � δ (α) = δ (β); moreover

p′ = p′′ | q ′. Necessarily rule (Del) has been applied. Thus, p
(β, ν (ϕ1))−−−−→ p′′′, with p′′ = δ. p′′′. Now consider

p | ν. q. By rule (Res) ν. q
(−, ν (ϕ2))−−−−→ ν. q ′ and, by rule (Par1),p | ν. q (α, ν (ϕ))−−−−→ p′′′ | ν. q ′. And ν. p′ .= p′′′ | ν. q ′.

(2) By rule (Res′), ν. (δ. p)|q (α, ν (ϕ))−−−−→ ν. [x0 ↔ x1]p′, withα = x, x̄ and (δ. p)|q (δ (α), ϕ)−−−−→ p′. There are the following
possible cases.

(a) By rule (Par′), suppose δ. p
(δ (α), ϕ)−−−−→ p′′ withp′ = p′′|δ. q (similarly, otherwise). By rule (Del′),p

(α, ν (ϕ))−−−−→ p′′′
and p′′ = [x0 ↔ x1]δ. p′′′.
On the other hand, by rule (Par′), p|ν. q (α, ν (ϕ))−−−−→ p′′′|δ. ν. q. By axiomsEF , ν. [x0 ↔ x1]([x0 ↔ x1](δ. p′′′)|
δ. q)

.= p′′′|δ. ν. q.

(b) By rule (Par′
1), suppose q

(δ (β), ϕ1)−−−−→ q ′ and δ. p
(−, ϕ2)−−→ p′′ (similarly, otherwise), with p′ = δ. p′′ | q ′, ϕ �

ϕ1 + δ (ϕ2), and ϕ1 + δ (ϕ2) � δ (α) = δ (β). By rule (Del), p
(−, ν (ϕ2))−−−−→ p′′′, and p′′ = δ. p′′′.

On the other hand, by rule (Res′), ν. q
(β, ν (ϕ1))−−−−→ ν. [x0 ↔ x1]q ′. By rule (Par′

1),p | ν. q (α, ν (ϕ))−−−−→ δ. p′′′ | ν. [x0 ↔
x1]q ′. By axioms EF , ν. [x0 ↔ x1]((δ. δ. p′′′)) | q ′ .= (δ. p′′′) | ν. [x0 ↔ x1]q ′.

(3) By rule (Open), ν. (δ. p)|q (x̄, δ (ϕ))−−−−→ p′. Necessarily, δ. p|q (x̄x0, δ (ϕ))−−−−−→ p′ and x /= x0. There are two possible cases.

(a) By rule (Par), suppose q
(x̄x0, δ (ϕ))−−−−−→ q ′ (similarly, otherwise) and p′ = δ. p|q ′.

On the other hand, by rule (Open), ν. q
(x̄, δ (ϕ))−−−−→ q ′ and, by rule (Par′), p | ν. q (x̄, δ (ϕ))−−−−→ (δ. p)|q ′.

(b) By rule (Par1), suppose q
(ȳz, ϕ1)−−−→ q ′, δ. p (−, ϕ2)−−→ p′′, with δ (ϕ) � ϕ1 + ϕ2 and ϕ1 + ϕ2 � x̄x0 = ȳz and

p′ = p′′ | q ′. Necessarily, by rule (Del), p
(−, ϕ3)−−→ p′′′, with ϕ2 = δ (ϕ3) and p′′ = δ. p′′′. Thus, ϕ2 does not

92 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

substitute x0 and so ϕ1 � x̄x0 = ȳz. It follows that, by Proposition 3.12, q
(x̄x0, ϕ4)−−−→ q ′ and, by rule (Open),

ν. q
(x̄, ϕ4)−−→ q ′, with ϕ1 = δ (ϕ4). By rule (Par′

1), p | ν. q (x̄, δ (ϕ))−−−−→ δ. p′′′ | q ′.
(4) By rule (Scope), ν. (δ. p | q) (ν (ϕ), ν (ψ))−−−−−−→ ν. p′ and δ. p | q (ϕ,ψ)−−→ p′. The most interesting cases are as follows.

(a) By rule (Com), suppose δ. p
(xy,ψ)−−−→ p′′ and q

(x̄z, ψ)−−→ q ′ (similarly, otherwise), withϕ = (y = z),p′ = p′′ | q ′ |
ϕ. Also, necessarily, rule (Del) has been applied with p

(x′y′, ν (ψ))−−−−−→ p′′′ and p′′ = δ. p′′′, xy = δ (x′y′).
On the other hand, by rule (Res), with x, z /= x0, ν. q

(ν (x̄z), ν (ψ))−−−−−−→ ν. q ′. Then, by rule (Com),p | ν. q (ν (ϕ), ν (ψ))−−−−−−→
p′′′ | ν. q ′ | ν (ϕ). The thesis follows by the fact that ν. (δ. p′′′ | q ′ |ϕ) .= p′′′ | ν. q ′ |ϕ, since x0 �∈ n(ϕ).

