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Abstract—The rate regions of independent distributed source
coding (IDSC) problems, a sub-class of the broader family of
multi-source multi-sink networks, are investigated. An IDSC
problem consists of multiple sources, multiple encoders, and
multiple decoders, where each encoder has access to all sources,
and each decoder has access to a certain subset of the encoders
and demands a certain subset of the sources. Instead of manually
deriving the rate region for a particular problem, computer
tools are used to obtain the rate regions for hundreds of non-
isomorphic (symmetry-removed) IDSC instances. A method for
enumerating all non-isomorphic IDSC instances of a particular
size is given. For each non-isomorphic IDSC instance, the
Shannon outer bound, superposition coding inner bound, and
several achievable inner bounds based on linear codes, are
considered and calculated. For all of the hundreds of IDSC
instances considered, vector binary inner bounds match the
Shannon outer bound, and hence, exact rate regions are proven
together with code constructions that achieve them.

I. INTRODUCTION

Many important practical problems, such as efficient infor-
mation transfer over a wireless or wired network, efficient data
storage on disks in a distributed storage system, and efficient
transmission in a video streaming system, have been shown to
involve determining the rate region of an abstracted network
under network coding. In many cases, the abstracted network
coding problem is a multi-source multi-sink multicast problem,
which is open in general.

This paper addresses one type of the multi-source multi-
sink multicast networks, the independent distributed source
coding (IDSC) problems. As will be introduced in §II, the
IDSC model consists of multiple sources, multiple encoders,
and multiple decoders, where each encoder has access to all
sources, and each decoder has access to a certain subset of
the encoders and demands a certain subset of the sources.
Since most of these problems are open, it is not easy to
derive analytical expressions for the rate regions of them. This
motivates us to use computers to calculate the rate regions and
give proofs automatically.

Yeung et al.’s early work [1], which was motivated from
satellite communication systems, and Yan et al.’s celebrated
paper [2] for general networks, provided a method, in prin-
ciple, to calculate the capacity region of networks under
network coding. Since the calculation involves I'};, the region
of entropic vectors, which is not fully characterized yet for
N > 4, we have no direct way to obtain exact capacity region
when there are more than four network variables, both source
and edge variables included. The problems presented in this
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Figure 1: A general IDSC model A: K independent sources are
available to encoders indexed by E; a decoder Dg,d € D has access
to Fan(Dq) C & and demands B(Dq) C Xi.x. The number of
variables in the network is N = K + |&|.
paper are in this case since they have four to six variables.

However, one can use bounds on the region of entropic
vectors to calculate inner and outer bounds on the capacity
region and then determine the capacity region by comparing
the bounds. Other interesting characteristics of the network
can be determined through bound comparison, including the
sufficiency of classes of linear codes to obtain the entire
rate region, and the ability of Shannon-type inequalities to
determine the rate region. Multiple methods can be utilized to
directly calculate these bounds through polyhedral projection
in this manner [3]-[6].

A special class of IDSC problems with prioritized sources,
multilevel diversity coding systems (MDCS), has been studied
in [3], [4], [6]-[10]. This paper investigates general IDSC
problems with the following agenda: I) enumerate all non-
isomorphic instances for a given size; II) for each instance,
obtain the exact rate region by comparing the calculated
outer and inner bounds on the rate region using computer
programs; III) generate human readable proofs. The inner
bounds considered include the (binary) representable matroid
inner bounds and superposition coding rate region. It is shown
that for the 219 IDSC instances considered, superposition is
not always optimal, but binary linear codes are always optimal,
and the Shannon outer bound is tight for every instance.

II. SYSTEM MODEL

In an IDSC instance, as shown in Fig. 1 and denoted as
A, there are K independent sources X1.x = (X1,...,Xk)
where source k£ has support Xj. As is standard in source
coding, each source X, is in fact an i.i.d. sequence of random
variables {X},¢t = 1,2,...} in ¢, and X}, is a representative
random variable with this distribution.

