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Abstract

We consider the combinatorial problem of embedding the metric defined by an unweighted graph into
the real line, so as to minimize the distortion of the embedding. This problem is inspired by connections
to Banach space theory and to computer science.

After establishing a framework in which to study line embeddings, we focus on metrics defined by
three specific families of trees: complete binary trees, fans, and combs. We construct asymptotically
optimal (i.e., distortion-minimizing) line embeddings for these metrics and prove their optimality via
suitable lower bound arguments. We show that even such specialized metrics require nontrivial con-
structions and proofs of optimality require sophisticated combinatorial arguments.

Our results about these metrics show that the local density of a graph — an a priori reasonable lower
bound on the optimum distortion — might in fact be arbitrarily smaller than the true optimum, even for
tree metrics. They also show that the optimum distortion for a general tree can be arbitrarily low or high,
even when it has bounded degree. The combinatorial techniques from our work might prove useful in
further algorithmic research on low distortion metric embeddings.

1 Introduction

Bi-Lipschitz embeddings between metric spaces have been studied in Banach space theory and, more re-
cently, in computer science, thanks to a number of significant algorithmic applications. A basic goal in the
study is to embed a finite metric space into a given target space, preserving all distances up to a small factor,
called the distortion of the embedding (for a precise definition, see Section 2). Embeddings with low distor-
tion into low-dimensional spaces `d

p (defined as Rd equipped with the p-norm) are particularly important,
their study having led to the best known algorithms for flow and cut problems [17, 19, 1], nearest neighbor
searching [13] and clustering [19]. For more background and further examples of algorithmic applications,
we refer the reader to the surveys by Indyk [12] and Matoušek [21, chap. 15].

We consider some especially basic questions on this subject. We focus on a simple subclass of finite met-
rics, tree metrics, defined as the shortest path metrics of unweighted trees. Further, we focus on embeddings
of tree metrics into the most basic `p-space: the real line, R. We call such embeddings line embeddings.
As our work here will show, even this special case contains considerable complexity and leads to some
interesting combinatorics.

∗Work supported in part by NSF Grant CCR-96-23768, ARO Grant DAAH04-96-1-0181 and two NSF CAREER Awards.

1



Embeddings of graphs into a line have also been been considered for the problem of minimizing band-
width (also known as dilation); see, e.g., Feige [8] and the references therein. However, the notion of
bandwidth ignores the metric defined by the graph and is thus quite different from the concept we study
here. We say more on this below.

1.1 Our Results

This work is primarily concerned with the quantity D∗(G), the least possible distortion of a line embedding
of the metric defined by the (unweighted) graph G. For precise definitions, please see Section 2.

To set the background for our results, we first establish the following easy “folklore” theorems. We
show that any connected n-vertex graph has a line embedding with distortion O(n),1achieved by a depth
first ordering of the vertices (Theorem 8); we think of this as the naı̈ve embedding of a graph. This upper
bound is easily shown to be asymptotically optimal, even when restricted to tree metrics, using the theorem
D∗(G) = �(ld(G)), where ld(G) is the local density of G (Definition 6 and Theorem 7).

Our major theorems in this work explore the following question: how tight is the local density lower
bound? It is not hard to show that for the n-cycle Cn we have ld(Cn) = O(1), but D∗(Cn) = �(n), so the
bound can be very weak. However, this leaves the question open for the simpler class of tree metrics. For
a complete binary tree on n vertices, we exhibit a nontrivial line embedding with distortion O(n/ log n),
matching the local density bound (Theorem 15), whereas the naı̈ve embedding only yields an O(n) upper
bound. However, we then show that the local density bound can be far from good in general, by considering
two special families of trees called fans and combs. Let FANa,b and COMBa,b denote, respectively, the fan
and the comb with a arms, each of length b (examples illustrated in Fig. 1). These graphs are readily
seen to have local density O(a). We show, however, that D∗(COMBa,b) = �(b) (Theorem 19) and that
D∗(FANa,b) = �(max{b, a

√
b}) (Theorem 24). These lower bounds can clearly be arbitrarily higher than

the local density bounds for appropriate settings of a and b. The proofs of these lower bounds are our most
novel and technically challenging contributions.

We also exhibit embeddings to establish that the last two lower bounds are asymptotically optimal (The-
orems 16 and 17). The embedding of FANa,b is nontrivial: the naı̈ve embedding yields only a trivial O(ab)
upper bound. This shows, for instance, that for a = b =

√
n, both the naı̈ve embedding upper bound of

O(n) and the local density lower bound of �(
√

n) are far from the truth: D∗(FAN√
n,

√
n) = 2(n3/4).

