
Teaching Software Engineering with SimulES-W

Elizabeth Suescún Monsalve
1

Vera Maria B. Werneck
2

Julio Cesar Sampaio do Prado Leite
1

1
 Pontifícia Universidade Católica PUC-Rio Rio de Janeiro, Brazil

2
 Universidade do Estado do Rio de Janeiro UERJ-IME Rio de Janeiro, Brazil

emonsalve@inf.puc-rio.br
vera@ime.uerj.br

www.inf.puc-rio.br/~julio

Abstract

This work presents an educational board and card game named SimulES-W, as a tool

for teaching Software Engineering. It encompasses 5 years of evolution, in which the game

Problems and Programmers was the fundamental source. SimulES-W innovates in three

distinct areas: it is a web based game, it relies on a broad view of the software process and it

is customizable for content. SimulES-W is supported by collaborative software that

implements the SimulES board game. The paper describes the game, stresses its strong

points, provides initial data on its use and discusses its future.

1. Introduction

Game technology has been used as a teaching tool in many educational areas. Nowadays

this technology has started to be applied to software engineering education [1], [2], [3], [6],

[14], [15], [17], [18], [19]. Games with an educational purpose are conceived to balance

entertainment with dissemination of knowledge, thus motivating students for learning as they

play. Software engineering games, usually, allow students to take the role of a project

manager and they play by addressing issues related to software engineering in the pursuit of

finishing a project.

SimulES [9] is game in which the player performs different roles such as software

engineer, technical coordinator, quality controller and project manager. Among the tasks of

the game, players must deal with: (i) the complexity and size of a software product, (ii) the

concept of product quality based on verification through inspection, (iii) risk of having poor

quality products, (iv) project budget, (v) admission and dismissal of software engineers, (vi)

human resources as a matter of cost, productivity and maturity, and (vii) construction of

several different artifacts required for project completion.

In addition to the roles enumerated above, players simulate a software development team

and they are also adversaries of other players. The adversary role is enacted such that each

player poses problems or obstacles to the other players, as such changing the game of the

other player. This characterizes SimulES as a strategy oriented game, where players have to

be aware of competitors by defining a plan to develop with more productivity and quality

than the others. The game is organized in different types of rounds, being one where

problems and concepts cards are discarded. In this round, each player has the opportunity to

choose which other player will receive a “problem card”. This assumes that a player has a

“problem card” to be used as an obstacle to the other player. Players may also have antidotes

cards, called “concept card” which may block the effect of a “problem card”. Decision, if an

antidote card blocks an obstacle card, is achieved by consensus among players. This

discussion, mediated or not by an instructor, is a way of discussing problems and possible

resolution schemas according to the cards and, as such, an opportunity for learning. The

978-1-4577-0348-5/11/$26.00 c© 2011 IEEE CSEE&T 2011, Waikiki, Honolulu, HI, USA

31

player who first produces the required software system, with the quality and budget

established by the game objective, wins the game. The objective is set for each game play

and is customizable.

This work aims at presenting SimulES-W and how the concepts of software engineering

may be taught by this game. SimulES-W is a Web based implementation based on a series of

versions that evolved SimulES from its first edition [4]. This paper is organized in six

Sections. Section 2 gives an overview of SimulES and describes examples of use, reporting

on its use in the classroom. Section 3 emphasizes what was learned in SimulES evolution.

Section 4 describes the software SimulES-W, a Web based environment. Section 5 points out

future works, and Section 6 presents our conclusion.

2. SimulES

SimulES [4] is based on the Problems and Programmers (PnP) game [1 and 14]. PnP is a

card game and the players´ objective is to be the first to complete a common software project.

Players use strategies, which are function of by their own preferences and available cards

(software engineer cards, concept cards and problems cards). The concept and problem cards

are the heart of the game providing problems or solutions to the players. The PnP allows the

players to analyze their strategies and the other players’ and allows a discussion about the

usage of the concept and problem cards. As described in the Introduction, SimulES inherited

these characteristics.