(b) By rule (Par1), suppose δ. p
(ϕ′, ψ1)−−−→ p′′ and q

(−, ψ2)−−−→ q ′ (similarly, otherwise), with ψ � ψ1 + ψ2, ψ1 +
ψ2 � ϕ′ = ϕ, and p′ = p′′ | q ′. Also, necessarily, rule (Del) has been applied with p

(ν (ϕ′), ν (ψ1))−−−−−−−→ p′′′ and
p′′ = δ. p′′′.
On the other hand, by rule (Res), ν. q

(−, ν (ψ2))−−−−−→ ν. q ′ and, by rule (Par1), p | ν. q (ν (ϕ), ν (ψ))−−−−−−→ p′′′ | ν. q ′.
Ax. ν. ν. [x0 ↔ x1]p .= ν. ν. p. There are the following possible cases.

(1) By rule (Res), ν. ν. [x0 ↔ x1]p (α, ν (ϕ))−−−−→ ν. p′ and ν. [x0 ↔ x1]p (δ (α), ϕ)−−−−→ p′, with α = x̄y, xy,−. Necessarily,

rule (Res) has been applied to ν. [x0 ↔ x1]p and [x0 ↔ x1]p (δ (δ (α)), δ (ϕ))−−−−−−−→ p′′, with p′ = ν. p′′. By rule (Rho),

p
(δ (δ (α)), ϕ′)−−−−−−→ [x0 ↔ x1]p′′, with ϕ′ = [x0 ↔ x1]δ (ϕ).

On the other hand, by rule (Res), ν. p
(δ (α), ν (ϕ′))−−−−−−→ ν. [x0 ↔ x1]p′ and, again by rule (Res), ν. ν. p

(α, ν (ν (ϕ′)))−−−−−−→
ν. ν. [x0 ↔ x1]p′′. The equivalence holds by exploiting axioms EF and by the fact that ν (ν (ϕ′)) = ν (ϕ).

(2) By rule (Open), ν. ν. [x0 ↔ x1]p (x̄, δ (ϕ))−−−−→ p′ and ν. [x0 ↔ x1]p (x̄x0, δ (ϕ))−−−−−→ p′, with x /= x0. Necessarily, by rule

(Res), [x0 ↔ x1]p (δ (x̄)x1, δ (δ (ϕ)))−−−−−−−−−→ p′′, with p′ = ν. p′′. By rule (Rho), p
(δ (x)x0, δ (δ (ϕ)))−−−−−−−−−→ [x0 ↔ x1]p′′.

On the other hand, by rule (Open), ν. p
(δ (x), δ (δ (ϕ)))−−−−−−−→ [x0 ↔ x1]p′′ and, by rule (Res′), ν. ν. p

(x, δ (ϕ))−−−−→ ν. p′′.
(3) By rule (Res′), ν. ν. [x0 ↔ x1]p (α, ν (ϕ))−−−−→ ν. [x0 ↔ x1]p′ and ν. [x0 ↔ x1]p (δ (α), ϕ)−−−−→ p′ with α = x̄, x.

(a) By rule (Res′), [x0 ↔ x1]p (δ (δ (α)), δ (ϕ))−−−−−−−→ p′′, with p′ = ν. [x0 ↔ x1]p′′. By rule (Rho′), p
(δ (α′), ϕ′)−−−−→ p′′′, with

δ (α′) = [δ (x0) ↔ δ (x1)]δ (δ (α)), ϕ′ = [δ (x0) ↔ δ (x1)]δ (ϕ), and p′′ = [δ (x0) ↔ δ (x1)]p′′′.
On the other hand, by rule (Res′), ν. p

(α′, ν (ϕ′))−−−−→ ν. [x0 ↔ x1][δ (x0) ↔ δ (x1)]p′′′ and, again by rule (Res′),

ν. ν. p
(ν (α′), ν (ν (ϕ′)))−−−−−−−−→ ν. [x0 ↔ x1]ν. [x0 ↔ x1][δ (x0) ↔ δ (x1)]p′′′. By axiomsEF it follows thatν. [x0 ↔

x1]ν. [x0 ↔ x1][δ (x0) ↔ δ (x1)]p′′′ .= ν. [x0 ↔ x1]ν. [x0 ↔ x1]p′′′.
(b) By rule (Open), ν. [x0 ↔ x1]p (x̄, δ (ϕ))−−−−→ p′ and [x0 ↔ x1]p (xx0, δ (ϕ))−−−−−→ p′, with x /= x0. By rule (Rho), p