The large gap (i.e., ratio) between distortion and local density that we establish here is in sharp con-
trast to the situation for bandwidth. The bandwidth bw(G) of an undirected graph G is defined as follows:
bw(G) := minπ :V (G)↔{1,...,n} max{u,v}∈E(G) |π(u) − π(v)|. (Note that π is a bijection.) A longstanding con-
jecture (see, e.g., [18, Open Problem 2]) says that bw(G) = O(ld(G) log n), where n = |V (G)|. Feige [8]
showed, in a landmark paper, that this gap is at most O((log3.5 n)

√
log log n); subsequently, Krauthgamer

et al. [15] improved the bound to O(log3.5 n). Gupta [10] showed that the gap is at most O(log2.5 n) when
G is either a tree or a chordal graph.

1.2 Relation to Previous Work

Within the field of metric embeddings there has been plenty of work focusing specifically on tree metrics.
It is known that tree metrics admit embeddings of much better quality than general finite metric spaces.
For example, an n-point tree metric embeds isometrically into `1 and into `O(log n)

∞ [19]. In contrast, for
general n-point metrics, the lowest distortion we can guarantee for embedding into `1 is only O(log n), via

1This O(n) upper bound also applies to weighted graphs, as shown by Matousek [20].
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Bourgain’s embedding [3], and the lowest dimension we can guarantee for an isometric embedding into `∞

is only O(n) [19]. Moreover, an n-point tree metric can be embedded into `d
2 with distortion Õ(n1/(d−1)) [9],

whereas for general n-point metrics we can only guarantee a O(n2/d) distortion [20].
A focus on certain specific families of trees, as in this work, is also not new to the field. For instance,

Bourgain [4] considered the problem of embedding complete binary trees into `p. Diks [7] and Heckmann
et al. [11] focused on binary trees and complete binary trees respectively in their work on the bandwidth
problem. Bern et al. [2] considered line embeddings of complete binary trees, cycles and stars in their work
on minimizing total embedded edge length.

Another related line of work is on efficient algorithms to approximate D∗(G) for a given input graph
G. Determining D∗(G) exactly is an NP-hard problem [14]. Although nontrivial polynomial time ap-
proximation algorithms are known, the factors they achieve are quite large: the current best results give
an O(n1/2)-approximation for general unweighted graph metrics [5] and an O(n1/3)-approximation for tree
metrics [6]. It is also known that there is a constant A > 1 such that D∗(G) is NP-hard to A-approximate [6].
No such hardness of approximation result is known for tree metrics. However, for weighted tree metrics, it
is known that approximating to within O(n1/12) is NP-hard [5].

Our work here (especially, the lower bounds) gives some additional explanation for why D∗(G) is so
hard to approximate well, even for tree metrics: there is more to it, combinatorially, than meets the eye,
even for “simple-looking” trees. The combinatorial insights from our work might prove useful in future
algorithmic research on the problem. They may also generate ideas for narrowing the large gap between the
currently known upper and lower bounds for approximating D∗(G).

2 Preliminaries

Here, we introduce a formal framework for working with line embeddings and establish two easy “folklore”
theorems and some lemmas that will be useful later. The lemmas are formally proved in Appendix A.

2.1 Basic Definitions and Notation

Definition 1. Let (X, dX ) and (Y, dY ) be metric spaces, with |X | < ∞. An embedding of (X, dX ) into
(Y, dY ) is an injection ϕ : X → Y . For any such ϕ we define

D−(ϕ) := max
u,v∈X
u 6=v

dX (u, v)
dY (ϕ(u), ϕ(v))

; D+(ϕ) := max
u,v∈X
u 6=v

dY (ϕ(u), ϕ(v))
dX (u, v)

; D(ϕ) := D−(ϕ)D+(ϕ) .

We call D−(ϕ) the contraction, D+(ϕ) the expansion and D(ϕ) the distortion of the embedding ϕ. We say
that ϕ is non-contracting if D−(ϕ) = 1. We say that ϕ is a line embedding if Y = R and dY (u, v) = |u − v|

for u, v ∈ R.

The target space R allows us to rescale any embedding into an equivalent non-contracting one without
affecting the distortion. Therefore, we may assume w.l.o.g. that all line embeddings are non-contracting.

Throughout this paper, graphs will be assumed to be simple, undirected and unweighted. For a graph
G, we let V (G) denote its vertex set, E(G) its edge set and dG its shortest path metric, and we define a line
embedding of G to be a line embedding of the metric space (V (G), dG).

Definition 2. The line distortion of G, denoted D∗(G), is defined to be inf{D(ϕ) : ϕ is a non-contracting
line embedding of G}.
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Any line embedding ϕ of G naturally induces a total order “<ϕ” on V (G): for u, v ∈ V (G), we write
u <ϕ v iff ϕ(u) < ϕ(v). A little thought shows that one can also work backwards: any total order C
on V (G) induces a certain distortion-minimal non-contracting line embedding “ψC” of G, that we call a
canonical embedding. We define this precisely below and prove its key property (Lemma 4).