It is assumed that all sources are available to each of the
encoders indexed by the finite set £. The output Out(E.) of



an encoder F, is a description/message variable U.,e € €.
The message variables, or the encoders, are mapped to a
collection of decoders indexed by the set D. The collection
of mappings is denoted as a bipartite set G, G C & x D of
edges where (F., D;) € G if E, is accessible by D,. The set
of encoders mapped to a particular decoder Dy is called the
fan of Dy, and is denoted as Fan(Dg) = {E.|(Ee, Dq) € G}.
Similarly, the set of decoders connected to a particular encoder
E, is called the fan of E,, and is denoted by Fan(E,) =
{D4|(E.,D4) € G}. The demands of a decoder D, are
B(Dg) C Xjy.k. Furthermore, with a little abuse of notation,
we denote Fan(Xz) = {i € D|S(D;) = Xz}, Z C1: K.
Note that the total number of variables in the network is
N = K + |&|, including all source and coded message
variables.
We define an IDSC instance as minimal if it obeys:

(C1.) Vi,j € D, Fan(D;) # Fan(D;);

(C2.) If Fan(D;) C Fan(D;), ¢ # j, then 5(D;) N B(D;) = 0;

(C3) U;ep Fan(D;) = &;

(C4.) Bk,l €&k #1 such that Fan(Ey,) = Fan(E;).

(C5.) VE €{1,2,...,K}, 3d € D such that X;, € 5(Dyg).

(C6.) Vk,l € {1,2,...,K},k # I, we have {d € D|X} €

B(Da)} # {d € D|X; € B(Da)}.

The first condition (C1) indicates the trivial requirement
that no two decoders should have the same fan, for otherwise
these two decoders can be combined. (C2) is necessary for
pursuing minimality of representation of a network because
the demand at decoder D; implies that decoder D, can also
decode [(D;). This condition also makes sure that there
does not exist a contradiction in the decoding capabilities, for
instance, a decoder may have access to more encoders than
another but demands less. A special case of this condition
is when the demands of some decoders are identical. This
requires that the fan of such decoders cannot be a subset of one
another. (C3) requires that every encoder must be in use in the
reconstruction. (C4) requires that no two encoders have exactly
the same fan, for otherwise the two encoders can be combined.
(C5) ensures that no source is redundant. (C6) ensures that no
two sources can be combined as a single source.

A. Representation of IDSC instances

One representation of an IDSC instance is to list the fan
and demands of each decoder. Since Fan(Dy) C £,Vd € D,
one can represent Fan(Dy) using a |€|-bit indicator vector or
a corresponding integer value, where the entries of the vector
from left to right are mapped to Eg,..., £ and a one in a
position indicates the inclusion of the associated encoder in
Fam(Dy). Similarly, the demands /5(Dg) can be coded with a
K-bit vector or integer with D corresponding to the last bit.
We can define a bijection 6 : n <> find(bin(n) # 0) between
positions of indicators (non-zero values) in binary sequence
and corresponding integer value. For example, 6(6) = {2, 3}
because the binary sequence of 6 is (110) and the non-zero
positions are 2, 3 from the right side. Furthermore, we denote
that X,y = {X;,i € 6(n)}. With this encoding, an IDSC
instance can be easily represented by a matrix with 25X — 1

rows, where the row indices represent the demands of decoders
and entries are integers representing the fan of each decoder.
An all-zero vector at i-th row means there is no decoder that
only requires Xy ;). Each row may include some zeros to make
them the same length. For example, the configuration matrix
for the fourth (2,2) IDSC instance, shown as iv) in Fig.2,
is z % , where the three row vectors indicate that there
is one decoder that has access to {FE1, Ex} ((11)2 = 3) and
demands X (6(1) = {1}). Two decoders that have access to
Eq ((01)2 = 1), E5 ((10)2 = 2) respectively both demand Y
(0(2) = {2}). Note that this implies the first decoder can also
decode Y, but we only list X as its demand due to minimality
condition (C2).

Another notation for an IDSC instance that we will use ex-
tensively in this paper is the tuple (X1.x,&,D, G, 8(Dg),d €
D) where X1.x = (X1,...,Xxk) represents the K sources,
£ is the encoder set, D is the decoder set with corresponding
demands 5(Dg),d € D, and G is the set of edges between
encoders and decoders which indicates the accesses of each
decoder: if Dy has access to E., the edge (E., Dg) € G.