(yx1, ψ)−−−→
p′′, with [x1 �→ x0]y = x, [x0 ↔ x1]ψ = ϕ, and p′ = [x0 ↔ x1]p′′.
On the other hand, by rule (Res), ν. p

(ν (y)x0, ν (ψ))−−−−−−−→ ν. p′′ and, by rule (Open), ν. ν. p
(ν (y), ν (ψ))−−−−−−→ ν. p′′.

(4) By rule (Scope), ν. ν. [x0 ↔ x1]p (ν (ϕ), ν (ψ))−−−−−−→ ν. p′ and ν. [x0 ↔ x1]p (ϕ,ψ)−−→ p′. Again, by rule (Scope), [x0 ↔
x1]p (δ (ϕ), δ (ψ))−−−−−−→ p′′, withp′ = ν. p′′. By rule (Rho),p

(ϕ′, ψ ′)−−−→ [x0 ↔ x1]p′′, with ϕ′ = [x0 ↔ x1]δ (ϕ) andψ ′ =
[x0 ↔ x1]δ (ψ).
On the other hand, by applying rule (Scope) twice, ν. ν. p

(ν (ν (ϕ′)), ν (ν (ψ ′)))−−−−−−−−−−−→ ν. ν. [x0 ↔ x1]p′′. The thesis follows
by axioms EF and by the fact that ν (ν (ϕ′)) = ν (ν ([x0 ↔ x1]δ (ϕ))) = ν (δ (ν (ϕ))) = ν (ϕ) and similarly
for ψ .

Ax. ρ(π.p) .= ρ(π).ρp. Suppose π = x̄y. By rule (Pre′) (similar proof for (Pre)), x̄y.p
(δ (z), δ (ψ))−−−−−→ (δ. (p |ϕ)) | x0 =

δ (y), with ψ � ϕ and ϕ � x = z. By rule (Rho′), ρ(x̄y.p)
(ρ+1(δ (z)), ρ+1(δ (ψ)))−−−−−−−−−−−−→ ρ+1((δ. (p |ϕ)) | x0 = δ (y)).

On the other side, by rule (Pre′), ρ(x̄y).ρp
(δ (ρ(z)), δ (ρ(ψ)))−−−−−−−−−→ δ. (ρp | ρ(ϕ)) | x0 = δ (ρ(y)). It holds that ρ+1(δ (z)) =

δ (ρ(z)) and ρ+1(δ (ψ)) = δ (ρ(ψ)) and, by axioms EF , ρ+1((δ. (p |ϕ)) | x0 = δ (y))
.= δ. (ρp | ρ(ϕ)) | x0 =

δ (ρ(y)).
If π = F , the proof is similar but rule (Fus) is applied.

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 93

Ax. ρ(p|q) .= ρp | ρq. The most interesting case are as follows.

(1) By rule (Rho), ρ(p|q) (ρ(α), ρ(ϕ))−−−−−→ ρp′ and p|q (α, ϕ)−−→ p′. The most interesting cases are as follows.

(a) By rule (Com′), suppose p
(x̄y, ϕ)−−→ p′′ and q

(δ (x), δ (ϕ))−−−−−→ q ′, with α = τ and p′ = p′′ | ν. (q ′ | δ (y) = x0).

On the other hand, by rule (Rho) and (Rho′) respectively, ρp
(ρ(x̄y), ρ(ϕ))−−−−−−→ ρp′′ and ρq

(ρ+1(δ (x)), ρ+1δ (ϕ))−−−−−−−−−−−→ ρ+1q
′.

Then, by rule (Com′), with δ (ρ(x))= ρ+1(δ (x)) and δ (ρ(ϕ)) = ρ+1(δ (ϕ)), we obtainρp | ρq (τ, ρ(ϕ))−−−→ ρp′′ |
ν. (ρ+1q

′ | δ (ρ(y)) = x0). The thesis follows by applying axioms EF .

(b) By rule (Close), p
(x,ψ)−−→ p′′, q (x̄, ψ)−−→ q ′ , with α = τ , ϕ = ν (ψ), and p′ = ν. (p′′ | q ′).

