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Abstract

In this paper, we offer an algorithm for intelligent decision making about travel

path planning in mobile vehicular ad-hoc networks (VANETs), for scenarios where

agents representing vehicles exchange reports about traffic. One challenge that

arises is how best to model the trustworthiness of those traffic reports. To this

end, we outline an algorithm for effectively soliciting, receiving and analyzing the

trustworthiness of these reports, to drive a vehicle’s decision about the path to

follow. Distinct from earlier work, we clarify the need for specifying the condi-

tions under which reports are exchanged and for processing non-binary reports,

culminating in a proposed algorithm to achieve that processing, as part of the

trust modeling and path planning. To validate our approach we then offer a de-

tailed evaluation framework that achieves large scale simulation of traffic, travel

and reporting of information, confirming the value of our proposed approach by

demonstrating the average speed of vehicles which follow our algorithm (compared

to ones that do not). This experimental framework is promoted as a significant

contribution towards the goal of evaluating trust algorithms for intelligent decision

making in traffic scenarios.

Keywords: Multi-Faceted Trust Modeling; Multiagent Systems; VANET; Vehi-

cle Routing; Traffic Control

1 Introduction
In this paper, we present a method for exchanging reports between agents in mul-

tiagent systems that allows the trustworthiness of peers providing non-binary in-

formation to be modeled, as part of an agent’s decision making process. We are

motivated by the problem of enabling agents to make travel decisions based on

traffic reports received by peers, in a setting of mobile vehicular ad-hoc networks

(VANETs). In this environment, maintaining a multi-faceted trust model is of value

and our proposal for supporting non-binary reports ultimately integrates each facet

∗Parts of this research were presented at the TRUM workshop at UMAP 2012 [1].
1



Page 2 of 33

of this trust model, in order for an agent to determine which travel path to follow.

For example, a non-binary report could indicate a traffic congestion figure, rather

than a binary response to a question such as “Is the traffic heavy?”. Our starting

point is a model that includes a calculation of the consensus opinion about roads

from the majority of agents, but that assumes only binary reports. From here, we

sketch algorithms that clarify in greater detail how to support effective communi-

cation between the agents in the environment and how this would then dictate the

travel decision making of an agent who is receiving traffic reports from peers.

In order to demonstrate the effectiveness of our framework, we introduce a detailed

testbed that simulates vehicles traveling in an environment, making path planning

decisions based on non-binary traffic reports from peers whose trustworthiness has

been modeled. We offer an extensive set of simulations that serve to validate our

approach, illustrating how effective the average path time taken by our vehicles is,

in comparison with a best case scenario with perfect knowledge and with models

that integrate less detailed trust modeling.

The dual contributions are: i) an effective decision making process for intelligent

agents in VANET environments where trust is modeled and non-binary reports are

exchanged ii) an extensive testbed of use for measuring the value of different trust

modeling algorithms, in travel environments where agents exchange reports. We

clarify the importance of these contributions in comparison with related work in

the field.

2 Background: Multi-faceted Trust Model
In this section, we outline our original framework for modeling trust in VANET

environments ([2, 3, 4]). We consider the driver of each vehicle in our VANET en-

vironment to be represented by an agent. In order for each vehicle on the road to

make effective traffic decisions, information is sought from other vehicles[1] (about

the traffic congestion on a particular road). As a result, for each driver an intelli-

gent agent constructs and maintains a model for each of the other vehicles. Travel

decisions are then made based on a multi-faceted model of agent[2] trustworthiness.

This is necessary because when asked, each agent may report inaccurate traffic con-

gestion, in an effort to deflect other vehicles from certain roads. In particular, we

propose a core processing algorithm to be used by each agent that seeks advice

(about travel paths, based on traffic) from other vehicles in the environment as

summarized below.

In order to cope with possible data sparsity, various facets (highlighted in this

section in bold) of each agent are taken into consideration when reasoning about

travel, including the agent’s role, location and inherent trustworthiness (determined

on the basis of past experiences with this particular agent - i.e. whether past advice

has proven to be trustworthy). Each of these facets of the agent is stored within the

trust model.

[1]For now, we are assuming that reports are coming in from vehicles on the road rather than
other disassociated entities. As clarified in Section 3, we distinguish those vehicles reporting first
hand observation from those that are passing on information acquired indirectly.

[2]For the remainder of the paper, we use the term agent to refer to the intelligent entity that
is directing the actions of its vehicle. The word user refers to the driver who will ultimately be
deciding where to direct the vehicle.
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Algorithm 1: Computation Steps

while on the road do
Send requests and receive responses;

if in need of advice then
Choose n; //number of agents to ask for advice

//according to roles and experiences

Prioritize n agents;

if response consensus > acceptable ratio then
Follow advice in response;

else
Follow advice of agent with highest role and highest trust value;

Verify reliability of advice;

Update agents’ trust values;

We first acknowledge that certain vehicles in the environment may play a particu-

lar role and, on this basis, merit greater estimates of trustworthiness. For example,

there may be vehicles representing the police and other traffic authorities (authority)

or ones representing radio stations dedicated to determining accurate traffic reports

by maintaining vehicles in the vicinity of the central routes (expert). Or there may

be a collection of agents representing a “commuter pool”, routinely traveling the

same route, sharing advice (seniority).

Consideration of any past personal experiences with agents allows the model to

include any learning about particular agents due to previous encounters, specifically

modeling trustworthiness each time and adjusting the level of trust to be higher or

lower, based on the outcome of the advice that is offered. The equations which

adjust experience-based trust are as below:

TA(B)← TA(B) + α(1− |TA(B)|) (1)

TA(B)← TA(B) + β(1− |TA(B)|) (2)

Experience-based trustworthiness is represented and maintained following the model

of [5] where TA(B) ∈ (−1, 1) represents A’s trust in B (with -1 for total distrust

and 1 for total trust) which is incremented by 0 < α < 1 using Equation (1) if

B’s advice is found to be reliable (positive experience), or decremented by −1 <

β < 0 using Equation (2) if unreliable (negative experience), with |β| > |α| to

reflect that trust is harder to build up but easier to tear down. Distinct from the

original model of [5], the values of α and β can be set to be event-specific. For

example, when asking about a major accident, these values may be set high, to

reflect considerable disappointment with inaccurate advice. We also incorporate a

requirement for agents to reveal whether the traffic information they are providing

has been directly observed or only indirectly inferred from other reports that agent

has received. The critical distinction of direct or indirect reporting then influences

the values set for α and β, introducing greater penalties for disappointment with



Page 4 of 33

direct advice. In [3] we discuss at greater length the incentives to honesty that are

introduced within this framework; for brevity, we omit that discussion in this paper.

A central calculation to influence the travel decision of each agent is the deter-

mination of majority consensus amongst the agents providing advice about a

particular road. The agent maintains, as part of her model of other agents, a list of

agents to ask for advice. This list is ordered from higher roles to lower roles with

each group Gi of agents of similar roles being ordered from higher experience-based

trust ratings to lower ratings. The agent sets a value n and asks the first n agents[3]

from her ordered list the question (thus using priority-based trust), receives their

responses (reports), and then performs majority-based trust measurement. Suppose

that q of these n agents declare that their reports are from direct experience/obser-

vation. The requesting agent determines whether there are sufficient direct witnesses

such that she can make a decision based solely on their reports.

If q ≥ Nmin, then the requesting agent will only consider the reports from the

q direct witnesses if a majority consensus on a response can be reached, up to

some tolerance set by the requester (e.g. the agent may want at most 30% of the

responders to disagree), then the response is taken as the advice and followed. If

q < Nmin, then there are insufficient direct witnesses; the agent will consider reports

from both direct and indirect witnesses, assigning different weight factors to them,

computing and following the majority opinion. (Once the actual road conditions

are verified, the requesting agent adjusts the experience-based trust ratings of the

reporting agents: It penalizes (rewards) more those agents who reported incorrect

(correct) information in the direct experience case than those agents with incorrect

(correct) information in the indirect experience case.) If a majority consensus cannot

be reached, then instead, the agent relies on role-based trust and experience-based

trust (e.g., taking the advice from the agent with highest role and highest experience

trust value). Note that in order to eventually admit new agents into consideration,

the agent will also ask a certain number of agents beyond the nth one in the list.