B. Enumeration of non-isomorphic IDSC Problems

We begin by defining a notion of equivalent or isomorphic

IDSC problem instances.
Definition 1 (Isomorphic IDSC instances): Two (K, |€])
IDSC instances, A = (X1.x,&,D,G,5(Dg),d € D) and
A = X1k, &, DG, 8(Dy),d € D), are isomorphic,
denoted as A = A’, if there exist a permutation of
sources o : X;1.x — X/, a permutation of encoders €&,
m:&— & suchthat X, = c(X1.x), &' =7(E), D' =D,
G' ={(w(Ee), Da)|(Ee, Da) € G}, and (D) = (B(Da))-

Since the isomorphism merely permutes the sources and/or
encoders, to study all possible IDSC instances, it suffices to
consider one representative in each isomorphism class, i.e.,
only consider non-isomorphic IDSC instances. One method to
do this is to remove isomorphisms from the list of all IDSC
instances. Utilizing such a method has the additional benefit
of indicating the total list of IDSC instances (with symmetries
included) for comparison with the list and number of non-
isomorphic instances. In order to obtain all IDSC instances,
similar as [6], we use the observation that the fan of decoders
with the same decoding ability must be a Sperner family of
the encoders set &, as required by condition (C2). A Sperner
family of &£, sometimes also called an independent system or
a clutter, is a collection of subsets of £ such that no element
is contained in another. Since the fan of a certain subset of
the sources can be empty, the empty set, or the all-zero row
vector, is used to represent the mapping between encoders and
such "decoders".

An algorithm to enumerate isomorphic and non-isomorphic
IDSC instances is given in Algorithm 1. We consider the
subsets of sources as demands of decoders in a binary-count
order. The enumeration process works as follows.

1) List all Sperner families, Sper(£) of the encoders set
& (required by (C2)); this can be done by considering all
combinations of subsets of £ that satisfy the clutter property;



2) All Sperner families, including the empty set, are possible
configurations for decoders demanding the first source, except
when K = 1, from (C5);

3) Suppose we have configurations for up to the fan
of Xp(;—1)- Now we will augment the existing partially-
configured IDSC instances with configurations for the fan
of Xp(, i.e., the decoders merely demanding Xg(;. We
consider all the existing instances one by one. Take one of
them as an example. Since the fan of decoders in Fan(Xy(;))
cannot have same fan as the existing decoders (required by
(C1)), we should remove the Sperner families containing at
least one element that is already selected in the existing
decoders. Furthermore, for every j < ¢ such that 6(j) C 6(i),
all Sperner families containing at least one element that is
a subset of the fan of a decoder in Fan(Xj(;) shall be
removed as well (required by (C2)). The remaining Sperner
families are possible configurations for Fan(Xp(;)). Repeat
until ¢ = 25 — 1.

4) At the last stage, when ¢ = 2K _ 1, the fan of X.x are
considered. If all encoders have been assigned access to at
least one decoder (required by (C3)), no two encoders have
the same fan (required by (C4)), and each source is required
by at least one decoder (required by (CS5)), an IDSC instance
with simplest structure has been obtained;

5) After step 4), all IDSC instances are obtained with isomor-
phism. Then we remove isomorphism by keeping one instance
in every isomorphism class, where the IDSC instances can
be obtained by permuting sources and/or encoders from one
another, and remove the others in the isomorphism class from

the list of all IDSC instances.
The numbers of IDSC instances for some (K, |£|) pairs are

listed in the first three columns of Table 1. Due to the limit of
space, we only list the 4 non-isomorphic minimal (2,2) IDSC
instances in Fig. 2.
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Figure 2: The four non-isomorphic (2,2) IDSC instances.

The fast growth of number of Sperner families with increas-
ing |&| renders Algorithm 1 inefficient for large numbers of
encoders. As a special case of the general network model in
[11], we can use the algorithm in [11], based on Leiterspiel
[12], to list the non-isomorphic IDSC instances directly.