Definition 3. Let C be a total order on a nonempty finite set S. We use min(C) to denote the minimum
element of S according to C. If x ∈ S, with x 6= min(C), we use predC(x) to denote the predecessor of x
according to C. For x, y ∈ S, we also define open, closed and half-open intervals according to C as follows:

(x, y)C := {z ∈ S : x C z C y} , [x, y]C := {z ∈ S : x E z E y} ,

(x, y]C := {z ∈ S : x C z E y} , [x, y)C := {z ∈ S : x E z C y} .

Lemma 4 (Canonical Embedding Lemma). Given a total order C on V (G), for a graph G, let ψC :
V (G) → R be defined thus:

ψC(u) :=

{
0 , if u = min(C) ,
ψC(predC(u))+ dG(predC(u), u) , otherwise.

Then ψC is a non-contracting line embedding of G. Moreover, if ϕ is any non-contracting line embedding
of G with <ϕ≡ C, then D(ϕ) ≥ D(ψC).

Definition 5 (Spread). Let ϕ be a line embedding of (X, dX ) and let S ⊆ X . The spread of S under ϕ is
defined to be maxv∈S ϕ(v)− minv∈S ϕ(v).

Definition 6 (Local density). The local density ld(G) of a connected graph G is defined as follows.
ld(G) := max{|BG(v, ρ)|/ρ : v ∈ V (G), ρ ≥ 1}, where BG(v, ρ) := {u ∈ V (G) : dG(u, v) ≤ ρ}.

2.2 Basic Theorems

We now formally prove two simple theorems that provide basic upper and lower bounds on the line distortion
of an arbitrary graph.

Theorem 7 (Local density lower bound). Every connected graph G satisfies D∗(G) = �(ld(G)).

Proof. Let ϕ be a non-contracting line embedding of G. Let v ∈ V (G) and ρ ≥ 1 be chosen such that
ld(G) = |S|/ρ, where S := BG(v, ρ). Since ϕ is non-contracting, the spread of S under ϕ is at least |S|−1,
i.e., ∃ x, y ∈ S such that ϕ(x) − ϕ(y) ≥ |S| − 1. But dG(x, y) ≤ 2ρ. Therefore, D(ϕ) ≥ D+(ϕ) ≥

(|S| − 1)/(2ρ) = �(ld(G)), which completes the proof.

Theorem 8 (General upper bound). Every connected n-vertex graph G satisfies D∗(G) ≤ 2n−2 = O(n).
This upper bound is asymptotically optimal: in fact, there exists an n-vertex tree with line distortion �(n).

Proof. Let u1Cu2C· · ·Cun be any depth first search ordering of V (G) and let T be the corresponding depth
first search tree. Let ωi denote the walk along T from ui to ui+1. By the Canonical Embedding Lemma,
the spread of V (G) under ψC equals

∑n−1
i=1 dG(ui , ui+1) ≤

∑n−1
i=1 length(ωi ) ≤ 2(n − 1), where the final

inequality holds because the concatenated walk 〈ω1, ω2, . . . , ωn−1〉 traverses every edge of G at most twice.
Therefore D∗(G) ≤ D(ψC) ≤ 2(n − 1).

For the optimality, consider K1,n−1, the star on n vertices. Since ld(K1,n−1) = n, Theorem 7 implies
D∗(K1,n−1) = �(n).
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2.3 Some Technical Lemmas

We now prove some technical lemmas about line embeddings that apply to all trees and will be useful when
analyzing certain specific families of trees later on.

Lemma 9. Let ϕ be a non-contracting line embedding of a tree T . Then D(ϕ) = max{u,v}∈E(T ) |ϕ(u)−ϕ(v)|.

Proof. This is immediate from the triangle inequality for dT .

Definition 10 (Connected ordering, Parent). Let T be a tree. A total order C on V (T ) is called a connected
ordering of T if, for all u ∈ V (T ), the subgraph of T induced by [min(C), u]C is connected. Clearly, for
any such C and any vertex u 6= min(C), there exists a unique vertex v such that v C u and {u, v} ∈ E(T );
this v is called the parent of u according to C and is denoted parC(u).

Lemma 11. Let C be a connected ordering of the tree T . Then

D(ψC) = max
u∈V (T )

u 6=min(C)

∑
v∈(parC(u),u]C

dT (predC(v), v) .

Lemma 12. If T ′ is obtained from the tree T by contracting an edge of T , then D∗(T ′) ≤ 2D∗(T ).

3 Embedding Complete Binary Trees

Let BINh denote the complete binary tree of height h. Throughout this section n will denote the number of
vertices of BINh . Thus, n = 2h+1

− 1. We now determine the asymptotic behavior of D∗(BINh).
For the upper bound, we use the Canonical Embedding Lemma: we produce a suitable total order C

on V (BINh) and analyze D(ψC). We assume that the two children of each internal vertex of a binary tree
are marked as “left” and “right,” so that we can talk of traversing the tree in symmetric order (also known
as “in-order”). For a set S ⊆ V (T ), where T is a binary tree, let σ(S) denote the sequence obtained by
arranging the elements of S in symmetric order.