The responses here will not be considered for decision, but will be verified to update

experience-based trust ratings and some of these agents may make it into the top

n agents, in this way.

The computation of majority consensus adheres to the set of formulae outlined

as follows: Suppose agent A receives a set of m reports R = {R1, R2, ..., Rm} from

a set of n other agents B = {B1, B2, ..., Bn} regarding an event. Agent A will

consider more heavily the reports sent by agents who have higher level roles and

larger experience-based trust values. When performing majority-based process, we

also take into account the location closeness between the reporting agent and

the reported event, and the closeness between the time when the event has taken

place and that of receiving the report. We define Ct (time closeness), Cl (location

closeness), Te (experience-based trust) and Tr (role-based trust). Note that all these

parameters belong to the interval (0, 1) except that Te needs to be scaled to fit within

this interval by (Te + 1)/2.

For each agent Bi (1 ≤ i ≤ n) belonging to a subset of agents B(Rj) ⊆ B who

report the same report Rj ∈ R (1 ≤ j ≤ m), we aggregate the effect of its report

[3]This integrates task-based trust. For instance, an agent may set n to be fairly small, say
n ≤ 10, if she needs to make a quick driving decision, or set a larger n if she has time to process
responses.
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according to the above factors. The aggregated effect E(Rj) from reports sent by

agents in B(Rj) can be formulated as follows [3]:

E(Rj) =
∑

Bi∈B(Rj)

Te(Bi)Tr(Bi)

Ct(Rj)Cl(Bi)W (Bi)
(3)

W (Bi) is a weight factor set to 1 if agent Bi who sent report Rj is an indirect

witness, and W (Bi) is set to a value in (0, 1) if user Bi is a direct witness[4].

A majority consensus can be reached if

M(R)∑
Rj∈RE(Rj)

≥ 1− ε (4)

where ε ∈ (0, 1) is set by agent A to represent the maximum error rate that A

can accept and M(R) = maxRj∈RE(Rj). A majority consensus can be reached if

the percentage of the opinion (the effect among different reports) over all possible

opinions is above the threshold set by agent A.

The trust modeling framework described so far clarifies the algorithms that lead

to the calculation of the trustworthiness value which would then be stored in each

agent model. Trip planning decisions of a vehicle would then be made in light of

these particular agent models. One element that requires further clarification is

detailed agent communication protocols to exchange reports. This is elaborated in

the section that follows.

3 Agent Communication Protocols to Exchange Reports
The framework in [4] (see also [2, 3]) is designed with a pull based communication

protocol, where agents send requests to other agents for information. In addition to

this classic pull oriented design, we introduce a push based protocol for broadcasting

information. These protocols dictate when communication is initiated and to whom.

Either or both of the two protocols can be used for communicating information

between agents. Algorithm 2 describes the push and pull based protocol and how

a priority road information request is sent by agents. This is part of our proposal

for specifying when trust modeling should be integrated into the decision making

process of these agents.

We note that this algorithm serves to provide important detail and clarification to

advance the earlier proposal of [4]. In that work, the messaging proposed was vague.

It was suggested that the message content (congestion information about a road)

would be a “yes” or “no” response to a question “Is this road congested?” and that

this response would be pulled to the requesting agent. When the pulls would occur

was left vague as “in need of advice”. As such, which roads were being investigated

was also left unspecified. The concept of a priority road, introduced below, facilitates

messaging and serves to provide the clearer specification of communication. Roads

are placed into priority for an agent if there is a gap of information about congestion;

subsequent to receiving a report about a priority road, that road’s status may be

[4]For example, setting W (Bi) = 1/2 for the case of direct witnesses indicates that the requesting
agent values direct evidence two times more than indirect evidence.
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altered to cause it to be removed from the priority list (if sufficient information on

that road has accumulated). How agents choose to designate a road as priority can

be left as an implementation detail. In the simulations used to validate our model,

if road information was empty or was sufficiently old, that road would be added to

the priority list.

Algorithm 2: Pull and Push Based Communication

while on the road do

if Triggered according to communication frequency then
//Pull protocol

//Get road to request advice about and agent to request from

if priority road exists then
Choose highest priority road;

Get trustworthy agent;

if Trustworthy agent exists then
Send request to trustworthy agent for advice concerning the high

priority road;

else
Send request to any agent for advice concerning the high priority

road;

//Push protocol

//Broadcast current location and congestion to agents

Broadcast current location and congestion;

The pull protocol allows agents (requester) to request information from other

agents (requestee). The trustworthiness of the information from the requestee agent

is modeled and used to determine what path to follow based on the report produced.

On the other hand, the push protocol allows agents to send information to other

agents, even if it were not requested. The trustworthiness of the sender agent is still

modeled; this may then be employed during decision making about travel paths.

Both of these protocols are set to occur according to a certain communication

frequency; this is the tactic employed during our simulation of traffic which serves

to provide the validation of our proposed framework (see Section 5). Setting the

communication to happen fairly frequently allows agents to inquire about any roads

for which they lack sufficient guidance and keeps the information flowing between

agents, from the push broadcasting.

Three types of messages are supported within our protocol. The three messages

are a transmission of an agent’s location and congestion (Location and Congestion

Push), a request for congestion information about a specific road (Priority Road In-

formation Pull Request), and a response for congestion information about a specific

road (Priority Road Information Pull Response).

We begin with a clarification of how our messaging framework would support

trust modeling in the context of Boolean traffic reports. Algorithm 1 theoretically

sends requests only to agents in a prioritized list, when advice was needed. Our

proposed update to this algorithm, shown in Algorithm 3, would have each agent’s
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knowledge base continuously updated with periodic messages, from the pull, push or

both protocols. When advice is needed, the most relevant and trustworthy reports

are chosen and used.

Algorithm 3: New Majority Computation Steps, with Advice Gathering Update

while on the road do
Send requests and receive responses;

if in need of advice then
Choose n reports R; //number of reports to use for advice

Check Priority Road(Current Road);//to help update the Priority list

Prioritize n reports; //according to roles and experiences

if response consensus > acceptable ratio then
Follow advice in response;

else
Follow advice of agent with highest role and highest trust value;

Verify reliability of advice;

Update agents’ trust values;

The work by Minhas et al. mentioned in Section 2 presented a Multi-faceted Trust

Management Framework that was described as operational for Boolean values of

congestion (Heavy (True), Light (False)). In order to calculate a majority opinion,

reports which featured the same Boolean value of congestion were aggregated to-

gether. The percentage of reports with same congestion value would be compared

against a threshold to determine whether the advice would be followed. The trust

modeling itself respects the formulae outlined in Section 2. The use of a new advice

gathering protocol (as per Algorithm 2) would not intrinsically alter the majority

opinion calculation; it simply clarifies how traffic reports are retrieved. Note that

calling Check Priority Road(Current Road) within this algorithm has the eventual

effect of coping with stale or missing information on roads that are critical to current

path planning.

4 Our Proposed Numeric Trust Modeling

In this section we clarify how our framework could support the use of numeric traffic

reports, leading to a “confidence metric” used for trust modeling, in contrast to the

Boolean evaluation of traffic in Section 2. Our new proposed confidence metric and

use of numeric congestion and trust values serve to allow a more accurate description

of traffic and agent information.

The original theory in Section 2 assumed that congestion would be communicated

as a simple true (Heavy) or false (Light), stating either that the road was congested

or not. However, direct application may result in an unfair and biased calculation

of the majority opinion. This is because determining whether a road is congested

or not is a subjective opinion and is prone to inaccuracies. Also, by representing

the congestion as a Boolean, this severely limits the system’s ability to compare

roads, evaluate agents, and make the best decisions. Our proposed model seeks to
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alleviate this problem by representing congestion as a number, which will bring a

more suitable level of accuracy to the system.[5]

Formula (3) shows the calculation for the aggregated effect of a majority opinion.

