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Abstract—We present a framework to classify small free-
form objects in 3D aerial scans of a large urban area.

The system first identifies large structures such as the ground
surface and roofs of buildings densely built in the scene, by
fitting planar patches and grouping adjacent patches similar in
pose together. Then, it segments initial object candidates which
represent the visible surface of an object using the identified
structures.

To deal with sparse density in points representing each
candidate, we also propose a novel method to infer a dense
3D structure from the given sparse and noisy points without
any meshes and iterations.

To label object candidates, we build a tree-structure database
of object classes, which captures latent patterns in shape of 3D
objects in a hierarchical manner.

We demonstrate our system on the aerial LIDAR dataset
acquired from a few square kilometers of Ottawa.

Keywords-Object classification; Range image; LIDAR; Den-
sification;

I. Introduction

As recent advances in light detection and ranging(LIDAR)
technology allow the ability to collect 3D data over vast
urban areas with excellent resolution and accuracy, the auto-
matic recognition of 3D small objects in the scene becomes
important for various applications such as environment
monitoring and autonomous robotic navigation. Our goal
is thus to develop a system that automatically categorizes
small free-form 3D objects(e.g. cars) in aerial range images,
whereas the majority of existing works on large-scale range
image processing have focused on identifying terrain and
buildings or linear structures such as poles.

The first image of Fig. 1 shows an example of typical
urban region containing buildings, houses, vegetation and
small objects. The region covers 2, 196 × 2, 997m2 and
produces the number of 3D points(2.5GB in binary). Specif-
ically, there are up to a few hundreds of thousands of 3D
points in 50 × 50m2 region.

Labeling small objects in an aerial LIDAR data
is challenging because of irregularity and sparsity in
point clouds representing the visible surfaces of 3D ob-
jects(approximately, 1 point in 20 × 20cm2 region). Fig.2(a)
shows the original point cloud from a car, which has sparse
3D points and a big hole caused by a front window. This
may result in misinterpreting the shape of an object and,
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Figure 1. System overview

consequently, poor classification performance. Therefore,
our system also includes dense structure inference from
given sparse 3D points.

Fig. 1 shows a flow chart of our system. Given an
aerial LIDAR data, the system starts by identifying the
terrain and the roof surfaces of the buildings(houses) using
planar primitives, and delineates the initial object candidates
using spatial contexts between the large structures and small
objects.

Then, for every candidate, we infer uniformly-sampled
dense 3D points smoothly continuous with the existing
surface from the given sparse point cloud.

Finally, the system labels each resultant point cloud which
represents the visible surface of a 3D object.

Our contribution is two-fold:
1) We develop a generic system that recognizes free-form
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3D objects in aerial range images
2) We also propose an approach to dense structure infer-

ence for better shape analysis.

II. Related work

Research in object categorization in range images of
urban area has been mostly focused on identifying structured
objects such as buildings and poles. Anguelov et al.[1]
introduced a framework to segment 3D data into four
classes(ground, building, tree and shrubbery), that maps a
3D point as a node, and finds 3D point cluster representing
the object by efficient graph-cut inference under MRFs.
[2] also showed a point classification approach using Max-
Margin Markov Network that incorporates multiple levels
of contextual information. Recently, Golovinskiy et al. com-
bined spin images with other contextual features to classify
some of free-form objects in 3D point clouds of urban
environment[3]. The benefit of our system over this approach
includes well-defined hierarchical candidate segmentation
using spatial context between large structures and small
objects.

III. Tensor Voting in 3D

Since tensor voting(TV) is a main tool to infer surface
information from 3D points in our system, this section
provides an overview of TV in 3D. TV[4] is a perceptual
organization framework that is able to infer salient geometric
structures such as point, curve and surfaces based on the
support the tokens which comprise them receive from their
neighbors in ND, without predefined model and iteration. It
only requires one parameter to define the scale of voting.

All input tokens, a set of unoriented or oriented points,
are encoded as a second order symmetric tensor. Then,
each input tensor collects the tensor vote cast from its
neighbors by aligning the voting fields along the orientation
of tensors. The voting fields are well defined with saliency
decay function that attenuates the saliency with length and
curveness of smoothest path connecting the receiver and
voter.