Lemma 13. Let ≺ denote the total order given by σ(V (BINk)). Then the spread of V (BINk) under ψ≺ is at
most 2k+1.

Proof. Let sk be the spread in question. Clearly s2 = 2 and sk+1 = 2sk + 2k for k ≥ 2. A simple inductive
argument shows that sk ≤ 2k+1

− 3k.

To avoid notational clutter we assume that h is a power of 2; it will be clear that our argument generalizes
to arbitrary h. Let Vi denote the set of vertices at level i of BINh , the root being at level 0 and let A =

V0 ∪ V1 ∪ · · · ∪ Vlog h .2 Let us also define the sets B1, . . . , Bh/2, recursively, as follows:

Bi =
{
v : v is a descendant of one of the leftmost 2i+1 vertices in

(
Vi+log h \ (B1 ∪ · · · ∪ Bi−1)

)}
.

Here, a vertex is assumed to be a descendant of itself. It is straightforward to check that the following
sequence is a permutation of V (BINh):〈

σ(A), σ (B1), σ (V1+log h \ B1), σ (B2), σ (V2+log h \ B2), . . . , σ (Bh/2), σ (Vh/2+log h \ Bh/2)
〉
. (1)

2Here, and for the rest of the paper, we assume that logarithms are to the base 2.
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Lemma 14. Let C be the total order on V (BINh) given by the sequence (1). Then D(ψC) ≤ 5 · 2h/h =

O(n/ log n).

Proof. By Lemma 9, it suffices to upper bound the stretch |ψC(u) − ψC(v)| of an arbitrary edge {u, v} of
BINh . Suppose u is the parent of v. If v ∈ A then, by Lemma 13, the stretch is at most 2(log h)+1

= 2h. If
u ∈ Bi , for some i , then edge is part of a complete binary tree of height at most h − log h −1. By Lemma 13,
the stretch is at most 2h−log h

= 2h/h.
For any other edge, we must have u C v, u ∈ Vi−1+log h and v ∈ Vi+log h , where 1 ≤ i ≤ h/2. The

construction of the sequence (1) ensures that (u, v]C ⊆ Vi−1+log h ∪ Vi+log h ∪ Bi+log h . By Lemma 13,
the spread of V j under ψC is at most 2 j+1. Moreover, Bi+log h consists of 2i+1 subtrees, each of height
h − i − log h. Therefore, each of these subtrees has spread at most 21+h−i−log h . Finally, the distance in
BINh between the rightmost vertex of one of these subtrees and the leftmost vertex of the next is at most 2h.
Therefore, these subtrees are embedded at most 2h apart from each other. Putting it all together,

ψC(v)− ψC(u) ≤ 2i+log h
+ 21+i+log h

+ 2i+1 (
21+h−i−log h

+ 2h
)

= 7 · 2i h + 2h+2/h

≤ 5 · 2h/h ,

where the final inequality holds because i ≤ h/2 and h is large enough.

Theorem 15. For h large enough, D∗(BINh) = 2(2h/h) = 2(n/ log n).

Proof. The upper bound follows from Lemma 14. The lower bound follows from Theorem 7 because
ld(BINh) = 2(n/ log n).

4 Embedding Fans and Combs

Let FANa,b and COMBa,b denote, respectively, the fan and the comb with a arms, each of length b. For
illustrative examples, please see Fig. 1. We assume that the arms of FANa,b are numbered 1 to a in some
arbitrary order, and that the vertices on each arm are numbered from 0 to b in increasing order of distance
from the root of the fan. For 1 ≤ i ≤ a and 0 ≤ j ≤ b, let vi j denote the j th vertex on the i th arm of the
fan. Note that the root of the fan is v10 = v20 = · · · = va0 and that

E(FANa,b) =
{
{vi j , vi, j+1} : 1 ≤ i ≤ a, 0 ≤ j ≤ b − 1

}
.

For COMBa,b, we assume that its vertices are numbered according to an a × (b + 1) grid with wi j denoting
the j th vertex on the i th arm of the comb:

E(COMBa,b) =
{
{wi0, wi+1,0} : 1 ≤ i ≤ a − 1

}
∪

{
{wi j , wi, j+1} : 1 ≤ i ≤ a, 0 ≤ j ≤ b − 1

}
.

We shall determine the asymptotic behavior of D∗(FANa,b) and D∗(COMBa,b) for large a and b. Our
results immediately will imply that D∗(G)/ ld(G) can be as large as �(n), for an n-vertex graph G.

4.1 Upper Bounds

As before, upper bounds follow by analyzing D(ψC) for a suitable total order C on the vertices of the
appropriate graph. The comb is especially simple: the sequence 〈〈wi j 〉

b
j=0〉

a
i=1 is easily seen to give a

connected ordering C of COMBa,b. For any vertex wi j 6= w10, we have dCOMB(predC(wi j ), wi j ) = b + 1, if
j = 0, and 1, otherwise. Applying Lemma 11 we get D(ψC) = 2b + 1. Thus, we have proved:
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Figure 1: The graphs FAN3,2 and COMB3,2, together with their vertex labels as in the discussion in Section 4.