The new way of representing congestion as a numeric value requires a careful recast-

ing of formula (3). (3) aggregates the effect of all agents that sent the same report

(i.e. cong = true). This simple aggregation of similar reports is impossible with the

new congestion representation because there are no longer only two types of reports

(Cong=true or Cong=false). In the new framework, each report must be evaluated

for addition into the majority opinion system. This is done by giving the report a

confidence and then evaluating it for inclusion into the majority opinion (similar to

the aggregated effect calculation). The following sections will detail how the factors

of experience and role based trust, time and location closeness, and whether the

advice is direct or indirect are incorporated into our proposed confidence metric

and utilized in calculating a majority opinion.

4.1 Confidence Calculation

Confidence functions as a metric similar to trust, and is calculated by combining

many different report and agent factors, which were introduced in Formula (3) and

will be described in detail later in this section. These factors include experience and

role based trust, time and location closeness, and whether the advice is direct or

indirect.

Our proposed equation for calculating confidence must effectively replace Formula

(3), while representing a trust-like metric. Modifications to confidence should then

be reflected in a manner similar to how trust is increased and decreased in Equa-

tions (1) and (2). α and β function in these equations as a standard for increasing

and decreasing trust, respectively. For our proposed confidence calculation it did

not make sense to atomically increase or decrease the value according to the in-

fluencing factor (role, time closeness, etc.). The increase or decrease should reflect

the significance of the factor. As a result, our proposed confidence metric replaces

Formula (3) with Equation (6), where Equations (1) and (2) are used as the basis

for calculating the confidence of report Rj , through a modified summation of a

geometric series [6].

The factors of role based trust, time and location closeness, and whether the advice

is direct or indirect in Formula (3), are reflected through Variable (G). Each factor

is integrated, in turn, yielding an overall Conf value. In order to do so, G needs

to be calculated, as explained in the subsections that follow.[7] Experience based

trust of an agent automatically forms the default value of the confidence metric

(CurrConf(Rj)). Variable (G) represents the number of times[8] to increase or

[5]Note that a reported congestion value for instance of 23 would ideally be representing the
actual number of cars on the road; for our simulation, for example, the actual number of cars is
known and can be reported by truthful vehicles. Agents that are not truthful will be providing
inaccurate values in their reports. It may also be reasonable for cars to report their speed and for
this to be a reflection of the road’s congestion.

[6]A geometric series is necessary because the calculations are capturing atomic increases in
trust values but we are reasoning about non-Boolean factors that are therefore not atomic. See
Appendix A for a fuller depiction of the geometric series in question.

[7]The order of application used throughout our experiments is the one we follow in this section
of the paper.

[8]Note that we use the absolute value of G as the exponent in order to ensure that the number
of times is a positive number.
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decrease confidence. G’s calculation is specific to each factor. If G is calculated to a

negative value, this indicates that β should be used instead of α. Examples are shown

in Section 4.7. The following sections briefly detail how each factor influences G;

however the exact calculations are dependent on how parameter values are chosen,

within an implementation.

γ(G,α, β) =

{
α if G ≥ 0

β otherwise
(5)

Conf(Rj) = (CurrConf(Rj)− 1)(1− γ(G,α, β))|G| + 1 (6)

4.2 Majority

Majority based trust is incorporated into our framework as a core algorithm for

determining the trustworthiness of an agent, to then dictate whether to believe the

congestion value reported about a road, which influences path planning. Section 2

describes majority based trust as a consensus, with a value which has been agreed

upon by many agents. For our proposed non-Boolean extension to trust modeling,

majority based trust is described as an opinion, where a similar value has been

agreed upon by many agents. The rationale for the change from a Boolean based

congestion value to a numerical congestion value was described in the beginning of

Section 4.

The advice is used by choosing and prioritizing information from various reports

and calculating a majority opinion, which is followed if its confidence is above a

threshold, similar to the threshold of Equation 4. The primary advice presented

in Section 2 would be road congestion reports, which would be used to help an

agent decide what roads to take and which to avoid by considering all the facets of

the multidimensional trust model. This continues to hold in our framework. In our

calculation, if the confidence is below a threshold, then the advice is used from the

report with the highest confidence.

The majority opinion is calculated using Algorithm 4. All relevant advice reports

referencing a location are retrieved and prioritized into a list of size n. The major-

ity opinion is then calculated, stored, and reported back to the agent. If a report

contains information that is suspicious with respect to other reports that have been

observed, such as an extremely high congestion report, the sender is reported as a

suspicious agent. Labeling agents as suspicious is helpful in order to remove them

from consideration, regardless of their current trustworthiness value. The frame-

work will then process the suspicious agent, profiling it and updating its trust value

in the knowledge base.

4.2.1 Majority Calculation

Algorithm 4 is a modified algorithm from Algorithm 1, which shows the calcula-

tion of a majority opinion in the framework. The algorithm uses suspicious agent

detection in helping to avoid the inclusion of congestion advice which is outside a

standard deviation from the current majority congestion. The majority opinion is

used if there are at least n agents to use advice from and the majority confidence

is above the majority threshold.



Page 10 of 33

Algorithm 4: New Majority Computation Steps, with Numerical Congestion

Metric

while on the road do
Send requests and receive responses;

if in need of advice then
Choose n reports R; //number of reports to use for advice

Check Priority Road(Current Road);//to help update the Priority list

Prioritize n reports; //according to Confidence (roles, experiences, time,

location, and if report is indirect or direct)

foreach n reports do

if Rj suspicious then
Report suspicious agent Rj ;

else
Include report Rj in Majority;

if Majority suspicious then
Decrease Majority confidence;

if Majority confidence > acceptable threshold && Number of reports >

n threshold then
Follow advice in response;

else
Follow advice of report with highest confidence;

Verify reliability of reports;

Update users’ trust values;

4.2.2 Suspicion Calculation

Suspicion detection is important to include to help avoid congestion advice that

greatly deviated from the current majority. Only using advice that has similar

congestion reports forms our majority opinion, rather than conceiving of majority

opinion as just an average congestion of the highest trusted agents (n).

If an agent is deemed suspicious, then they are reported and the agent’s advice

is not used in the majority opinion calculation. However, the reverse is possible

where if an agent’s advice has higher confidence than the majority and confidence

greatly deviates from the majority. If this happens then the majority confidence

is decreased proportionally and the agent’s advice is potentially used as the report

with highest confidence.

4.3 Experience

Experience based trust is the most basic type of trust and is applied to every agent

in our framework. As detailed in Section 2, it is trust as a result of direct experiences

with the individual agent. This is updated when the model encounters information

that it can use in a judgmental nature. An example of such information would

be from detecting suspicious information being reported by an agent, encountering

definitive information that can be used as a comparison factor against information

previously reported by an agent, or processing the opinion of a more trusted agent
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about the agent in question. Since experience based trust is the most basic type of

trust, this forms the basis of the confidence calculation.

This facet of trust management is very simple but powerful. Section 5 demon-

strates this through basic simulations which only use experience and majority based

trust.

4.4 Role

Experience based trust is a powerful tool for profiling agents; however, it is often

challenged in scenarios with data sparsity. Data sparsity is an absence of agents

with which the resident agent has had previous experience. This is often the case in

the real world where it is rare to encounter a car which you have previously profiled.

Role based trust helps alleviate the issue of data sparsity by assigning roles to

agents in our framework. As detailed in Section 2, predefined roles (e.g. police

patrols, traffic reporters or taxi drivers) are assigned to all agents in the system.

Different roles may be associated with different levels of trust. The model uses

the four different types of roles, motivated by the classification of Minhas et al:

Ordinary, Seniority (e.g. commuter pool), Expert (e.g. news station car), Authority

(e.g. police).

Role based trust is incorporated into a proposition’s confidence calculation by

increasing it by a magnitude proportional to the particular role’s rank. Equation 7

shows how G is calculated for Equation 6. RPenal is a standard value for weighting

roles, andRoleRank is the rank of the roles.G is inversely proportional toRoleRank

so that higher roles (Authority has RoleRank of 2) warrant greater increases in

confidence.

G = RPenal/RoleRank (7)

4.5 Time/Location

It can often be the case that an agent receives a great deal of reports about a road,

with some being more accurate than others. A combination of time and location

closeness is used in confidence calculations to determine how accurate reports are.