The main precondition for playing SimulES is being either a software engineering student

or a person involved in software engineering with basic knowledge about the subject.

SimulES is a multiplayer game and the player who wins the game is the one who first

completes the software product with quality and budget defined in the project card (Figure 2).

SimulES has a main board and an individual board (Figure 1). The main board describes

the rounds and moves. The center of the main board displays the project card (Figure 2)

surrounded by the set of cards representing problems/concepts and software engineers.

Artifacts cards are placed below the project card. Artifacts cards are white or gray and may

have in their back a token to mark its quality, see bottom of Figure 1.

The individual board (Figure 1) is the area where the player places his/her software

engineers in columns and the artifacts (white and gray cards) in the cells. These artifacts cards

represent the software artifacts built by the software engineer, which may contain defects

(bugs). The white artifact cards cost twice the price of gray cards, but they have less

probability to have bugs. The rows of the individual board represent the different artifact

types: requirements, design, code, trace and help.

 Different from PnP [1 and 14], SimulES does not have any specific development process

and the development process can be explored pedagogically during the game; for instance one

player may use an agile approach where other uses a waterfall one. Exploring different

development processes may be planned by the instructor as to prepare an after game

discussion about development approaches.

The resources used during the game are: the main board, the individual boards (Figure 1),

the project cards (Figure 2), the software engineer cards (Figure 3), the problem cards (Figure

4), the concept cards (Figure 5), the white and the gray artifact cards (Figure 1) and the dice.

The project card (Figure 2) that sets the game objective is composed of: name, description,

complexity, size, quality, budget and modules. Each module has a minimal composition of

artifacts of a given type. A project must have at least one module: the size defines the

number of modules. The project complexity is related to the value of white and gray artifact

cards, meaning how many points of time a software engineer needs to complete a white

artifact by each round of game. The gray artifact is half of this value. For example, if the

32

project complexity is 2 so the software engineer spends 2 points of time to build a white

artifact card; for the gray card, 1 point of time is enough, because the white card is more

expensive but has fewer bugs than the gray one. In this example the project has size 2, so the

final product has 2 modules. For module 1 the players have to build 2 requirements artifacts

(2 artifact cards), 1 design artifact and 1 code artifact. Module 2 has 2 design artifacts, 2

traceability artifacts, 1 help artifact and 1 code artifact. Each artifact is built either with a

white or gray card. The quality attribute shows the maximum number of defects allowed in a

module. The budget attribute defines the amount of money available to be spent in hiring

software engineers.

Figure 1. Individual Board. Figure 2. Project Card. Figure 3. Soft. Eng. Card.

Figure 3 represents a typical software engineer card that has a name, a description of

his/hers personality, a salary, which is related to the budget, an ability, which is related to the

project complexity, and a maturity, which is used in concept and problem cards conditions.

The ability is the number of points of time (productivity) that the software engineer has to

spend on each round, so it defines the number of white and gray artifacts cards that can be

produced by this software engineer. In Figure 2, white artifact cards cost 2 and gray cards cost

1, so Karen (Figure 3) with the ability of 2 points of time and with this project complexity (2)

can build 1 white artifact card or 2 gray artifact cards. So, if the player has engineers with

higher ability, then the player will have more productivity (will build more artifacts, and as

such may finish earlier).

The problem card (Figure 4) addresses typical problems in software engineering and they

should be understood by players. The idea is that the players do reason about these problems

and their relation with the conditions stated in the card. A concept card (Figure 5) is a way to

neutralize the problem card or to get advantage over the other players. Concept cards have a

reference to the literature, a description and usage instructions. Thus, the players can learn

more about an issue in which they are interested. Thus, the player can use the concept card

either to block a problem card or to improve the software engineer performance.