Theorem 16. D∗(COMBa,b) ≤ 2b + 1 = O(b).

We now turn to upper bounding D∗(FANa,b). Note that the embedding used above for COMBa,b was the
canonical embedding for a depth first ordering of its vertices. Using a similar depth first ordering for FANa,b

gives us an embedding whose distortion is as large as 2(ab) = 2(n). Using a breadth first ordering also
gives a similarly weak result. Below, we give a more complicated construction that proves a nontrivial upper
bound.

Theorem 17. D∗(FANa,b) = O(max{b, a
√

b}).

Proof. Set r :=
⌈

a/
√

b
⌉

. For 1 ≤ k ≤
⌈√

b
⌉

, define the sequences σk and πk as follows:

σk :=
〈
〈vi j 〉

b
j=k

〉kr
i=(k−1)r+1 ,

πk := 〈vik〉
a
i=kr+1 .

We assume that sequences are automatically trimmed by removing all undefined symbols vi j . Now define
C to be the total order on V (FANa,b) given by the following sequence:〈

v10, σ1, π1, σ2, π2, . . . , σd
√

be
, π

d
√

be

〉
.

We claim that D(ψC) = O(max{b, a
√

b}).
To prove our claim, we observe that ψC is a connected ordering of T := FANa,b. Therefore, we may use

Lemma 11, for which we analyze the quantity f (v) := dT (predC(v), v) for all vertices v 6= v10.
Each sequence σk traverses r paths in FANa,b, each moving away from the root. Color a vertex v red if

predC(v) is the furthest-from-root vertex on any of these paths. Clearly, f (v) ≤ 2b for any red vertex v. If
predC(v) occurs in πk , for some k, then we see that f (v) ≤ 2k + 1 ≤ 3

√
b; color v blue in this case. For all

other (i.e., uncolored) vertices, predC(v) = parC(v), whence f (v) = 1.
By construction of C, each interval (parC(u), u]C contains at most r red vertices, at most a blue vertices

and at most rb uncolored vertices. Therefore,∑
v∈(parC(u),u]C

f (v) ≤ r · 2b + a · 3
√

b + rb · 1 ≤ 3(rb + a
√

b) .

If a ≥
√

b, then r =
⌈

a/
√

b
⌉

≤ 2a/
√

b, so the above sum is at most 9a
√

b. On the other hand, if a <
√

b,
then r = 1 and a

√
b < b, so the above sum is at most 6b. Therefore, the above sum is upper bounded by

O(max{b, a
√

b}). Lemma 11 completes the proof.
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4.2 Tight Lower Bounds

We now show that the above upper bound on D∗(FANa,b) is asymptotically tight. This is our most technically
involved proof. We give two different arguments: one that proves an �(b) lower bound and one that proves
an �(a

√
b) bound. A tight lower bound on D∗(COMBa,b) follows as a corollary of our argument. Note that

the local density lower bound (Theorem 7) cannot give us such strong bounds, because these graphs have
local density at most a.

Lemma 18. Any line embedding ϕ of FAN3,b satisfies D(ϕ) ≥ 2b. Therefore D∗(FAN3,b) ≥ 2b = �(b).

Proof. Let T := FAN3,b. By the Canonical Embedding Lemma (Lemma 4), we may assume that ϕ = ψC

for some total order C on V (FAN3,b). Assume w.l.o.g. that v1b C v2b C v3b.
Suppose we have v2b C v1 j for some j with 0 ≤ j < b. Then v1b C v2b C v1 j , whence there must exist

an integer k, with 0 ≤ k < b, such that v1,k+1 C v2b C v1k . By definition of ψC,

ψC(v1k) = ψC(v1,k+1)+

∑
u∈(v1,k+1,v1k ]C

dT (predC(u), u)

≥ ψC(v1,k+1)+ dT (v1,k+1, v2b)+ dT (v2b, v1k)

≥ ψC(v1,k+1)+ 2b ,

where the first inequality follows from the triangle inequality for dT . Therefore |ψC(v1k)−ψC(v1,k+1)| ≥ 2b
whereas dT (v1k, v1,k+1) = 1. Thus D(ψC) ≥ 2b.

If v3 j C v2b for some j with 0 ≤ j < b, then a similar argument gives D(ψC) ≥ 2b.
Therefore, we are left to consider the case when, for all j such that 0 ≤ j ≤ b, we have v1 j C v2b C v3 j .

However, v10 = v30 = the root of the fan T , so setting j = 0 gives us a contradiction in this case.

Theorem 19. D∗(COMB3,b) ≥ b/2 = �(b).

Proof. Notice that FAN3,b can be obtained from COMB3,b by contracting two edges. Applying Lemma 12
and the above lemma gives us D∗(COMB3,b) ≥ D∗(FAN3,b)/4 ≥ b/2.