III. RATE REGION FORMULATION

We now define the network codes and the capacity region
for an IDSC instance. Each source node k € {1,...,K} is
associated with an IID sequence distributed according to its
independent random variable X, taking values in Xj;,. Let R =
(H(X1),...,H(Xk),Ry,...,Rig)) € Rfﬂgl be a vector of
source and edge rates. A (n,R) block code over F, consists
of a series of block encoders, one for each ¢ € &, which
are functions that map a block of n source observations from
all sources, to one of [¢"#<] different descriptions in 7, =

0,1, TR = 1% £ Theqn, sy X = s € €&,

.....

Input: Encoder index set £, Number of sources K
Output: All non-isomorphic IDSC instances M, all
IDSC instances with isomorphism M’

Initialization: List all Sperner families Sper(&) of &,
pool = Sper(€), A = (X1.x,E,0,0,0), M' = A;
fori=1:(25 -1) do

M= M M =0

for every A € M" do

if i # 2K — 1 then

pool = Sper(€) \ {Z €
Sper(&)|Aug(A,Z, i) violates (C1)-(C2)};

end

else

pool = Sper(E) \ {Z €
Sper(&)|Aug(A,Z, i) violates (C1)-(C5)};

end
A = Aug(A,pool, i), M’ = M' U A,

end
end
Remove isomorphisms: M = isoRemoval(M');
where the Aug function is defined as follows
Function: A = Aug(A, pool, i)
A=0;
for every T € pool do
D'=DU{D|+1,...,|D|+|Z|}
BUD|+1) = -+ = B(D| + |TI) = Xo:
for j =1:|Z| do
| G = GU{(E., Do) |Ee € TG)):
end
A=AU (XLK,E,D/, g/, ﬂ(Dd/),d/ S D,);
end

Algorithm 1: Enumerate isomorphic and non-isomorphic
(K, |€|) IDSC instances

and a series of decoders d € D, which are functions gé") :

[eeran(pa) me = Ikepp,) Xi'» d € D. Denote by U € 1
the message for encoder e, e € £, which is the result of the
encoding function f7'.

The achievable rate region of a network A, de-
noted as R.(A), consists of all rate vectors R =
(H(X1),...,H(Xk),Rq,..., Rje|) such that there exist se-
quences of encoding functions " = (fZ, e € £) and decoding
functions g" = (¢}, d € D) for which the probability of error
at each decoder can be made arbitrarily small as n — oo, and
the closure of this achievable region is the capacity region.
Specifically, define the probability of error for each decoder
d € D as pp™(R) = P(g7(Ufhyp,)) # B(Da)'™), and the
maximum over these as p™°*(R) = maxgqepp;”"". A rate
vector is in the rate region, R € R.(A), is achievable if there
exists a sequence of encoders {fJ'} and decoders {g7} such
that p™°"(R) — 0 as n — oo, and the closure of the set of
achievable rate vectors is the capacity region.

Extending the formula in [2] and following similar proce-
dure as in [6], [13], the expression of the rate region of an
IDSC problem expressed in terms of region of entropic vectors
Iy and some network constraints, where IV is the number of



variables in the network including both the source and encoder
variables. Note that we assume that the output of a source will
be the associated source variable itself and therefore we do not
have the source coding constraints (usually represented as L5)
for IDSC problems. Therefore, the rate region of an IDSC
instance A is

R+(A) = Proj,. ,(con(I' N Ly 3) N Ly 5), (1)
where con(B) is the conic hull of B, and Proj,. ,(B) is the

o . T
projection of the set B on the coordinates [r”,w”]" where

r = [Ree€ €] and w = [H(X}),k € 1: K]. Further, '}
and £;,7 = 1,3,4’,5 are viewed as subsets of R™, M =
2N — 14|, N = K + |&|, with coordinates [h”,r7]7,
with A € R2"~! indexed by subsets of A as is usual in
entropic vectors, € RI®! playing the role of the capacities of
edges, and any unreferenced dimensions (e.g. 7 in I'}) are left
unconstrained (e.g. r € RI€l in %) The £;,i=1,3,4',5 are
network constraints representing source independency, codings
at encoders, edge capacity constraints, sink nodes decoding
constraints, respectively:

L1 = <heRM:hx = Y hxk} 2)
kel:K

Ly = {heRY:hy|x,,=0Vee&} 3)

Ly = {7 7T eRZ HEL R > hy e e &)@

Ly = {heRY:hypu,,, =0,vdeD}. )

and we will denote L(A) = L1 N Lo N Ly N Ls.