After voting, the tensor can be decomposed as:

T = λ1e1eT
1 + λ2e2eT

2 + λ3e3eT
3

= (λ1 − λ2)e1eT
1 + (λ2 − λ3)(e1eT

1 + e2eT
2 )

+λ3(e1eT
1 + e2eT

2 + e3eT
3 ),

where λi are the eigenvalues in decreasing order and ei are
the corresponding eigenvectors. From the equation, we can
infer three types of information as follows:

• Pointness: no orientation and saliency
• Curveness: orientation is e3 and saliency is λ2 − λ3

• Surfaceness: orientation is e1and saliency is λ1 − λ2

IV. Object segmentation

Segmenting object candidates in large-scale range images
is a necessary step prior to efficient recognition, as an aerial
range image covers a huge urban area and it is inefficient to
classify objects by window search.

This section thus describes our method[5] that hierar-
chically segments point clouds corresponding to small 3D
objects using large structures.

A. Large structure identification

From the observation that the majority of large structures
in the urban area are nearly planar, we can infer these struc-
tures by recognizing smoothly continuous planar patches in
the scene.

Given a range image, we first partition it into uniform
voxels, and then identify a well-fitted planar patch for every
voxel. Because of noise and uncertainty in 3D depth data,
the TV process serves to infer surface orientation. Every
occupied voxel selects a representative as an input token
for the TV process, and then the TV process infers surface
orientation(e1) of each token from its neighboring regions.
The inferred orientation is used to estimate a planar patch
in the voxel and the patch is validated, if all 3D points in
the voxel agree with it.

After identifying a planar patch for every voxel, we
infer smooth planar surfaces by aggregating adjacent planar
patches with consistent pose.

Finally, the ground surface is identified based on the
height and size of the region. Every region that has larger
area than threshold and no 3D points below non-boundary
region is classified as a roof of a building.

B. Initial object segmentation

With the reasonable assumption that every small object
rests on a large structure, the system is able to recognize a
point cloud representing the visible surface of an object by
inferring the possible pose of the object from the identified
large structure.

Because an aerial image only contains a top surface of
an object, for every structure, we identify the point clusters
by grouping the farthest 3D points from the surface, and
then define the volume of each cluster using the spatial
extent(width and depth) of the cluster and the height of
the cluster from the surface. Finally, the 3D points in the
estimated volume are classified as an initial object candidate
on the roofs or the ground surface.

V. Dense structure inference

Since the initial object candidate is segmented based on
contiguity of 3D points without consideration of the surface
that these points intend to represent, each candidate should
be validated and refined by enforcing the surface property
for better labeling.
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Initially, we discard non-object point clouds, e.g. a point
cloud from trees, in terms of the number of 3D points(NP),
dimension (DP) and surfaceness(S P) of the candidate. In
our experiments, a point cloud P satisfying 100 � NP, 1m �
DP � 5m and 4 � S P, where S P is the maximum surface
saliency in P, is considered as the valid visible surface of a
free-form 3D object.

As shown in Fig.2(a), the point cloud also has irregular
holes and noisy 3D points, which may weaken the per-
formance of our shape-based recognition process. We thus
propose a novel method that infers a dense depth map from
the given noisy and sparse 3D points.

Many works on filling holes in meshes have been pro-
posed to obtain the complete shape of 3D objects from range
sensors: simple point interpolation[6] and interpolation using
neighboring surface information based on Partial Differen-
tial Equations(PDEs)[7], Finite Element Methods(FEMs)[8]
and Signed Distance Field(SDF)[9][10]. Unlike these ap-
proaches, our method is able to infer dense points without
meshes, iterations and any initial states.

Our module aims to measure a new 3D point that most
highly agrees with the surface having the most supports from
its neighbors. That is, a 3D point with the highest surface
saliency is chosen.

Given an object candidate P, all the points in P are
mapped to the uniform 2D grid. The resolution of the grid
determines the resolution of the resultant point cloud. In
our experiments, each cell size was 10cm. Note that, in our
application, the process is simplified to infer the depth of
holes in 2D due to the fact that a range image only provides
a top-view of objects, but the same idea can be applied to
3D as well.

Then, to delineate the boundary of the object surface, we
also use a neighboring point cloud PG of the candidate,
including the points already classified as the ground or roofs.