We now turn to proving an �(a
√

b) bound on D∗(FANa,b) for large a and b. We will need to consider
induced subgraphs of FANa,b that contain the root v10 and, for each arm of FANa,b, either all or none of the
non-root vertices in the arm. We call these special subgraphs subfans of FANa,b.

Definition 20 (Segments, Weights, Links, Consecutiveness). Let T be a subfan of FANa,b and C be an
total order on V (T ). An interval of C that induces a path in T \ {v10} and is maximal with respect to this
property is called a segment of T . Clearly, V (T ) \ {v10} is partitioned into segments. We define the weight
W (s) of a segment s to be max{ j : vi j ∈ s}. We call an edge of T a link if its endpoints either lie in distinct
segments or include the root v10. We call two vertices u and v consecutive if there is no vertex x such that
either u C x C v or vC x C u; we define consecutiveness for segments similarly. All of the above definitions
are with respect to the particular order C.

Lemma 21. There exists a non-contracting line embedding ϕ of FANa,b such that D(ϕ) = D∗(FANa,b) with
the property that no pair of non-adjacent non-root vertices lying on the same arm of FANa,b are consecutive
with respect to <ϕ .

Proof. Please see Appendix A.
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Lemma 22. Suppose ϕ is an embedding of FANa,b with the properties guaranteed by Lemma 21, T is a
subfan of FANa,b and λ = {vi j , vi, j+1} is a link of T with respect to <ϕ . Define S(λ) to be the set of all
segments s of T such that

∃ x ∈ s (vi j ≤ϕ x) and ∀ x ∈ s (x <ϕ vi, j+1) , if vi j <ϕ vi, j+1

∀ x ∈ s (vi, j+1 <ϕ x) and ∃ x ∈ s (x ≤ϕ vi j ) , otherwise.

Then D(ϕ) ≥
∑

s∈S(λ) 2W (s).

Proof. Assume w.l.o.g. that vi, j+1 <ϕ vi j . Slightly abusing notation, let us extend the total order <ϕ to the
segments of T in the natural way. Let s1 <ϕ s2 <ϕ · · · <ϕ st be the segments in S(λ) and let wk be the
vertex in sk that is farthest from the root. Then W (sk) = dT (v10, wk). Note that vi, j+1 /∈ s1 but vi j ∈ st .

By the property of ϕ guaranteed by Lemma 21, no two segments of T are consecutive. Therefore wk+1

must be in a different arm of T from wk , for all k with 1 ≤ k < t . Thus,

ϕ(wk+1)− ϕ(wk) ≥ dT (wk, wk+1) = dT (wk, v10)+ dT (v10, wk+1) = W (sk)+ W (sk+1) . (2)

Observe that w1 is not on the i th arm of T and that vi j = wt . Therefore,

ϕ(w1)− ϕ(vi, j+1) ≥ dT (vi, j+1, w1) > dT (vi j , w1) = W (s1)+ W (st) . (3)

Adding (3) and all k − 1 inequalities given by (2) together gives us ϕ(vi j )− ϕ(vi, j+1) ≥
∑t

k=1 2W (sk). To
finish the proof, we note that D(ϕ) ≥ |ϕ(vi j )− ϕ(vi, j+1)|/dT (vi j , vi, j+1) = |ϕ(vi j )− ϕ(vi, j+1)|.

Lemma 23. D∗(FANa,b) = �(a
√

b).

Proof. Let ϕ be the embedding whose existence is guaranteed by Lemma 21. Throughout this proof, seg-
ments and links will be with respect to the total order <ϕ . For each integer m with 1 ≤ m ≤ dlog be,3 let Tm

denote the subfan of FANa,b consisting of exactly those arms in which the number of segments, excluding
the root, lies in [2m−1, 2m). Some of the subfans Tm may be empty. Let am denote the number of arms of Tm

and let Sm denote the set of segments of Tm .
Let s−

m and s+

m denote the minimum and maximum segment in Sm , respectively, under the total order <ϕ
(i.e., the leftmost and rightmost segment, respectively). Let Lm be the set of links encountered on the path
from a vertex in s−

m to a vertex in s+

m . For each link in Lm we obtain an inequality from Lemma 22. Adding
these inequalities together gives

|Lm | · D(ϕ) ≥

∑
s∈Sm\{s−

m ,s
+
m }

2W (s) . (4)

Consider an arm A of Tm that contains exactly t segments (note that t ≥ 2m−1). One of these segments
must include the vertex in A farthest from the root; this segment has weight b. The smallest possible weights
for the other segments are {1, 2, . . . , t − 1}. Therefore,∑

s∈A

W (s) ≥ b + (1 + 2 + · · · + (t − 1)) ≥ b +
t2

4
≥ b + 22m−4 .

Using this fact in (4) gives

|Lm | · D(ϕ) ≥ 2am(b + 22m−4)− 2W (s−

m )− 2W (s+

m ) .