Time closeness is a measure of how old the report is with respect to when the advice

is needed. Location closeness is a measure of how how far the agent providing the

report is to the road in question.

Time and location closeness helps alleviate the issue of old and inaccurate re-

ports by assigning these metrics to traffic report propositions and using them in

confidence calculations in our framework. As detailed in Section 2, metrics of time

and location closeness are used in calculating a majority consensus. Our proposed

model similarly uses these metrics in calculating a majority opinion, through modi-

fying the confidence of propositions by a magnitude inversely proportional to these

metrics.[9]

Equations 8 and 9 show how G is calculated for Equation 6. TPenal and LPenal

are standard values for weighting time and location respectfully. TimeDifference and

[9]This is consistent with the placement of these factors in the denominator of Equation 3.
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LocDifference are time difference and location difference respectively. Multiplica-

tiveFactor is a standard multiplicative factor for the calculation (max confidence

increase will be MultiplicativeFactor, and not 1, if TimeDifference or LocDifference

is 0.). The calculation finds the difference, for example, between Time Difference

and TPenal and then divides the difference by TPenal. This achieves the purpose

of scaling the values to be within their unit metrics.[10]

G = (TPenal − TimeDifference)/TPenal ∗MultiplicativeFactor (8)

G = (LPenal − LocDifference)/LPenal ∗MultiplicativeFactor (9)

4.6 Direct/Indirect

The framework of this paper also incorporates the distinction of direct and indirect

reports. Direct reports are reports which have been directly observed and reported

by an agent. Indirect reports are direct reports of a third agent which are stored in

the knowledge base of the agent the resident agent is communicating with.

For example, when one agent (Ar) communicates with another agent (A2) through

a pull request concerning a priority road (R1), A2’s highest confidence traffic report

concerning R1 may have been reported by another agent (A3) and not A2. A2 would

send Ar the report and indicate that it is an indirect report[11] (A2 did not create

the report), which would include A2’s confidence of the report. A2 calculates the

confidence using the report’s experience and role based trust, and time closeness[12].

The inclusion of indirect reports, as opposed to only allowing direct reports, is

important because it greatly increases the response rate of a pull request concerning

a priority road. Indirect reports, however, may be more inaccurate than direct re-

ports. This is taken into consideration through the use of the corresponding agent’s

confidence of the report (A2’s confidence of the report) and by modifying the con-

fidence value of a report by a predetermined factor.

Equation 10 shows how G is calculated for Equation 6. InPenal is a standard

value for penalizing indirect reports, and IfIndirect is 1 if the report is indirect and

0 otherwise.

G = InPenal ∗ IfIndirect (10)

4.7 Confidence Calculation Examples

This subsection presents two examples which describe how the confidence metric for

a report is calculated according to the multidimensional trust factors of experience

and role based trust, location and time closeness, and whether the report is indirect

[10]This required scaling was not considered in sufficient detail in the model of Minhas et al. and
Equation 3.
[11]The trust model described in this paper can be incorporated with a penalty mechanism such

as the one presented in [3] to more severely reduce the trust value of an agent who is not a direct
witness but claims to be one, resulting in the agent not being responded/helped by other agents
in the system.
[12]Location closeness is not incorporated because it is dependent on the agent who is using the

report.
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or not. The following examples will show iterative modifications to the confidence

value of a report according to the various factors.

The following calculation demonstrates how the confidence value for the report

was calculated. Note that all the parameter values used in these examples are the

ones used in our implementation[13].

Example 1: (illustrating α)

Confidence = Agent 39:trust degree (0.6)

Gtime = (TPenal(90)-TimeDiff(18))/TPenal(90)

*MultiplicativeFactor(1.5)

Gtime = 1.2

Confidence(0.6) = (Confidence(0.6)-1)(1− α)|Gtime|+1

Confidence = 0.6475

Gloc = (LPenal(200)-LocDiff(100))/LPenal(200)

*MultiplicativeFactor(1.5)

Gloc = 0.75

Confidence(0.6475) = (Confidence(0.6475)-1)(1− α)|Gloc|+1

Confidence = 0.674

Example 2: (illustrating β)

Confidence = Agent 41:trust degree (0.7)

Grole = RPenal(8)/RoleRank(2)

Grole = 4

Confidence(0.7) = (Confidence(0.7)-1)(1− α)|Grole|+1

Confidence = 0.8032

Gtime = (TPenal(90)-TimeDiff(180))/TPenal(90)

*MultiplicativeFactor(1.5)

Gtime = -1.5

Confidence(0.7813) = (Confidence(0.7813)-1)(1− β)|Gtime|+1

Confidence = 0.7413

Gloc = (LPenal(200)-LocDiff(500))/LPenal(200)

[13]However, we use InPenal=-2 in the example here instead for a more effective illustration.
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*MultiplicativeFactor(1.5)

Gloc = -2.25

Confidence(0.7604) = (Confidence(0.7604)-1)(1− β)|Gloc|+1

Confidence = 0.6100

Gindirect = InPenal(-2)*IfIndirect(1)

Gindirect = -2

Confidence(0.6991) = (Confidence(0.6991)-1)(1− β)|Gindirect|+1

Confidence = 0.4385

4.8 Travel Decisions when using Numeric Trust Modeling

Algorithm 4 clarifies whether an agent will choose to take a certain road or not

based on consensus about the congestion on the road. If the agent wants to reason

about which road to choose (from a set of possible roads), it can run Algorithm 4 for

each road. This algorithm is of use in scenarios such as the simulations we present

in the following section, where a path planning algorithm is considering specific

roads in order to propose the one that is best for the agent’s decision making. This

algorithm continues to clarify our proposal for integrating trust modeling into agent

decision making, in these travel environments.

5 Simulation Results
This section describes the simulation tests performed to compare and contrast the

effectiveness of our model’s implementation against a system that does not use

traffic information in routing and a best case scenario. Included in the comparisons

displayed in our graphs are less comprehensive trust modeling options. (For example,

our proposal with only experience-based and majority-based trust modeling is one

comparator; another is an algorithm that takes all reports at face value and does

not incorporate trust modeling at all).

We have designed an extensive simulation testbed that can be used to vali-

date our model by modeling traffic flow within an environment, tracking the path

times of cars to determine the effectiveness of travel decisions. When vehicles make

path planning decisions based on reports from other agents, if the accompanying

trust modeling has been effective, the vehicles’ completion of travel paths should

be timely. The implementation makes use of the following third party software,

JiST/SWANS, vans, DUCKS, and Protege[14]. JiST stands for Java in Simulation

Time; it is a high-performance discrete event simulation engine that runs over a

standard Java Virtual Machine (JVM). SWANS stands for Scalable Ad-hoc Net-

work Simulator; it is built on top of the JiST platform and serves as a host of

network simulation tools. Vans is a project comprising the geographic routing and

the integrated Street Random Waypoint model (STRAW). STRAW utilizes an A*

search algorithm to calculate shortest path to a destination. It also allows realworld

[14]Protege is used due to our knowledge-based representation for storing trust and traffic infor-
mation; the details of this part of our solution have been omitted in this paper.
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traffic to be simulated by using real maps with vehicular nodes (briefly illustrated

in Appendix D). DUCKS is a simulation execution framework, which allows for

a Simulation Parameters file to be provided to define the simulation. Protege is

a free, open source ontology editor and knowledge base framework. Note that the

simulation constructed here, while inspired by that employed for the original model

of [4], goes far beyond, to enable a rich modelling of traffic scenarios with effective

measurement of successful travel.

The simulation was set to poll cars every 6-15 seconds; with 100 cars in total,

experience with every other car would be gained quickly.[15] In order to simulate

environments with low experience-based trust, we introduce a variable called spar-

sity. For example, 80% sparsity resembles having a lack of previous experience with

80% of the agents. In the simulation, this variable effectively ignores updates of

trust values, thus hindering experience-based trust.