Similar to the solutions in [3]-[6], [13], we will replace
Iy with polyhedral inner and outer bounds, typically from
IF, representable matroids and the Shannon outer bound I'%;,
respectively, to check if the bounds match, because I'%; is not
fully characterized and even not polyhedral for N > 4 [14].
With polyhedral outer and inner bounds on I'};, (1) becomes
a polyhedral computation problem which involves applying
some constraints onto a polyhedra and then projecting down
onto some coordinates. If the outer and inner bounds on rate
region match, we obtain the exact rate region.

Regarding the inner bounds, as shown in [3]-[6], [13], there
are two types of inner bounds obtained from F,-representable
matroids. One is I'y?, which is obtained directly from the
conic hull of rank functions of IF,-representable matroids on N
elements, and their representations are associated with scalar
codes in the sense described in [4], [6]./The other inner bound,
associated with vector codes, is F}}\}q’N , which is obtained by
considering the conic hull of rank functions of polymatroids
which are N-partition of the ground sets of [F,-representable
matroids on N’ > N elements as d/escribed in [4], [6]. The
tightness of the inner bound F}’\}q’N is increasingly tight as
N’ — oo. With these bounds, we have associated rate regions

Ri(A) = Proj, ,(Ty N L(A)), k€ {o,(s,q), (v,q, N')}

We also consider another important inner bound for the
rate region, the superposition coding rate region, under which
sources are coded independently from one another in each
encoder, and the output of each encoder is the concatena-
tion of the separately coded messages across the different

Table I: Sufficiency of codes for IDSC instances: Columns 4—6 show
the number of instances that the rate region inner bounds match with
the Shannon outer bound.

(K ED [ IMT [ IMI | Rs2(A) | Ru2.n+1(A) | Rep(A)
2,2 2 7 g g g
2,3 234 | 33 26 33 30
(3,2) 24 3 3 3 3
(3,3) | 4752 | 1719 143 179 43

sources. The associated region in this case is determined
by the max-flow min-cut bound [14]. In particular, let v =
(Re, H( X)), Re(Xk)|le € £,k € 1 : K), where R.(X}) is
the sub-rate of source X at encoder E.. After considering
all decoders in D, we can get the superposition coding rate
region for an IDSC instance A as

R.=YF R.(X)), e€é&,
Rap(A) 1= Proj, o A V| X oeran(ny Re(Xi) > H(X;),
X, € B(Dg),Vd € D.

We will consider all these bounds above for the thousands of
non-isomorphic IDSC problems and prove their rate regions in
the next section. If an inner bound matches with the Shannon
outer bound, we say the associated codes are sufficient, i.e.,
every extreme ray in the outer bound on the rate region can
be achieved by such codes.

IV. COMPUTER AIDED PROOFS FOR RATE REGIONS

In this section, experimental results on thousands of IDSC
instances are presented. We extended the ability of our compu-
tation package [15] to handle IDSC problems. We investigated
rate regions for 219 non-isomorphic minimal IDSC instances
representing 5130 isomorphic ones. These include the cases
when (K, |&|) = (2,2),(2,3),(3,2),(3,3). For each non-
isomorphic IDSC instance, we calculated several bounds on
its rate region: the Shannon outer bound R,, the superposition
coding inner bound R, the scalar binary representable ma-
troid inner bound R, o, the vector binary representable matroid
inner bounds R, 2 n+1, where N = K + |£]. If the outer
bound on the rate region matches with an inner bound, we not
only obtain the exact rate region but also know the codes that
suffice to achieve any point in it.