On the other hand, by rule (Rho′), ρp
(ρ+1(x), ρ+1(ψ))−−−−−−−−→ ρ+1p

′′ and ρq
(ρ+1(x̄), ρ+1(ψ))−−−−−−−−→ ρ+1q

′. Then, by rule

(Close), ρp | ρq (τ, ν (ρ+1(ψ)))−−−−−−−→ ν. (ρ+1p
′′ | ρ+1q

′). The thesis follows by applying axioms EF and noting that
ρ(ν (ψ)) = ν (ρ+1(ψ)).

(2) By rule (Rho′), ρ(p|q) (ρ+1(x), ρ+1(ϕ))−−−−−−−−→ ρ+1p
′ and p|q (x, ϕ)−−→ p′. There are the following possible cases.

(a) Suppose that, by rule (Par′), p
(x, ϕ)−−→ p′′ (similarly, otherwise) and p′ = p′′|δ. q.

On the other hand, by rule (Rho′),ρp
(ρ+1(x), ρ+1(ϕ))−−−−−−−−→ ρ+1p

′′ and, by rule (Par′),ρp | ρq (ρ+1(x), ρ+1(ϕ))−−−−−−−−→ (ρ+1p
′′) |

δ. ρq.

(b) Suppose that, by rule (Par′
1), p

(y, ϕ1)−−→ p′′ and q
(−, ϕ2)−−→ q ′ (similarly, otherwise), with p′ = p′′|δ. q ′, ϕ �

ϕ1 + δ (ϕ2), and ϕ1 + δ (ϕ2) � x = y.

On the other side, by rule (Rho′) and (Rho), ρp
(ρ+1(y), ρ+1(ϕ1))−−−−−−−−−→ ρ+1p

′′, and ρq
(−, ρ(ϕ2))−−−−→ ρq ′, and, by rule (Par′

1),

ρp | ρq (ρ+1(x), ρ+1(ϕ))−−−−−−−−→ ρ+1p
′′ | δ. ρq ′.

Ax. ρν. p .= ν. ρ+1p. The most interesting cases are as follows.

(1) By rule (Rho), ρν. p
(ρ(α), ρ(ϕ))−−−−−→ ρp′ and ν. p

(α, ϕ)−−→ p′. Suppose that, by rule (Scope), α = ν (ψ), ϕ = ν (ϕ′) and

p
(ψ, ϕ′)−−→ p′′ with p′ = ν. p′′.

On the other hand, by rule (Rho), ρ+1p
(ρ+1(ψ), ρ+1(ϕ))−−−−−−−−→ ρ+1p

′′ and, by rule (Scope), ν. ρ+1p
(ν (ρ+1(ψ)), ν (ρ+1(ϕ)))−−−−−−−−−−−−→

ν. ρ+1p
′′. The thesis follows by axioms EF and noting that ν (ρ+1(ϕ

′)) = ρ(ν (ϕ′)) = ρ(ϕ).

(2) By rule (Rho′), ρν. p
(ρ+1(α), ρ+1(ϕ))−−−−−−−−→ ρ+1p

′ and ν. p
(α, ϕ)−−→ p′ with α = x, x. By rule (Res′), p

(δ (α), δ (ϕ))−−−−−→ p′′ and
p′ = ν. [x0 ↔ x1]p′′.
On the other hand, by rule (Rho′), ρ+1p

(ρ+2(δ (α)), ρ+2(δ (ϕ)))−−−−−−−−−−−−→ ρ+2p
′′. Then, by rule (Res′), ν. ρ+1p

(ρ+1(α), ρ+1(ϕ))−−−−−−−−→
ν. [x0 ↔ x1]ρ+2p

′′ and, by axioms EF , ρ+1ν. [x0 ↔ x1]p′′ .= ν. [x0 ↔ x1]ρ+2p
′′.

Ax. ρ crecX.P
.= cρ(recX.P).

By rule (Rec), [[P [recX.P /X]]] (α, ϕ)−−→ q and crecX.P
(α, ϕ)−−→ q. Suppose that α = x.x̄. By rule (Rho′),

ρcrecX.P
(ρ+1(α), ρ+1(ϕ))−−−−−−−−→ ρ+1q.

On the other hand, [[ρ(P [recX.P /X])]] (ρ+1(α), ρ+1(ϕ))−−−−−−−−→ ρ+1q, and, thus, by rule (Rec), cρ(recX.P)
(ρ+1(α), ρ+1(ϕ))−−−−−−−−→

ρ+1q.
Ax. δ. (π.p) .= δ (π).δ. p. The proof is similar to the case of ρ(π.p)

.= ρ(π).ρp.

Ax. δ. p | q .= (δ. p) | δ. q. The proof is similar to the case of ρ(p|q) .= ρp | ρq.
Ax. δ. ν. p .= ν. [x0 ↔ x1]δ. p.