These graphs chart the performance of simulations that either use trust modeling

(i.e. profiling (P), (Hon #) or not[16] (no P, Hon #)). Agent honesty represents the

percent of honest agents in the simulation (i.e. 0.5 is 50% honesty). Role-based trust

(Role #) represents the percent of agents in the simulation that have been assigned

a role (i.e. 0.2 will have 20% of agents assigned a role). Sparsity (Spars #) represents

the percent sparsity in the simulation (i.e. 0.8 will have 80% sparsity). Dishonest

lie percentage (Lie #) represents the percent of the time which a dishonest agent

will lie (i.e. 0.8 means dishonest agents will lie 80% of the time)(set at 100% if

unspecified).

In Appendix B we display the various parameters set for the experiments and how

the values were chosen (while the path planning for the simulation is displayed in

Appendix C). Our first set of experiments incorporated experience-based trust and

majority-based trust, alone. These were the central elements of the original model

of [2, 3, 4]. We call this type of simulation Basic. Simulations with all the other

additional components added are referred to as Full. The other trust modeling

components individually indicated are time closeness (Time), location closeness

(Loc), and indirect advice (Indir). (Full) indicates when all multidimensional trust

components are being used. The VANET trust modeling results are also compared

against two additional simulations: the first is a worst case scenario where traffic

is ignored (no traffic)[17], and the other is a best case omnipresent version (omni)

which simulates the ability for any car to look up the exact congestion of any road

at anytime. All simulation tests results are averaged over 5 runs.

Figure 1 examines the average path time (appropriate due to the ultimate goal

of reducing the travel time of users). This figure compares the worst case scenario

against the best case scenario and various simulations which use our VANET system

with the Basic simulation settings, at different degrees of honesty. Greater average

path time in the figure indicates lower performance. The Basic, Hon 0.1 simulation

did much worse than the other Basic simulations most likely due to the extreme

lack of trustworthy agents, but it still performed significantly better than the Basic,

[15]Note that packet delivery success for the messaging is 100%. We did not simulate packet
failure since this would be too similar to just reducing the volume/frequency of messages.
[16]With no profiling, no trust modeling is done and all reports received are simply assumed to

be entirely trustworthy.
[17]Routing without traffic just uses a shortest path calculation.
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Figure 1 Avg Path Time comparison of our Basic model vs. best case, worst case, and No P
scenarios

No P, Hon 0.1 simulation. The Basic curves that incorporate trust modeling show

approximately a 35% decrease in average path time over the worst case scenario. The

curves in the scenarios are representative of the simulations approaching a steady

state. Another observed trend is the tendency for the profiling-enabled simulations

to reach a steady state faster than the other simulations. The curves here are useful

for the next experiment described below.

Figure 2 Avg Path Time comparison of our Full model vs. best case, worst case, and No P
scenarios

Figure 2 compares the worst case scenario against the best case scenario and

various simulations which use our VANET system with the Full (all trust multi-

dimensional trust components activated) simulation settings, at different degrees

of honesty. As seen in the figure, all of the simulations that used our trust mod-

eling framework (Full) or the omnipresent setup averaged close to the same path



Page 17 of 33

time at the end of the 10000 second simulation. The other simulations produced a

predictably declining performance as the honesty percentage approached the worst

case scenario. In contrast with Figure 1, Full simulations performed significantly

better compared to the Basic simulations of similar honesty.

Figure 3 Avg Path Time comparison of simulation types over varying degrees of honesty at
10,000 seconds

Figure 3 compares the average path time, at 10,000 seconds, of the No Traffic,

Omni, Basic, Basic, No P, and Full scenarios, across a range of honesty values.

No Traffic and Omni are shown as straight lines because they do not use honesty

values, but are useful as comparisons. The figure clearly shows the effectiveness of

our framework across the range of honesty values. The Basic scenario consistently

performs better than the Basic, No P scenario. The Full scenario also consistently

performs better than the Basic scenario. All of the framework enabled simulations

have a similar average path time at 0% honesty because they have no useful traffic

data (and at 100% honesty because there are no untrustworthy agents to deflect

through profiling). Figure 3 clearly demonstrates the impact dishonest agents can

have on simulations (Basic, No P) and the effectiveness our proposed model frame-

work scenarios (Basic and Full) can have on countering the influence of dishonest

agents.

Figure 4 demonstrates the increased effectiveness of each of the multidimensional

trust components described in Section 4. The incremental components demonstrated



Page 18 of 33

Figure 4 Avg Path Time comparison, multidimensional trust component variations

are the base system (experience and majority based trust), then role based trust

(Role 0.2), time and location closeness (Time, Loc), and indirect advice (Indirect).

These simulations also simulate honesty at 50%, data sparsity at 50%, and addi-

tionally compare them to the best case scenario.[18] As seen in the figure, the in-

cremental addition of trust components demonstrated predictable and substantial

increases in performance. The simulation with sparsity enabled showed a predica-

bly worse performance than its counterpart. This reflects the fact that when one

has little experience-based trust, one makes poorer decisions. The simulation with

role-based trust enabled shows a dramatic increase in performance, which demon-

strates the impact roles have in situations with data sparsity. The best case scenario

and the simulations with the higher number of trust components averaged close to

the same path time at the end of the 10000 second simulation. The curves in the

scenarios are representative of the simulations approaching a steady state. Another

observed trend is the tendency for the component-enabled simulations to have a

steadier state than the other simulations.

Figure 5 explores variations in parameter values to demonstrate the robustness of

our proposed framework. We note that, even if there are very few roles assumed or

if dishonest agents lie inconsistently, our framework is able to adapt and yield excel-

lent performance, approaching that of the Omni (omniscient) curve. When using all

dimensions (at least some or all of role, time, location, indirect), being more chal-

lenged with experienced-based trust (higher sparsity) degrades performance slightly

as does having less role-based trust to rely on.

The final set of graphs show the robustness of our simulation framework through

experiments that modify simulation-specific variables, such as the number of agents

and messaging frequency.

Figure 6 compares the average path time, at 10,000 seconds, of the No Traffic,

Omni, Basic, Basic, No P, and Full scenarios, across a range of values for the

number of agents in the environment. The figure clearly shows the robustness of our

[18]The worst case (i.e. No Traffic) is not present so that a finer granularity of the presented
simulations can be shown.



Page 19 of 33

Figure 5 Avg Path Time comparison, multidimensional parameter variations

Figure 6 Avg Path Time comparison, varying number of agents

framework across the span of agent values. The simulations around 50 agents have

approximately the same path time because with such a small number of cars there

is no real need for using traffic information in path planning. When increasing the

number of agents, the Basic scenario consistently performs better than the Basic,
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No P scenario. The Full scenario also consistently performs better than the Basic

scenario, when there are more than 50 agents. Figure 6 clearly demonstrates the

robustness and scalability of our proposed model framework and implementation

across a range of values for the number of agents in the environment.

Figure 7 Avg Path Time comparison, varying message interval

Figure 7 compares the average path time, at 10,000 seconds, of the No Traffic,

Omni, Basic, Basic, No P, and Full scenarios, across various messaging intervals

(where x-y means that messages are sent every x to y seconds).[19] The purpose

of the figure is to demonstrate the robustness of the simulations when there are

more or fewer messages. No Traffic and Omni are shown as straight lines because

they do not use communication protocols, but are useful as comparisons. The figure

clearly shows the robustness of our framework, especially the Full scenario, across

various messaging intervals. The Basic scenario consistently performs better than

the Basic, No P scenario until the message interval increases to (12-30 seconds) at

which point the two lines are comparable. (This is because Basic is no longer receiv-

ing information at a sufficient frequency.). The Full scenario consistently performs

better than the Basic scenario, with a more gradual decrease in performance as the

message interval increases.[20]

[19]Messages are sent according to intervals to avoid all agents sending messages at the same
time.
[20]This more gradual decrease is likely due in part to the pull protocol requesting information

on roads with more immediate priority and use, generating information on roads that will be used
in decision making.
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Figure 8 Avg Path Time comparison, varying number of agents

Figure 8 compares the average path time, at 10,000 seconds, of the No Traffic,

Omni, Basic, Basic, No P, and Full scenarios, with various communication protocols

enabled. No Traffic and Omni are listed under No Msgs because they do not use

communication protocols, but are useful as a comparison. This figure is important

for backing up our claim in Section 3 that replacing the pull protocol, for requesting

agent location and congestion data, with the push protocol, which more simply sends

out the resident agent’s location and congestion data, does not impact performance.