3We remind the reader that logarithms are to the base 2.
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Consider any m such that am ≥ 4. Using W (s−

m ) ≤ b, W (s+

m ) ≤ b and |Lm | ≤ 2 · 2m in the above inequality
gives us 2m+1 D(ϕ) ≥ am(b + 22m−4), whence

D(ϕ) ≥ am

(
b

2m+1
+ 2m−5

)
. (5)

Suppose there exists an m such that am ≥ min{2m−2a/
√

b, a
√

b/2m+2
}. Then, by (5), we would have

D(ϕ) ≥ min

{
2m−2a
√

b
·

b
2m+1

,
a
√

b
2m+2

· 2m−5

}
=

a
√

b
27

and we would be done. Suppose, instead, that no such m exists. Then

dlog be∑
m=1

am <

dlog be∑
m=1

min

{
2m−2a
√

b
,

a
√

b
2m+2

}
=

a
4

dlog be∑
m=1

min

{
2m

√
b
,

√
b

2m

}
≤

a
4

∞∑
m=−∞

min

{
2m

√
b
,

√
b

2m

}
≤ a

and we have a contradiction since, by the definition of am , we must have
∑dlog ne

m=1 am = a. This completes
the proof.

4.3 Summary of Results and Consequences

To summarize our results above, we combine Theorems 16, 17 and 19 and Lemmas 18 and 23 to obtain:

Theorem 24. D∗(COMBa,b) = 2(b) and D∗(FANa,b) = 2(max{b, a
√

b}).

Notice that ld(FANa,b) ≤ a and ld(COMBa,b) ≤ a. Thus, these two families of trees exhibit arbitrarily
large gaps between the local density ld(T ) and the line distortion D∗(T ), for appropriately chosen parame-
ters a and b. Indeed, this gap could be made as large as 2(n) by considering, e.g., COMB3,n/3. This large
gap is to be contrasted with the situation for the bandwidth bw(T ): as mentioned in Section 1.1, it has been
proven that bw(T ) = O(ld(T ) log2.5 n) for a tree T and that bw(G) = O(ld(G) log3.5 n) for a general graph
G, and it is conjectured that bw(G) = O(ld(G) log n).

From our results one can see that D∗(T ), for an n-vertex tree T , can be arbitrarily low or high, even
for the highly restricted class of binary trees (equivalently, trees with maximum degree 3), as shown by the
following theorem.

Theorem 25. Let f (n) be a nondecreasing function of n with 1 ≤ f (n) ≤ n. There is a family of binary
trees {Ti }, where Tn has n vertices, such that D∗(Tn) = 2( f (n)).

Proof. Define Tn = COMBdn/ f (n)e,d f (n)e. When appropriately rooted, Tn is a binary tree. By Theorem 24,
D∗(Tn) = 2( f (n)).

5 Concluding Remarks

We have studied bi-Lipschitz embeddings of graph metrics into the real line and determined the optimal
distortion of a line embedding of certain special families of trees: namely, complete binary trees, combs and
fans. These families illustrate some of the nontrivial combinatorial techniques that arise in either upper or
lower bounding their line distortions.
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While it would have been nice to have a general theorem applicable to all trees, such as one that relates
the optimal distortion to a more well-studied combinatorial notion, we believe that there is no easy theorem
of the sort.4 Theorem 25 highlights this point. It also shows that our sublinear distortion line embedding of
the complete binary tree in Theorem 15 does not generalize to arbitrary binary trees.
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A Proofs of Various Lemmas

Restatement of Lemma 4 (Canonical Embedding Lemma). Given a total order C on V (G), for a graph
G, let ψC : V (G) → R be defined thus:

ψC(u) :=

{
0 , if u = min(C) ,
ψC(predC(u))+ dG(predC(u), u) , otherwise.

Then ψC is a non-contracting line embedding of G. Moreover, if ϕ is any non-contracting line embedding
of G with <ϕ≡ C, then D(ϕ) ≥ D(ψC).

Proof. We prove that ψC is non-contracting by contradiction. Suppose there exist distinct u, v ∈ V (G)
such that u C v and ψC(v)− ψC(u) < dG(u, v). Moreover, suppose u and v are as close as possible in the
total order C. If there exists x ∈ V (G) with u C x C v, then, by the triangle inequality in G,

(ψC(v)− ψC(x))+ (ψC(x)− ψC(u)) ≥ dG(v, x)+ dG(x, u) ≥ dG(v, u) ,

which gives us a contradiction. On the other hand, if u = predC(v), then the definition of ψC gives us a
contradiction.