By rule (Del′), δ. ν. p
(δ (α), δ (ϕ))−−−−−→ [x0 ↔ x1]δ. p′ and ν. p

(α, ϕ)−−→ p′ with α = x, x. Necessarily, by rule (Res′),

p
(δ (α), δ (ϕ))−−−−−→ p′′, with p′ = ν. [x0 ↔ x1]p′′.

On the other hand, by rule (Del′), δ. p
(δ (δ (α)), δ (δ (ϕ)))−−−−−−−−−→ [x0 ↔ x1]δ. p′′. Then, by rule (Rho′), [x0 ↔ x1]δ.

p
(δ (δ (α)), δ (δ (ϕ)))−−−−−−−−−→ [δ (x0) ↔ δ (x1)][x0 ↔ x1]δ. p′′. Finally, by rule (Res′), ν. [x0 ↔ x1]δ. p (δ (α), δ (ϕ))−−−−−→ ν. [x0 ↔

x1][δ (x0) ↔ δ (x1)[x0 ↔ x1]δ. p′′. By axiomsEF , [x0 ↔ x1]δ. ν. [x0 ↔ x1]p′′ .= ν. [x0 ↔ x1][δ (x0) ↔ δ (x1)]
[x0 ↔ x1]δ. p′′.

94 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

Ax. δ. ρp .= ρ+1δ. p. There are two cases.

(1) By rule (Del), δ. ρp
(δ (α), δ (ϕ))−−−−−→ δ. p′, with δ (α) /= x̄, x. Then, ρp

(ρ(α′), ρ(ϕ′))−−−−−−→ ρp′′ and p
(α′, ϕ′)−−→ p′′, with ρp′′ =

p′, α = ρ(α′), ϕ = ρ(ϕ′), and α′ /= x̄′, x′, for any x′.
On the other hand, by rule (Del), δ. p

(δ (α′), δ (ϕ′))−−−−−−→ δ. p′′ with α′ /= x̄′, x′ and, by rule (Rho), ρ+1δ.

p
(ρ+1(δ (α

′), ρ+1(δ (ϕ
′))−−−−−−−−−−−−→ ρ+1δ. p

′′.
(2) By rule (Del′), suppose δ. ρp

(δ (x̄), δ (ϕ))−−−−−→ [x0 ↔ x1]δ. p′ (similarly, if α = δ (x)). Necessarily, ρp
(ρ(x̄′), ρ(ϕ))−−−−−−→

ρ+1p
′′ and p

(x̄′, ϕ′)−−→ p′′, with ρ(x̄′) = x̄, ρ(ϕ′) = ϕ and p′ = ρ+1p
′′.

On the other hand, by rule (Del′), δ. p
(δ (x̄′), δ (ϕ′))−−−−−−→ [x0 ↔ x1]δ. p′′ and ρ+1δ. p

(ρ+1(δ (x̄
′)), ρ+1(δ (ϕ

′)))−−−−−−−−−−−−−→ ρ+2[x0 ↔
x1]δ. p′′. Note that ρ+2[x0 ↔ x1]δ. p′′ = [x0 ↔ x1]ρ+2δ. p

′′, as ρ+2 does not substitute either x0 or x1.
Ax. δ. crecX.P

.= cδ (recX.P). The proof is similar to the case of ρ crecX.P
.= cρ(recX.P).

The proof of the theorem is trivial in the remaining cases, that is, for axioms in (group), (par), (fus) and for those
ones involving term 0.

B. Proof of Theorem 3.16

We now give a formal proof of Theorem 3.16, by detailing the steps that we have outlined in Section 3.

Definition B.1. Let σ be a substitution. The syntactical application of σ to any term p of algebra BF is inductively
defined as follows:

σ(0) = 0 σ(π.p) = σ(π).σ (p) σ (p | q) = σp | σq σ(ν. p) = ν. σ+1p

σ(ρp) = (σ ◦ ρ)(p) σ (δ. p) = σ ◦ δ. (p) σ (x = y) = σ(x) = σ(y)

σ (crecX.P) = cσ(recX.P)

Note that σ(p) contains no explicit fusion if σ is a substitutive effect of Eq(p). For example, let p = (x = y) |
(y = z) | x̄w.0. For σ = [y �→ z, x �→ z] a substitutive effect of Eq(p), σ(p)

.= z̄w.0.

Definition B.2. The transition system lts1 is defined as lts1 = 〈BF ,−→1 〉, where −→1 is given by the rules in Table B.1.