Our design rationale for this was to reduce the number of messages sent between

agents.

6 Discussion and Related Work
The results presented in the previous section offer detailed experimentation incorpo-

rating a variety of metrics to validate the effectiveness of our proposed model. The

experimental evidence presented serves to provide impressive confirmation of the

value of the multi-faceted trust modeling algorithm that is central to the proposed

decision making of the vehicles. With our particular trust modeling in place, even

in scenarios where there is considerable deception in the environment, our vehicles

are able to perform their path planning extremely well, maintaining an effective

travel time, without significant compromise from poor path selection. This paper

offers a wealth of experimental evidence to examine the proposed new trust model

in considerable detail, in a thorough way. All of this is demonstrated due to our

significant simulation testbed that can be used to simulate actual traffic flow with

large numbers of cars in a general mobile vehicular ad-hoc network (and as such

constitutes one of the contributions of our work).
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The model presented in this paper is one component of a larger framework that

we designed, in order to effectively exchange and record reports between vehicles

in order to direct travel decision making. In particular, we have developed more

detailed proposals for employing ontological representations, for modeling users

and for updating parameter values, the details of which have been omitted from this

paper. It is important to note, however, that the reasoning component of our overall

framework is designed to operate autonomously on a separate thread from all other

implementation components. The only interaction with other components comes

from other components issuing tasks to the reasoner’s queues. These tasks are either

agents of interest or recently updated local road segments. These are subsequently

processed and result in an update to one or more agents’t trust variables or no action

at all. Agents of interest are agents that have demonstrated either a highly accurate

or inaccurate report during a congestion evaluation. Recently updated local road

segments are road segments and their congestion value, which have been reported

directly from the resident agent. The reasoner can ultimately inspect its knowledge

base to evaluate any propositions that were reported in within a specific time of

this local report. Additional details are offered in [6].

We note that our simulation is to model a scenario where the actual reports are

being exchanged by drivers (in cases where they may be extreme frequency, due

to the number of cars on the road). While the car’s speed (as mentioned) can be

reported as a stand-in for congestion, certainly GPS readings could form the basis

for some automatic vehicle to vehicle reporting. We discuss the potential use of GPS

as part of future work, in Section 7. Note that indirect reports are simply reports

that have been forwarded by other parties and not derived from direct observation.

A focus of the research presented in this paper is our proposal for reasoning with

numeric information provided by agents, set in a framework for modeling trustwor-

thiness according to confidence values. How majority consensus can be computed

for non-Boolean trust modeling is clarified in detail. This research may be of value

to trust modeling researchers considering a variety of possible applications. While

we have sketched our proposed formulae and their validation in the context of

a specific VANET application, the approach is applicable to any scenario where

experience-based trust and majority consensus are to be integrated into the over-

all determination of user trustworthiness. The formulae in use would simply omit

the undesired elements of Equation (3): for instance, time and location may be

irrelevant. The remaining calculations would remain the same.

The framework presented in this paper required a calculation of majority con-

sensus in order to guide the decision making of a user. Other researchers have

integrated majority opinion into their trust modeling but have instead used this

calculation to reflect the general reputation of an agent (e.g. just how trustworthy

a user is may be represented as a numeric value calculated as the average of all

the scores provided by peers (say 1 for trustworthy and 0 for untrustworthy). For

instance, Zhang and Cohen [7] have calculations that integrate a public reputation

into the trustworthiness calculation and that also weight the contributions provided

by peers according to the estimated trustworthiness of each of the advisors. The

Beta Reputation System (BRS) [8] filters out advice about a user that is not in the

majority and makes use of the rest of advice to model the reputation of that user.
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We integrate here important consideration of time and location as well, in order to

value more highly the reports from users closer to the destination. In so doing, we

are able to weight the combination of majority and experience based considerations

more appropriately.

Others have employed a social network for trust modeling (e.g. [9, 10] consider

trust propagation in a network but this is less relevant in our sparsely populated en-

vironment) and others propose the use of stereotypical trust [11] (but in our domain

a small set of roles can be used to reflect levels of trust.) Wang and Vassileva [12]

also describe trust as multi-faceted; this work is more focused on having trust cal-

culated differently in distinct contexts. In addition, their selection of peer advice is

based on similar preferences; for our domain, location of the user and the time of

its report are more critical determinants.

Some trust modeling research has introduced Dirichlet distributions in order to

represent trustworthiness as something other than a pure binary value, then pre-

dicting the values of variables based on past experience. BLADE [13] models the

evaluation function of advisor agents in this way, but this research is not focused on

how to set decision making afterwards based on this form of trust modeling. The

model of Fung et al. [14] is focused more on direct experience decision making, so

not on evaluating the trustworthiness of the reports of third parties.

Our work also contrasts with other efforts currently proposed for traffic decision

making.[21] Also focusing on the modeling of the trustworthiness of vehicular enti-

ties, the sociological trust model proposed by Gerlach in [16] shares some similari-

ties with the multi-faceted trust management framework of Minhas et al. [2, 3, 4].

Gerlach has identified various forms of trust including situational, dispositional and

system. Additionally, he presents an architecture for securing vehicular communica-

tion. However, he does not provide a formalization of the architecture for combining

the different types of trust together. Raya et al. [17] propose data-centric trust es-

tablishment that deals with evaluating the trustworthiness of the data reported by

other entities rather than trust of the entities themselves. One of the shortcom-

ings of their work is that trust relationships in entities can never be formed; only

ephemeral trust in data is established. Golle et al. [18] also present a technique that

aims to address the problem of detecting and correcting malicious data in VANETs.

Their approach maintains a model of every entity which contains all the knowledge

that a particular entity has about the VANET. Incoming information can then be

evaluated against the entity’s model of the VANET. If all the data received agrees

with the model with a high probability, then the entity accepts the validity of the

data. However, this approach assumes that each vehicle has global knowledge of

the network and solely evaluates the validity of data, which may not be feasible in

practice. Dotzer et al. [19] have suggested building a distributed reputation model

that exploits a notion called opinion piggybacking where each forwarding entity (of

the message regarding an event) appends its own opinion about the trustworthi-

ness of the data. This approach repeatedly makes use of the opinions from different

nodes. The nodes that provide opinions about a message earlier will have larger

influence than the nodes which generated opinions later, which may be undesirable.

[21]A more complete discussion of trust management for VANETs can be found in the recent
survey paper [15].
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Patwardhan et al. [20] propose an approach in which the reputation of an entity is

determined by data validation. In this approach, a few entities, which are named

as anchor nodes here, are assumed to be pre-authenticated, and thus the data they

provide are regarded as trustworthy. Data can be validated by either agreement

among peers or direct communication with an anchor node. Malicious nodes can be

identified if the data they present is invalidated by the validation algorithm. One

problem about this scheme is that it does not make use of reputation of entities

when determining the majority consensus.

Compared with the above mentioned trust modeling work, our work also provides

a detailed design and implementation for the communication protocols between

agents in the VANET environment, clearly specifying how an agent sends a request

for location and congestion information and how an agent makes use of requested

information as part of its travel decision making. This outlines how agents can effec-

tively operate and interact with each other in order to facilitate traffic flow within

their multiagent system. Another contribution offered is a proposal for reasoning

with information that has been obtained through frequent broadcasting and polling.

This is distinct from simply requesting information just prior to a critical decision,

which may be challenging for environments such as ours with dynamic change and

real-time decision requirements.

In all, the approach presented in this paper coincides well with several desiderata

for designing multiagent systems for vehicular transportation, as expressed by other

researchers. For example, our efforts to provide detail on the communication needed

in order to support effective travel decision making also coincides well with the

arguments made in [21]: that collaboration between vehicles is important and that

communication is a necessary component for effectively resolving that coordination.

In addition, our paper outlines how a multiagent trust model can assist in directing

vehicles with travel decision making, of assistance in the managing of traffic on

our roads. The importance of appropriately managing traffic has been discussed

at length in [22], which outlines well the potential that techniques from artificial

intelligence afford to assist in the management of this important problem. That

paper in fact also points out the need for effective frameworks for simulating the

network. The testbed that we develop in our research may be of some assistance in

helping to resolve this challenge.