Now suppose ϕ is any non-contracting line embedding of G with <ϕ≡ C. Let u1 C u2 C · · · C un be the
maximal chain of C. Then, for all i ∈ {1, . . . , n − 1},

ϕ(ui+1)− ϕ(ui ) ≥ dG(ui , ui+1) = ψC(ui+1)− ψC(ui ) ,

where the first inequality holds because ui <ϕ ui+1 and ϕ is non-contracting. Thus, for 1 ≤ i < j ≤ n,

ϕ(u j )− ϕ(ui ) =

j−1∑
h=i

(ϕ(uh+1)− ϕ(uh)) ≥

j−1∑
h=i

(ψC(uh+1)− ψC(uh)) = ψC(u j )− ψC(ui ) ,

which implies D(ϕ) ≥ D(ψC).
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Restatement of Lemma 11. Let C be a connected ordering of the tree T . Then

D(ψC) = max
u∈V (T )

u 6=min(C)

∑
v∈(parC(u),u]C

dT (predC(v), v) .

Proof. Since C is a connected ordering, E(T ) = {{parC(u), u} : u ∈ V (T ) \ {min(C)}}. By Lemma 9,

D(ψC) = max
u∈V (T )\{min(C)}

{ψC(u)− ψC(parC(u))} .

To finish the proof, we note that

ψC(u)− ψC(parC(u)) =

∑
v∈(min(C),u]C

dT (predC(v), v)−

∑
v∈(min(C),parC(u)]C

dT (predC(v), v)

=

∑
v∈(parC(u),u]C

dT (predC(v), v) .

Restatement of Lemma 12. If the tree T ′ is obtained from the tree T by contracting an edge of T , then
D∗(T ′) ≤ 2D∗(T ).

Proof. Let ϕ be any non-contracting line embedding of T and let ϕ′ denote ϕ restricted to V (T ′). For any
two distinct vertices u, v ∈ V (T ′), we have dT ′(u, v) ∈ {dT (u, v), dT (u, v) − 1}. This implies that ϕ′ is a
non-contracting line embedding of T ′ and that dT ′(u, v) ≥ dT (u, v)/2. Therefore

D(ϕ′) = max
u,v∈V (T ′)

u 6=v

|ϕ′(u)− ϕ′(v)|

dT ′(u, v)
≤ max

u,v∈V (T )
u 6=v

2 · |ϕ(u)− ϕ(v)|

dT (u, v)
= D(ϕ) .

Picking ϕ such that D(ϕ) = D∗(T ) completes the proof.

Restatement of Lemma 21. There exists a non-contracting line embedding ϕ of FANa,b such that D(ϕ) =

D∗(FANa,b) with the property that no pair of non-adjacent non-root vertices lying on the same arm of FANa,b

are consecutive with respect to <ϕ .

Proof. Consider any non-contracting line embedding ϕ of T := FANa,b. Suppose vi j and vik (on the i th
arm of T ) are a “bad pair,” i.e., they are consecutive with respect to <ϕ but are also non-adjacent non-root
vertices: 0 < j < k − 1. We describe an operation on ϕ that will eliminate this bad pair. In the sequel we
shall apply this operation repeatedly.

Assume w.l.o.g. that vi j <ϕ vik . Define the function ϕ′ : V (T ) → R to be identical to ϕ except at
vertices vil with j < l < k, which are moved so that they lie between ϕ(vi j ) and ϕ(vik) and are evenly
spaced out. To be precise,

ϕ′(vml) =

ϕ(vi j )+
(
ϕ(vik)− ϕ(vi j )

)
·

l − j
k − j

, if m = i and j < l < k ,

ϕ(vml) , otherwise.

We claim that ϕ′ is a non-contracting line embedding of T with D(ϕ′) ≤ D(ϕ). We say that a vertex v
has moved if ϕ′(v) 6= ϕ(v). Since ϕ is non-contracting, we have

1 ≤ α :=
|ϕ(vik)− ϕ(vi j )|

k − j
≤ D(ϕ) .
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For any pair of distinct vertices x, y ∈ V (T ), three cases arise. If neither x nor y has moved, then |ϕ′(x)−

ϕ′(y)| = |ϕ(x) − ϕ(y)|. If they have both moved, then, by construction, |ϕ′(x) − ϕ′(y)| = αdT (x, y). If
x = vil has moved and y has not, assume that y <ϕ vi j (we can make a similar argument if vik <ϕ y). Then

|ϕ′(x)− ϕ′(y)| = |ϕ′(x)− ϕ(vi j )| + |ϕ(vi j )− ϕ(y)| ≥ dT (x, vi j )+ dT (vi j , y) ≥ dT (x, y) .

Furthermore, the path in T from x to y must pass either through vi j or through vik ; let v denote the vertex
among these two that it does pass through. Then

|ϕ′(x)− ϕ′(y)| ≤ |ϕ′(x)− ϕ(v)| + |ϕ(v)− ϕ(y)| ≤ αdT (x, v)+ D(ϕ)dT (v, y) ≤ D(ϕ)dT (x, y) .

Thus, in all three cases, dT (x, y) ≤ |ϕ′(x)− ϕ′(y)| ≤ D(ϕ)dT (x, y), which proves our claim.
By repeatedly applying the above operation, we can eliminate all bad pairs without ever increasing the

distortion. To see that this procedure eventually terminates, observe that the operation strictly decreases the
number of segments of T with respect to <ϕ .
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