The first group of rules in Table B.1 is similar to those given in Table 2. The aim of lts1 is to ensure saturation of
behaviours of a term only with respect to the explicit fusions contained in the term. Thus, rules for prefixes do not
consider all the possible fusion contexts. Moreover, lts1 contains rule (Eq) in place of the rules for combination and
propagation of explicit fusions in Table 3. In fact, it can be easily seen that rule (Eq) has the same effect of the rules in
Table 3, but it is not in De Simone format.

Definition B.3 (bisimilarity ∼1). A bisimulation on lts1 is a binary symmetric relation S between terms of BF such
that p S q implies:

(1) Eq(p) = Eq(q);

(2) for each p
α−→1 p

′ there is some q
β−→1 q

′ such that Eq(p) � α = β and p′ R q ′, and viceversa.
Bisimilarity ∼1 is the largest bisimulation on lts1.

Our first claim is that, for P and Q two fusion agents, P
.∼ Q if and only if [[P]] ∼1 [[Q]], being

.∼ the notion of
fusion bisimulation. For any fusion agent P , neither [[P]] nor p′, for all p′ such that [[P]] α−→1 p

′, contain explicit fusions
under prefixes. Thus, for our purpose, we can restrict to the algebra B∗

F , that is obtained from BF by removing terms
containing explicit fusions under prefixes.

Lemma B.4. Let p be a term of algebra B∗
F and let σ be a substitutive effect of Eq(p). Then, p

α−→1 p
′ with α /= x̄, x

(resp. α = x̄, x) if and only if σ(p)
σ(α)−→1 σ(p

′) (resp. σ(p)
σ+1(α+1)−−−−→1 σ+1(p

′)).

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 95

Table B.1
Transition system lts1

(Rho)
p
α−→1 q α /= x, x̄

ρp
ρ(α)−→1 ρq

(Rho′) p
α−→1 q α = x̄, x

ρp
ρ+1(α)−−−→1 ρ+1q

(Del)
p
α−→1 q α /= x, x̄

δ. p
δ (α)−→1 δ. q

(Del′) p
α−→1 q α = x̄, x

δ. p
δ (α)−→1 [x0 ↔ x1]δ. q

(Par)
p
α−→1 q α /= x, x̄,−
p | r α−→1 q | r (Par′) p

α−→1 q α = x, x̄

p | r α−→1 q | δ. r

(Res)
p
δ (α)−→1 q α = x̄y, xy,−

ν. p
α−→1 ν. q

(Res′) p
δ (α)−→1 q α = x̄, x

ν. p
α−→1 ν. [x0 ↔ x1]q

(Open)
p
xx0−→1 q x �= x0

ν. p
x−→1 q

(Scope)
p
ϕ−→1 q

ν. p
ν (ϕ)−→1 ν. q

(Rec)
[[P [recX.P /X]]] α−→1 q

crecX.P
α−→1 q

(Com)
p1

xy−→1 q1 p2
x̄′z−→1 q2

p1 |p2
y=z−→1 q1 | q2 | y = z

Eq(p1 |p2) � x = x′

(Com′) p1
xy−→1 q1 p2

δ (x̄′)−−→1 q2

p1 |p2
τ−→1 q1 | ν. (q2 | δ (y) = x0)

Eq(p1 |p2) � x = x′

(Close)
p1

x−→1 q1 p2
x̄′−→1 q2

p1 |p2
τ−→1 ν. (q1 | q2)

Eq(p1 |p2) � x = x′

(Pre) xy.p
xy−→1 p (Pre′) xy.pδ (x)−→1 δ. p | δ (y) = x0

(Fus) ϕ.p
ϕ−→1 p |ϕ (Eq)

p
α−→1 q Eq(p) � α = β

p
β−→1 q

(Open) is analogous with output actions; rule (Com′) has a symmetric counterpart.

Proof (Hint). By induction on the rules of lts1. �

For instance, considerp = (x = y) | z̄v.0 andq = (z = y) | xw.0. SinceEq(p | q) � z = x, by rule (Com)p | q{v=w}−−→1
x = y | z = y | v = w. On the other hand, any substitutive effect σ of Eq(p | q) fuses z and x and, thus, for example,

for σ = [z �→ x], σ(p | q){v=w}−−→1 x = y | x = y | v = w.

Lemma B.5. Let p be a term of algebra B∗
F and let σ be a substitutive effect of Eq(p). If p

α−→1 q and α = x̄y,

xy then Eq(q) = Eq(p); if p
α−→1 q and α = x̄, x then Eq(q) = δ (Eq(p)); if p

ϕ−→1 q then Eq(q) = Eq(p)+ ϕ.