Our final reflection on related work discusses additional efforts within the current

literature on developing simulations for VANET environments and research that

draws out the connection of trust modeling to the messaging networks of MANETs.

At the Agents and Transportation workshop of AAMAS 2014, two papers intro-

duced new proposals for agent-based simulation of traffic and transportation. The

work of Taillander [23] is interesting in that it allows the fine tuning of various

unusual traffic scenarios as part of the representation (e.g. car accidents). With this

kind of focus, very large networks were also supported in the simulation. This effort

does not consider messaging and trust modeling (but these may be quite interest-

ing extensions to consider, within this context). The model developed by Huynh et

al. [24] is most interested in representing the collective behaviour of drivers through

various simulations, but is of interest as it focuses on addressing traffic density and

on modeling drivers in the environment as decision makers. within the literature on
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modeling trust in VANET environments Two recent short papers offer additional

suggestions for simulations in VANET environments. Chou and Lan [25] clarify

that simulations are critical to properly test VANET communication models. They

are interested in modeling the effects on network behaviour of traffic light changes

and cars overtaking each other. Their simulations cover l000 seconds for 300 cars

(in comparison to our tracking of up to 10000 seconds for examination of 100-car

average path time). Piokorwski et al. [26] emphasize the importance of realistic sim-

ulations and highlight the central role of information exchange; they note that the

traces of their proposed simulation can be used within the JiST/SWANS environ-

ment, to acknowledge its value as a platform. Their exploration of how to play with

the mobility of various vehicles is an interesting additional feature that is offered.

MANETs compared to VANETs surfaces as a theme in the survey paper of [27].

VANETs are claimed to have greater issues of mobility of nodes and network frag-

mentation. The paper in turn introduces us to two papers that also provide relevant

comparison to our own work, ones that are more focused on networking character-

istics. Shaik and Alzaharani [28] have a concern with trust focused more on the

proliferation of false identities; false location and time are both cited as of interest,

which coincides well with our proposed model. The TRIP model [29] suggests the

combination of direct experience and reputation (elements contained within our

model as well) but assume that a history is built up for vehicles, travelling consis-

tently on the same roads. A final paper that helps to clarify the use of trust modeling

for MANET environments is that of the TARo project [30]. An anonymous routing

protocol is proposed and explained in detail. This work illustrates the important

companion problem of managing identities through cryptographic research.

7 Conclusion and Future Work
In conclusion, we offer an approach for supporting reasoning about agent trust with

advice from peers, whose trustworthiness is then also modeled, when non-numeric

reports are provided and have shown the merit of our framework in the context of

the VANET application (resulting in effective travel decisions due to the modeling

of trustworthiness). As such, we offer a method that supports the exchange of more

detailed trustworthiness information, leading to more precise and valuable calcula-

tions. We have outlined our method for integrating various reports from peers in

full detail. We have also clarified in depth how communication between peers would

take place, through a combination of push and pull protocols, in order to assure

effective exchange of real-time information and to extend the original model of Min-

has et al. [2, 3, 4] which left as underspecified the exchange of information between

agents, for effective travel decision making. Our overall solution integrates a number

of novel modeling elements (priority roads, suspicious reports) which support the

final algorithm that is presented. The detailed simulation framework allows for the

adjustment of a wide variety of parameters which have been implemented to draw

out the benefit of the full combination of our methods for trust modeling for effec-

tive transportation decisions that support exchange of traffic information. Included

here is a method for simulating a dearth of experience for experience-based trust

(our sparsity parameter), which can be varied in the experiments and a variable to

model the extent to which agents in the environment have specific roles which may
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increase their trustworthiness (the role parameter). In all, with our testbed we offer

an avenue for measuring the relative benefit of different trust modeling options.

There are a number of avenues for future work. The obvious first direction is to

explore a variety of other application domains where agents may need to rely on

reports from peers that offer non-binary trust values. It would be interesting, for

instance, to examine the possible value of a kind of push and pull-based communica-

tion in environments such as peer recommender systems or electronic marketplaces,

where rating scales mirror the kind of non-binary reports we have been discussing.

Another avenue for future work would be to enhance our current solution for our

chosen application of traffic reports and transportation. In earlier work, we discussed

the need to distinguish second-hand reports from first-hand reports, applying penal-

ties for incorrect reports declared to be first hand knowledge [3]. Integrating more

sophisticated methods for reasoning about the trustworthiness of reports based on

whether they were in fact second hand may be of value. In addition, it is quite

apparent that the collective travel decision making of the entire set of vehicles on

the road is an important consideration. Each agent may be advised to make its final

travel decisions by reasoning about the actions likely to be taken by other agents

once they have received (perhaps similar) reports. This is another topic that we are

currently exploring within our research.

The work of Bazzan et al. [31] may shed some light on how to achieve this par-

ticular goal. A form of multiagent reinforcement learning may be effective in coor-

dinating the activities of the collective of cars on the road. The work of [21] also

emphasizes the value of machine learning for vehicle coordination, again suggesting

this as the most promising first step for our future efforts on this topic. Regardless,

the issue of system-wide coordination is one that has been argued as of significant

importance for any intelligent approaches to managing traffic, as discussed in [22].

As such, this is certainly a valuable topic for future exploration.

As a final avenue for future work, it would be useful to continue to assess the

value and contribution of our simulation testbed. A useful starting point would be

to explore how to employ the existing testbed for other trust models that have been

developed, in order to demonstrate its robustness. One class of trust models that

would be appropriate to examine are ones based on Dirichlet distributions, designed

to cope with multi-valued information. Extending one of these kinds of models for

decision making of agents and then demonstrating its value with the testbed that

we have developed would be an interesting future project. In addition, a paper that

has just recently been published [32] provides an excellent survey of agent-based

technology for traffic and transportation; comparing our simulation testbed and

what it offers to designers against frameworks being explored by other authors,

to address other vehicular challenges, would be another very informative path for

future research.

As a final comment, we clarify that this research was designed with a realworld

implementation in mind as the ultimate application. Reflecting on what might ac-

tually be deployed in the future, an implementation as a phone GPS add-on we feel

could actually be possible. Implementing the framework in this manner would allow

for easy integration into a city’s driving population. The Android operating system

and platform is a viable candidate for implementation due to its use of Java as a
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primary language and the capability to allow applications access to a wide range

of phone systems (such as the GPS). Android phones also allow multi-threading.

The phones could communicate with each other through minimal Internet access.

Once we migrate to the use of GPS, we move to reflecting on the value of re-

ports exchanged mechanically, so into a territory where deliberate misinformation

by drivers is less of an issue. In any case, we acknowledge that may certainly be

new avenues for the future to enable vehicles to make travel decisions based on

coordinated communication with other vehicles on the road.
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Appendix A: Confidence Geometric Series
This appendix seeks to further clarify and detail the geometric series equation and

design rationale for calculating confidence in Section 4.1 and to provide examples.

In Section 4.1 we proposed Equation 6(11) for calculating the confidence of a

report. Equations 1(12) and 2(13) are used as the basis for calculating the confidence

of report Rj in Equation 6(11), through a modified summation of a geometric series.

Conf(Rj) = (CurrConf(Rj)− 1)(1− (α or β))|G| + 1 (11)

The following will describe why a geometric series was necessary.

Equations 12 and 13 shown below are used to modify the trust of an agent. In

the framework it is necessary to attribute a trust value to each report from an

agent, which we define as confidence, due to each report having possibly different

attributes, such as age and if the report was observed indirectly.

TA(B)←

{
TA(B) + α(1− TA(B)) if TA(B) ≥ 0,

TA(B) + α(1 + TA(B)) if TA(B) < 0,
(12)

TA(B)←

{
TA(B) + β(1− TA(B)) if TA(B) ≥ 0,

TA(B) + β(1 + TA(B)) if TA(B) < 0,
(13)

A report’s confidence is initially set to the experience-based trust of the agent

that provided the report. If Equations 12 and 13 were used to atomically increase

a report’s confidence according to various attributes (Time, Loc, Indirect, etc.),

then their influence on confidence would be disproportionate to their value and

importance. A simple solution to this issue would be to weight or multiply α and
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β according to the attribute (Time, Loc, Indirect, etc.). However, this can result in

the confidence value being above 100% or below 0%. In addition, to solve this by

simply placing a bound on the confidence value (So that max is 100% and minimum

is 0%) would not be faithful to the founding research.

