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ABSTRACT

Wireless capsule endoscopy (CE) is increasing being used
to assess several gastrointestinal(GI) diseases and disorders.
Current clinical methods are based on subjective evaluation
of images. In this paper, we develop a method for ranking
lesions appearing in CE images. This ranking is based on
pairwise comparisons among representative images supplied
by an expert. With such sparse pairwise rank information fora
small number of images, we investigate methods for creating
and evaluating global ranking functions. In experiments with
CE images, we train statistical classifiers using color and edge
feature descriptors extracted from manually annotated regions
of interest. Experiments on a data set using Crohn’s disease
lesions for lesion severity are presented with the developed
ranking functions achieve high accuracy rates.

Index Terms— Capsule Endoscopy, Statistical Classifi-
cation, Disease Severity, Ordinal Regression

1. INTRODUCTION

Wireless capsule endoscopy (CE) [1] is increasingly being
used to diagnose small bowel conditions such as obscure
gastrointestinal bleeding, celiac disease, and Crohn’s disease.
The disposable capsule system (Given Imaging Inc, or Olym-
pus Medical Systems), not much larger than a common drug
capsule, consists of a small color camera, LEDs and elec-
tronics for illumination and wireless communication, and the
battery. The capsule is swallowed and moved by peristalsis
along the small intestine. The device typically transmits ap-
proximately 50,000 images at a rate of 2 (typically 576x576,
color) images per second for up to 8 hours to a wireless
receiving device worn on the body, limited only by battery
life.

The archived images are later analyzed by a clinician in a
potentially time consuming process. The typical study read-
ing time is reported to be in hours [1, 2]. In addition to be-
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Fig. 1. CE image of a Crohn’s disease lesion with highlighted
ROI showing the lesion and surrounding inflammation.

ing a tedious, detection rates may also vary among clinicians,
especially for early stage disease. As a result, consistentas-
sessment of disease severity in CE images poses several chal-
lenges. It requires consistently detecting and assessing lesions
in video streams. It also requires recognizing and accounting
for redudant views of the same lesion. Therefore, it is impor-
tant to devise methods for efficient, consistent lesion assess-
ment.

This paper explores methods for automating assessment
of lesion severity in capsule endoscopy. Classification and
ranking, formulated as problems of learning a map from a set
of feature to a discrete set of labels, have been applied widely
in computer vision applications for face detection [3], object
recognition [4], and scene classification [5]. Alternatively,
ranking can be viewed as aregression problem to find a rank-
ing function between a set of input features and a continuous
range of ranks or assessment. This form has gained recent in-
terest in many areas such as learning preferences for movies
(http://www.netflixprize.com), or learning ranking functions
for web pages (e.g. google page rank).

Learning ranking functions requires manually assigning a
consistent ranking scale to a set of training data. Although
the scale could be arbitrary, what is of interest is the consis-



tent ordering of the sequence of images; a numerical scale
is only one of the possible means of representing this order-
ing. Ordinal regression tries to learn a ranking function from
a training set of partial order relationships. The learned global
ranking function then seeks to respect these partial orderings
while assigning a fixed rank score to each individual image or
object. Both Machine learning [6, 7] and content based infor-
mation retrieval [8] have sought to obtain mapping functions
assigning preference or ranking scores. In our work, we use
selective sampling techniques and SVMs with user provided
sparse partial ordering in combination with image feature vec-
tors automatically generated from a training set of images.

2. METHODS

Consider a vector of training imagesI = [I1, I2...In]. A
subset ofI have an associated preference relationship≺. Let

P = {(x, y) | Ix ≺ Iy}.

Let P̄ denote the transitive closure ofP . We require that
(x, x) 6∈ P̄ , thus disallowing inconsistent preferences. Our
goal is to to compute a real-valued ranking functionR such
that

Ix ≺ Iy ∈ P =⇒ R(Ix) < R(Iy)

For the rest of this discusion, “rank” will refer to a real-valued
measure on a linear scale, and “preference” will denote a
comparison among objects. We note that, given a numerical
ranking onn items, it is straightforward to generateO(n2)
preference relationships. Likewise, given a categorization of
n items into one ofm bins on a scale (e.g. mild, moderate, or
severe lesion), it is again possible to generateO(n2) prefer-
ences. Thus, this formulation subsumes both scale classifica-
tion and numerical regression.

Our estimate of the ranking function is based on empirical
statistics of the training set. The key idea is to note that a
preference pair〈x, y〉 ∈ P̄ can be thought of as apair of
training examples for a binary classifier. Let us define

B(p) =

{

0 p ∈ P̄

1 otherwise
(1)

We train a classifierC such that for anyp ∈ P̄

1. C(Ix, Iy) = B(〈x, y〉)

2. C(Iy , Ix) = 1 − B(〈x, y〉)

Given such a classifier, a continuous valued ranking can
be easily produced as

R(I) =

n
∑

i=1

C(Ii, I)/n (2)

Fig. 2. Estimated ranks vs. feature vector sum (
P

f ) for simulated
data.

Fig. 3. Disc images sorted (left to right) by estimated ranks.

That is,R is the fraction of values of the training set that are
“below” I based on the classifier. Thus,R is also the empiri-
cal order statistic ofI relative to the training set. The formula-
tion above can be paired with nearly any binary classification
algorithm.

Here, we will make use of SVMs in combination with
feature vectors extracted from the CE images. We assume
that anIx is represented by a feature vectorfx. As training
examples require pairs of images, letfk,j represent the vector
concatenation offk andfj . The training set thus consists of
the set

T = {< fk,j , 0 >, < fj,k, 1 > |(k, j) ∈ P̄}

The result of performing training onT is a classifier
which, given a pair of images, will determine their relative
order. Give this framework, we investigate preference rela-
tionships needed for training, and image features that produce
robust feature vectors.