Though it is infeasible to list all the 219 rate regions in this
paper, a summary of results on the matches of various bounds
is shown in Table I. The exact rate regions, their converses,
and the codes that achieve them for all 219 non-isomorphic
cases can be obtained at [16] and can be re-derived using
[15]. For the non-isomorphic IDSC instances we considered,
the Shannon outer bound is always tight on the rate regions,
and the exact rate regions are obtained. Superposition coding
does not always suffice for the IDSC instances. It suffices only
for IDSC instances with |£] = 2. Similarly, scalar binary codes
also only suffice for the instances with |£] = 2 but not for all
instances with |£| = 3. However, vector binary codes from
binary matroids on N + 1 variables suffice for all the 219
instances. Thus, for the IDSC problems up to K < 3, |&| < 3,
vector binary codes suffice.
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Figure 3: Block diagram and rate region R.(A) for a (3,3) IDSC
instance A.

V. EXAMPLE

In this section, an example is presented to show the tightness
of various inner bounds on the rate region of an IDSC
problem. Equivalently, we have computer aided proofs for both
achievability part and converse part. In particular, consider the
3-source 3-encoder IDSC instance A with block diagram and
rate region R.(A) shown in Fig. 3.

Superposition coding is not optimal for this network.
The superposition coding rate region is Rg,(A) =
R«(A) N {2R1+ Ry + R3 > 3H(X)+2H(Y)+2H(Z)}.
One of the extreme rays in the Shannon outer bound on rate re-
gion is (Ry,Re, R3, H(X),H(Y),H(Z)) = (1,1,1,1,0,1).
This extreme ray cannot be achieved by superposition because
when source X, Z are coded separately, the required coding
rates will be 2 instead of 1 for at least one of the encoders.

Secondly, scalar binary codes do not suffice for this net-
work, either. The scalar binary coding rate region is Ry o =
R«(A)N{Ry + Ry + Ry > H(X) +2H(Y) +2H(Z)} . One
of the extreme rays in the Shannon outer bound on rate region
is (R1,Re,Rs, H(X),H(Y),H(Z)) = (1,1,1,0,0,2). This
extreme ray cannot be achieved by scalar binary codes because
no scalar code can encode a source with entropy of 2 into
variables with entropy of 1.

However, vector binary codes suffice for this network. One
can construct vector binary codes to achieve all extreme
rays in the Shannon outer bound on the rate region. For in-
stance, the extreme ray (Ry, Ro, Rs, H(X),H(Y),H(Z)) =
(1,1,1,0,0,2) can be achieved by the vector binary code as
follows. Uy = Z',Uy = Z2,Us = Z' + Z?, where Z',Z?
are the two bits in source Z.

Finally, we consider the converse proof. As demonstrated in
[6], automatic human readable proofs for MDCS instances can
be generated by our software. The same procedure will give
the proofs for IDSC instances as well. Take the last inequality
in the rate region R.(A) for instance, the inequalities and
coefficients in Table II can be used to prove it as follows.

(3.4)

(1,2)
Ry+ Ry > H(Uz)+ H(Us) =" H(Y,Uz) + H(Y,Us)

Q)
> HY)+ H(Y,Us,Us)

(6)
ZH(Y)+H<X7Y5 Z7 U27U3> - H(X7Z|U27U3)

(7,8)
S HW)HX,Y, 2) L H(X) + 2H(Y) + H(Z).
These steps follow the capacities for E3&Fs3, the decoding
constraints on Dy& D3, the non-negativity of mutual infor-
mation (twice), the decoding constraints on Dg, the source
encoding constraints, and the source independence, resp.

Table II: Ordered inequalities with coefficients given by computer for
proving Ro + R3 > H(X) +2H(Y) + H(Z) in Fig. 3.

Order Coefficients | (In)equalities
1 Ry > H(U2)
R3 > H(Us)
H(Y[U3)=0
H(Y[U2)=0

I(Us;UslY) > 0

I(Y; X, Z]Us,U3) > 0

H(XZ|U2,U3) =0

H(U, Us|X,Y,Z) > 0

©O| Co| ~J| O U | WO DN
RN [N [N U VRN N U (U

H(X,Y,2) = HX)+ H(Y) + HZ)

VI. CONCLUSION
This paper enumerated all 219 non-isomorphic minimal
IDSC problems up to 3 sources and 3 encoders. For these
IDSC instances, computation tools were used to calculate the
various bounds on their rate regions and then their exact rate
regions were obtained. Vector binary codes sufficed and the
Shannon outer bound was tight for all the instances considered.
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