Equations 12 and 13 implicitly bound TA(B), and have an effect of decreasing

the magnitude by which trust is increased or decreased as the trust value becomes

greater or smaller, respectively. Equation 11 is intended to reflect the culmination

of several increases or decreases, according to 12 and 13. If you were to graph the

trust value over all atomic iterations, the graph would form a Sigmoid function (“S”

curve).

Equation 14 for a geometric series is shown below. Equation 15 shows the cal-

culation at n terms in the series. This is the type of calculation we need because

we need to calculate confidence after Equation 12 or 13 has been applied n times

(Equivalent to G in Equation 11). Equation 15 can not be used because it does

not take into consideration the result of the previous calculation, which we need to.

Equation 16 describes our calculation, after Equation 12 or 13 has been applied n

times, and the series which we need to represent for our calculation. Equation 16

describes the need for each term of n terms to sum the result of all previous terms.

This is due to Equation 12 and 13 multiplying α and β by TA(B) (the previous

trust value). The simplification of Equation 16 is equivalent to Equation 6(11).

a+ ar + ar2 + ...+ arn−1 = a
1− rn

1− r
(14)

an = arn (15)

an = an0 + r(1 + /− an0) + r(1 + /− an1)

+r(1 + /− an2) + ...+ r(1 + /− ann−1
)

= (a− 1)(1− r)|n| + 1

(16)

Defining our confidence calculation using Equation 11(6, the simplification of

Equation 16) allows us to utilize Equations 12 and 13, their Sigmoid nature and

implicit bounding, use of decimal numbers for G (n) (providing a granularity that

atomic changes do not allow), and a representation of the calculation in a simple

format.

The following example demonstrates the modification of confidence according the

time difference attribute.

Example 3: (Modification of Confidence according to Time)

Confidence0 = Agent 39:trust degree (0.6)

α = 0.1

Gtime = (TPenal(90)-TimeDiff(45))/TPenal(90)

*MultiplicativeFactor(4)

Gtime = 2 (Increase Confidence0 twice)
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Confidence0 = 0.6

Confidence1 = (0.6) + α(1− (0.6))

= 0.64

Confidence2(Gtime) = 0.64 + α(1− (0.64))

= 0.676

(Again using Equation 6)

Confidence2 = (Confidence0 − 1)(1− α)|Gtime| + 1

= ((0.6)− 1)(1− α)2 + 1

= 0.676

Appendix B: Simulation Curves and Parameters
The various curves and parameters used in our simulations are summarized in full

in this appendix. Table 4 displays a fuller description of the different curves that

are plotted in our figures. Table 5 lists various parameters that can be adjusted in

the simulations and displays the default values that we used. Table 6 indicates the

variables from our framework’s formulas which are also modeled in the simulation

testbed. The ability to set all the values shown in the three tables provides deeper

insight into the richness of the simulation testbed that we have designed.

Table 4 Simulation Types

Name Description Type

No Traffic Simulation without our framework or any

incorporation of traffic data.

Worst case

scenario

Omni Simulation without our framework but

incorporations traffic data by querying the road

through the JiST/SWANS simulator.

Best case

scenario

Basic Simulation with just Majority and Experience

based trust.

Basic scenario

Full Simulation with all multidimensional trust

components.

Full utilization

scenario

Full/Basic +

(Parameter(s))

Full or Basic simulation with a modification on

one or more parameters.

Special case

scenario.

Appendix C: Pathing
Agents within the JiST/SWANS simulation software utilize an A* search algorithm

that determines the most effective path for a car to take to its destination.

The A* search algorithm is the driving force behind when an agent is in need of

advice. The algorithm is called either when a new destination is set for an agent,

and the agent has to find out how to most effectively reach the destination, or if an

agent’s path is reassessed during their journey, so that the algorithm can incorporate

more recently received traffic information.

The A* algorithm used within our framework operates as follows:
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Table 5 Simulation Framework Variables

Parameter

Name

Description Representation Default

Value

Honest agents Percent of honest agents. Hon # (0.5 is 50%

honesty)

0.5

Number of agents Number of agents and cars

simulated in the tests.

Agent # (100 is

100 agents)

100

Message interval Interval between congestion

request messages sent by the

agents.

MsgI #-# (6-15 is

6-15 second

message intervals)

6-15

Profiling Use of profiling. No P indicates no

use of profiling

(False)

True (Basic,

Full)

Role Use of role based trust. Role # (0.2 is 20%

agents are given a

role above

Ordinary)

0(Basic)

0.2(Full)

Time closeness Use of time closeness factor. Time False(Basic)

True(Full)

Location closeness Use of location closeness factor. Loc False(Basic)

True(Full)

Indirect messages Use of indirect messages. Indirect False(Basic)

True(Full)

Information sparsity Percent of agent trust updates

ignored to simulate data sparsity.

MThresh # (0.6

means 60% of trust

updates are ignored)

0

Dishonest Lie

Percent

Percent of the time a dishonest

agent lies.

Lie # (0.8 is 80%

of the time

dishonest agents lie)

1

1 It is provided with the agent’s current location and destination.

2 It incrementally assesses potential roads, from the current location to the

destination, according to a cost.

(a) The potential road’s cost is calculated as its length plus congestion (trig-

gers in need of advice).

3 It returns a list of roads which forms a path to the destination that has the

least cost (which theoretically takes the shortest amount of time, according

to current traffic information).

The algorithm attributes a cost to every road segment. The JiST/SWANS initially

calculated this cost as the length of the road segment. In our implementation,

cost is calculated as the length of the road segment and its congestion. RoadCong

is the congestion of the road, which is multiplied by a simulation specific weight

CongWeight. The retrieval of a road’s congestion signifies an agent being in need

of advice from Algorithm 4.

To facilitate efficient use of congestion information, and to increase the speed of

the A* search algorithm, the implementation post-processes traffic information to
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Table 6 Simulation Algorithm Variables

Parameter

Name

Description Representation Default

Value

Majority N Number of agents used in a

majority opinion.

MajN # (10 is 10

agents used)

10

Honest trust

increase α

Standard increment to an agent’s

trust resulting from an honesty

evaluation, with a maximum

value of 1.0.

α # (0.1 is 10%

trust increase)

0.1

Dishonest trust

decrease β

Standard decrement to an agent’s

trust resulting from an honesty

evaluation, with a minimum value

of 0.0.

β # (0.2 is 20%

trust decrease)

0.2

Advice trust

threshold

Threshold where only agents with

a trust value above this percent

may be considered for advice.

AThresh # (0.41 is

41% trust

threshold)

0.41

Majority confidence

threshold

Threshold which the majority

opinion must be above in order to

be considered.

MThresh # (0.51 is

51% majority

threshold)

0.51

Role penalization Standard factor for increasing

confidence depending on agent

role.

RPenal # 8

Time penalization Standard comparison factor for

time closeness.

TPenal # 90

Location

penalization

Standard comparison factor for

location closeness.

LPenal # 200

Indirect penalization Standard factor for modifying

confidence if the advice is

indirect.

InPenal # 1

Congestion Weight Standard factor for weighting the

congestion value when calculating

a road’s A* cost.

CongWeight # 20
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form majority opinions so that the information can be immediately retrieved during

algorithm execution. This means that majority opinions are calculated every time

new information is retrieved, which is then stored in a local hash table for constant

time (O(1)) retrieval by the A* algorithm.

Appendix D: Pictorial Depiction of Grid-Like Maps in Simulations
In this appendix, we display one example of the grid-like maps that are used in the

third-party software that forms the backdrop for our simulation testbed. Figure 9

shows a snapshot of a simulation run where bold lines are extracted road segments

and small rectangles represent vehicles on the streets.

Figure 9 Simulation run of No Traffic setting