Proof (Hint). By induction on the rules of lts1. �

Lemma B.6. Let p and q be terms of algebra B∗
F and let σ be a substitutive effect of Eq(p). Then p ∼1 q

if and only if σ(p) ∼1 σ(q).

Proof (Hint). It follows by Lemmas B.4 and B.5. �

96 M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97

Lemma B.7. Let P and Q be two fusion agents. If P
.∼ Q, then δ (P)

.∼ δ (Q) and ρ(P)
.∼ ρ(Q).

Lemma B.8
(1) Let P and Q be fusion agents. If P

γ�−→ Q and γ = x y, x y then [[P]] γ−→1 [[Q]]; if P
x̄(y)�−→ Q (resp. P

x(y)�−→ Q)

then [[P]]δ (x̄)−→1 [δ (y) ↔ x0]δ. [[Q]] (resp. [[P]]δ (x)−→1 [δ (y) ↔ x0]δ. [[Q]]); if P
ϕ�−→ Q, then [[P]] ϕ−→1 [[Q]] |ϕ.

(2) Let p and q be in B∗
F and let σ be a substitutive effect of Eq(p). If p

α−→1 q and α = x̄y, xy, then {[σ(p)]} σ(α)�−→
{[σ(q)]}; if p

x−→1 q (resp. p
x−→1 q), then {[σ(p)]} σ(ν (x))xi�−→ {[σ(ν ([δ (xi) ↔ x0](q)))]}, (resp. {[σ(p)]} σ(ν (x))xi�−→

{[σ(ν ([δ (xi) ↔ x0](q)))]}, for every xi such that δ (xi) /∈ fn({[p]}); if p
ϕ−→1 q |ϕ then {[σ(p)]} σ(ϕ)�−→ {[σ(q)]}.

Proof (Hint). By induction on the rules of the fusion transition system and on the rule of lts1, respectively. �

Theorem B.9. Let p and q be terms of algebra B∗
F and let σ be a substitutive effect of Eq(p). Then, p ∼1 q

if and only if {[σ(p)]} .∼ {[σ(q)]}, where {[·]} is the inverse translation of [[·]].

Proof. It follows by Lemmas B.6, B.7, and B.8. �

Corollary B.10. Let P and Q be two fusion agents. P
.∼ Q if and only if [[P]] ∼1 [[Q]].

Definition B.11. The transition system lts2 is defined as lts2 = 〈BF ,−→2 〉, where −→2 is given by adding to the rules
of lts1 a rule for closing with respect to fusions in parallel:

(Ctx)
p |ϕ α−→1 q

p
α,ϕ−→2 q

Bisimulation and bisimilarity ∼2 are analogous to those defined for lts1, with −→2 in place of −→1 .

Lemma B.12. Let p and q be two terms of algebra BF . If p ∼2 q then p |ϕ ∼2 q |ϕ, for all ϕ.

Proof. By induction on the rules of lts2. �

Theorem B.13. P ∼he Q if and only if [[P]] ∼2 [[Q]], where ∼he denotes fusion hyperequivalence.

Proof. The proof follows by Corollary B.10 and by Lemma B.12. �

Definition B.14. The third transition system lts3 is defined as lts3 = 〈BF ,→3〉, where →3 is given by the rules in
Table 2 and 4 plus rule

(Eq)
p
(α, ϕ)−−→3 p

′ Eq(p) � α = β

p
(β, ϕ)−−→3 p

′
,

Bisimilarity ∼3 is analogous to ∼2 (−→2 replaces →3).

The proof of the Theorem 3.16 is concluded by showing that ∼3 is equivalent to both ∼2 and ∼F .

Lemma B.15. Let p and q be two terms of algebra B. If p ∼3 q then p |ϕ ∼3 q |ϕ, for all ϕ.

Proof. By induction on the rules of lts3. �

Theorem B.16. Let p and q be two terms of algebra B. Then, p ∼3 q if and only if p ∼2 q.

Proof. It follows by the fact that ∼2 ⊆∼1 and ∼3 ⊆∼1 and by Lemmas B.12 and B.15. �

M.G. Buscemi, U. Montanari / Journal of Logic and Algebraic Programming 72 (2007) 78–97 97

Theorem B.17. Let p and q be two terms of algebra B. p ∼3 q if and only if p ∼F q.