After projecting the point sets P and PG to the grid, we
densify the structure by assigning a new 3D point to each
unoccupied cell.

For every unoccupied cell, we generate a set of depth
candidates PC , and then apply the TV process to compute
a surface information of every point in PC by collecting the
information from its adjacent tensors in P and PG. Finally,
a point pnew occupying the cell is:

pnew = arg max
i

(λpi

1 − λpi

2 ), pi ∈ PC ,

where λpi

1 - λpi

2 is the surface saliency of pi.(See Sec.III)
An example of the resultant dense point cloud(688 points)

inferred from the original points(289 points) is shown in
Fig. 2(b). This process can be parallel, as our method infers
a new point regardless of the result of other neighboring
cells.

(a) Original point cloud (grid
size: 50cm)

(b) Dense point cloud

Figure 2. Dense structure inference(Color-coded depth)

VI. Object categorization

To label object candidates, we use a shape-based clas-
sification approach using a hierarchical variant of Latent
Dirichlet Allocation(LDA).

In this framework, a range image is represented by a group
of visual words that contain local and global description of
a given point. The database has tree structure. Each range
image is assigned to one of existing path in the tree, where
each node(topic) is represented by a multinomial probabilis-
tic distribution over topics(visual words). These probabilistic
distributions are based on the Dirichlet distribution and
capture the frequencies of co-occurrence of visual words
and topics, which correspond to latent shape patterns.

During the training process, the structure and distributions
of the hierarchical structured database(HSD) are inferred
from range images by Gibbs sampling. In the online phase,
given an object candidate, the classification process identifies
its label by first identifying the paths having similar shape
patterns in the tree and comparing the shape similarity be-
tween each training image under the paths and the candidate.
In our system, the candidate is categorized into one of the
existing classes or a new class.

The context information is also imposed on the labeling
process. Since the system already knows a type of the large
structure the object rests on(either the ground or roofs), it can
specify the possible classes that the candidate might belong
to. For example, a candidate inferred from the ground should
be labeled as one of the classes which can be on the ground,
not a dish class.

VII. Experimental results

We have tested the proposed system on the aerial LIDAR
dataset that contains approximately several hundreds of mil-
lions 3D points captured from Ottawa shown in Fig. 1[11].
Some regions are hidden as sequestered data for independent
evaluation. Ground truth for some urban objects in the red
boxed region is also available. Since the aerial range image
is too large to be processed at once, we partition the volume
into small blocks (50×50m2 in our experiments). Each block
is processed in parallel and then, we merge the consistent
results in the overlapping regions.
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Figure 3. ROC curve for ”car” recognition

In our experiments, we identify a free-form object class,
”cars”, a only visible class in aerial LIDAR images. To build
the database, we use 20 synthetic range images generated
from 3D car models freely available on the Internet, and 3
car images extracted from non-ground truth region.

The recognition performance of our system is demon-
strated in Fig. 3 and Table I. GT is the number of true
instances, SOC is the number of total object candidates
segmented, SOCC is the number of object candidates that
really correspond to the truth instance, OC is the number of
object candidate classified correctly, and FA is the number of
false alarms. Based on the quantitative analysis, we can infer
that, 1)using dense point clouds improves the recognition
performance, 2) for the candidate objects, the system labels
them correctly(e.g. 97% of SOCC). That is, the overall
performance highly depends on candidate segmentation,
which is hard due to ambiguities in 3D points as shown
in Fig. 4.

On a PC with two 3.0Hz CPUs and 8GB of RAM, the
average processing time for densification and classification
is 26.6 secs and 0.57 secs, respectively, for each object
candidate, without any optimization. Because the dense
structure inference process can be parallelized, it can be
much faster by implementing it on GPU.

Note that our framework can identify any type of free-
form objects.

VIII. Conclusion

We present a shape-based recognition system that catego-
rizes small urban objects in aerial range images. The system
first identifies large structures and initial object candidates
using the identified structures. Then, each candidate infers
the dense 3D structure and is labeled using a hierarchical
structure database.

In the future, we will improve the segmentation process.

Table I
classification performance

GT SOC SOCC OC FA

dense
108 120 81 (75%)

79 (73%) 0
sparse 57 (54%) 1

Figure 4. Ambiguous boundaries between cars(red patches: roof)
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