By way of illustration, consider random vectors inR4

with the following preference rule:f1 ≺ f2 if and only if
∑

f1 <
∑

f2. The ranking functionR obtained from an
SVM classifier trained on 200 samples is plotted versus

∑

f
in Figure 2. The training set included all available feature
vectors, and achieved a 0% misclassification rate.

As a second example, consider a set of 100 synthetic im-
ages of disks (Figure 3) of varying thickness. Each image is
131x131 and grayscale, with the disc representing the only
non-zero pixels, consecutive images differing by 0.5 pixels in



disc thickness. For imagesIi andIj , the underlying ranking
function isthickness(i) < thickness(j) ≡ i ≺ j. Using a
10 bin intensity histograms as the feature vector, a SVM clas-
sifier using radial basis functions produces a ranking function
R that correctly orders (0 % misclassification) the discs (Fig-
ure 3) using onlyO(n) pairwise relationships.

3. EXPERIMENTS

We have an ongoing Johns Hopkins Medical Institutions
(JHMI) Institutional Review Board (IRB) approved protocol
for collecting anonymized capsule endoscopy studies. These
studies are anonymized and reviewed by Dr. Dassopoulos for
assessment of Crohn’s disease lesions. During this review,le-
sions as well as data for other classes for interest are selected
and assigned a global ranking (mild, moderate, or severe)
based upon the size, and severity of lesion and any surround-
ing inflammation. Lesions are ranked into three categories:
mild, moderate or severe disease.

A region of interest (ROI) is also manually computed.
Figure 1 shows a typical Crohn’s disease lesion. As a lesion
may appear in several images, data representing 50 seconds
of recording time around the selected image frame is also re-
viewed, annotated, and exported as a sequence. In addition,
a number of extra image sequences not containing lesions are
exported as background data for training of statistical meth-
ods.

We use the global lesion ranking to generate the re-
quired preference relationships≺. Over 188,000 pairwise
relationships are possible over our selected dataset of 600
lesion image frames that have been assigned a global rank-
ing of mild, moderate or severe by the clinician, assuming
mild < moderate < severe. We utilize a small num-
ber to initiate training, and an additional number to iterate
for improvement of the ranking function. Previous work on
machine learning has generally made use of some combi-
nation of color and texture features. SIFT [9] is not very
suitable for our wireless endoscopy images, due to lack of
sufficient number of SIFT features in these images. A variety
of feature vectors including edge, color, and texture features
[10], MPEG-7 visual descriptors [11], and hue, saturation
and intensity features [12] have been published specifically
for analysis of wireless capsule endoscopy images. In prior
work, we [13] have also explored feature vector representa-
tions based on color, edge and texture information for our
lesion data. For these experiments, simple 10 bin normal-
ized hue and saturation histograms provide adequate feature
vectors.

In the experiments below, we explore the improvement
of accuracy of the ranking function with increasing number
of pairwise preferences. These experiments were performed
using the SVM library in MATLAB’s bioinformatics toolbox,
on a Solaris 5.10 cluster of 64 processors (each running at
1167 MHz).
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Fig. 4. Iterations of the estimated rank function for 250 lesion im-
ages.

Metric Iter. 2 Iter. 3 Iter. 4
Mean 0.1133 0.0182 0.0024
Std. Dev 0.2055 0.0915 0.0106

Metric Iter. 1 Iter. 2 Iter. 3 Iter. 4
Training size 100 1100 1972 2116
mismatches 1286 436 77 3

Table 1. Changes in rank (top) and mismatches (bottom) over
iterations for 100 lesion images.

On n = 100 images, starting with onlyO(n) training re-
lationships, and SVM classifier using radial basis functions
as before, we obtain onlyO(n2) mismatches using the gen-
erated ranking functionR after the first iteration. A mis-
match is any pair of images whereR(Ix) < or > R(Iy)
andIx > or < Iy The number of mismatches drops expo-
nentially over 4 iterations where the training set is increased
by m = max(1000, mismatches) pairwise relationships.

Figure 6 shows the resulting ranked images, and Table 1
show changes in ranks for images, and number of mismatches
during each iteration. Both the mean and standard deviation
of rank change for individual images decreases monotonously
over successive iterations. Table 1 also shows the decreasing
number of mismatches over successive iterations. Figure 4
shows the sorted ranking function for 250 images over iter-
ations. The ranking function converges after just a few iter-
ations, with the changes in rank becoming smaller closer to
the convergence. Figure 5 show the decrease in mismatches
for 100 and 250 images over 4 iterations. Finally, Figure 7
contains similarly ranked 500 lesion images.
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Fig. 5. Number of iterations compared to the number of preference
relationships not respected by the estimated ranks for 100,and 250
lesion images.

Fig. 6. A montage of 100 ranked lesion images.

4. CONCLUSIONS

We have experimented with a framework using only O(n) re-
lationships to establish useful ordinal assessment of feature
vectors automatically extracted from a set of medical images.
While this work only establishes global assessment rankings,
this can be extended to obtain finer relationships, for example,
size, shape, and depth properties of lesions and surrounding
inflammation for our lesions data set. Suitable compositions
of such rankings may provide assessments with very high cor-
relation with manual assessments.

The lesion rankings used here were generated by a sin-
gle expert clinical user. In our continuing work, we are now
performing blind review of these images to improve the con-
sistency of manual annotation. The ROIs used were also man-
ually annotated, and while this is not a significant problem for
the small number of preference relationships required, we will
also explore suitable methods for automatic segmentation of
ROIs in the future.
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