Proof. The intuition behind the proof is that the rules of ltsF in Table 3 can be simulated by rule (Eq) in lts3 and
viceversa. Moreover, ltsF ensures that if p ∼F q then Eq(p) = Eq(q). �

References

[1] L. Aceto, W.J. Fokkink, C. Verhoef, Structural operational semantics, in: Handbook of Process Algebra, Elsevier, 2002.
[2] M. Boreale, M.G. Buscemi, U. Montanari, D-Fusion: a distinctive fusion calculus, in: Proc. of APLAS’04, LNCS, vol. 3302, Springer, 2004.
[3] M. Boreale, M.G. Buscemi, U. Montanari, A general name binding mechanism, in: Proc. of TGC ’05, LNCS, vol. 3705, Springer, 2005.
[4] M.G. Buscemi, U. Montanari, A first order coalgebraic model of pi-calculus early observational equivalence, in: Proc. of CONCUR ’02, LNCS,

vol. 2421, Springer, 2002 (Extended version available as TR-02-14, Dipartimento di Informatica, University of Pisa).
[5] M.G. Buscemi, U. Montanari, A compositional coalgebraic model of a fragment of fusion calculus, in: ENTCS, Elsevier, in press.
[6] M.G. Buscemi, U. Montanari, CC-Pi: a constraint-based language for specifying service level agreements, Manuscript.
[7] A. Corradini, M. Große-Rhode, R. Heckel, Structured transition systems as lax coalgebras, in: Proc. of CMCS’98, ENTCS, vol. 11, Elsevier

Science, 1998.
[8] A. Corradini, R. Heckel, U. Montanari, Compositional SOS and beyond: a coalgebraic view of open systems, Theor. Comput. Sci. 280 (2002)

163–192.
[9] M.P. Fiore, S. Staton, A congruence rule format for name-passing process calculi from mathematical operational semantics, in: Proc. of

LICS’06, IEEE Computer Society Press, 2006.
[10] M.P. Fiore, D. Turi, Semantics of name and value passing, in: Proc. of LICS’01, IEEE Computer Society Press, 2001.
[11] F. Gadducci, M. Miculan, U. Montanari, Some characterization results for permutation algebras, in: Proc. of Workshop COMETA, ENTCS,

vol. 104, Elsevier, 2004.
[12] P. Gardner, C. Laneve, L. Wischik, The fusion machine (extended abstract), in: Proc. of CONCUR ’02, LNCS, vol. 2421, Springer-Verlag,

2002.
[13] N. Ghani, K. Yemane, B. Victor, Relationally staged computation in calculi of mobile processes, in: Proc. of CMCS’04, ENTCS, vol. 106,

Elsevier, 2004.
[14] M. Miculan, K. Yemane, A unifying model of variables and names, in: Proc. of FOSSACS’05, LNCS, vol. 3441, Springer, 2005.
[15] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes (parts I and II), Inform. Comput. 100 (1) (1992) 1–77.
[16] U. Montanari, M. Pistore, Pi-calculus, structured coalgebras and minimal HD-automata, in: Proc. of MFCS’00, LNCS, vol. 1983, Springer,

2000.
[17] U. Montanari, M. Pistore, Structured coalgebras and minimal HD-automata for the pi-calculus, Theor. Comput. Sci. 340 (3) (2005) 539–576.
[18] M.R. Mousavi, M.A. Reniers, Congruence for structural congruences, in: Proc. of FOSSACS’05, LNCS, vol. 3441, Springer, 2005.
[19] J. Parrow, B. Victor, The fusion calculus: expressiveness and symmetry in mobile processes, in: Proc. of LICS’98, IEEE Computer Society

Press, 1998.
[20] G.D. Plotkin, A structural approach to operational semantics, J. Logic Algebr. Program. 60–61 (2004) 17–139.
[21] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theor. Comput. Sci. 249 (1) (2000) 3–80.
[22] D. Sangiorgi, A theory of bisimulation for the pi-calculus, Acta Inform. 33 (1) (1996) 69–97.
[23] D. Turi, G. Plotkin, Towards a mathematical operational semantics, in: Proc. of LICS’97, IEEE Computer Society Press, 1997.
[24] B. Victor, The fusion calculus: expressiveness and symmetry in mobile processes, Ph.D. thesis, Department of Computer Systems, Uppsala

University, 1998.
[25] L. Wischik, P. Gardner, Explicit fusions, Theor. Comput. Sci. 340 (3) (2005) 606–630.
[26] L. Wischik, P. Gardner, Strong bisimulation for the explicit fusion calculus, in: Proc. of FoSSaCS’04, LNCS, vol. 2987, Springer, 2004.

	Introduction
	Background
	Names, fusion and permutations
	The fusion calculus
	Bialgebras

	A transition system for fusion calculus
	Conclusions
	Acknowledgments
	Proof of Theorem 3.14
	Proof of Theorem 3.16
	References