Categorization (upper right corner of concept and problem cards) indicates that cards can be

targeted to a specific topic. For example, if the instructor identifies that the topic which

should be used in the training is Requirements Engineering Management then he could

produce cards to address the topic, and consequently the discussion generated when the

players are interacting with the game will be a targeted one.

SimulES has different rounds where players execute their moves such as: Start, Concept

and Manage problems, Actions (Build, Inspect or Correct artifacts and Integrate Artifacts into

a Module), and Submit product. Figure 6 uses an SDSituation Diagram [12] to illustrate these

33

rounds and their sequence. When the game starts, one project must be chosen from those

available ([T1] in Figure 6). All players roll the dice and the one who gets the highest dice

result chooses the project and starts the game. Furthermore, the information about the project

is displayed in the middle of the main board visible to all players. After that, each player

assembles an individual board and picks up one software engineer in the stack of software

engineering cards.

 Figure 4. Problem Card. Figure 5. Concept Card.

In the “play round to actions” (T2), each player with the information of his/her software

engineers (ability and salary) and the information in the project card (size, complexity and

budget) uses a software engineer to: Build artifact, Inspect artifact, Correct artifact and

Integrate Artifacts in a Module (see [T2] in Figure 6). In the action Build artifact, if the player

builds with white artifact cards he/she will spend the points of time as per the complexity in

the project card, but if he builds with gray cards then he/she will spend half of the points of

time. However, white artifact cards (5 cards to 1 defect) have a lesser defect rate than gray

artifacts cards (3 cards to 2 defects).

Inspect artifact is an action of turning up an artifact card under the responsibility of a

software engineer, disclosing its quality status (with or without a bug – see Figure 1). The

cost of inspection is fixed by 1 point of time per card if it is performed by the same software

engineer that built the artifact and 2 if it is performed by another software engineer. Correct

defect action has to be performed when the software engineer inspects an artifact card and

finds a defect (“bug”). By correcting a defect he/she spends 1 point of time if it is performed

by the same software engineer that built the artifact and 2 if it is performed by another

software engineer. Integrate Artifacts in a Module action has to be performed before the

player submits the product. This situation happens when the player has built all types of

artifacts required in a module (Figure 2). The player can choose the artifacts that are available

in his/her individual board considering the artifacts types described in the project card to

compose a module. The artifacts can be originated from different software engineers

(columns in the individual board).

In the “play round to concepts” [T3] in Figure 6, each player rolls the dice once. The dice

result allows the player to buy concept/problem cards. These cards (concepts and problems)

are shuffled together and piled upside down in the main board. If the dice shows a number

greater or equal to 3, then software engineering cards may also be bought. The quantity of

software engineer cards will be the difference between three and the dice result (roll of the

dice – 3). As an illustration, if Mary rolls the dice and its result was 2, then Mary would buy

2 problem/concept cards. On the other hand, if Mary rolls the dice and its result was 4 then

Mary would buy 3 cards (problems and concepts) and 1 software engineer card. Thus, the

greater the result from rolling the dice, the more resources the player will have. Here is

where luck comes into play. At this point the player has to think about team composition: the

number of software engineers is limited to the overall budget (see Figure 2), that is the sum of

the salaries of the software engineers posed in the Individual Board. This sum has to be lower

than or equal to the project budget. This implies the possibility of hiring and firing software

34

engineers (project management skills). Note that there is an educational purpose of making

students deal with real world issues (hiring/firing) by means of simulations.

Figure 6. SimuES SDsituations [9].

In [T3] the player uses concept and problem cards. So during the game, the player can

receive problem cards from the other players. These cards, when received, are to be used in

the next round. The objective is to damage the game of the other. However, if the player has

one card which invalidates some problem cards (a concept card), he/she will be able to use it

and the action described in the problem card will not affect his game. Then he must discard

both cards. On the other hand, if he/she does not have any card which invalidates the problem

cards, this problem will be applied to his/her game. At this point in the game, the educational

goal is that the players discuss both problem and concept cards claimed to pair. A player

using a concept card has to build an argument as why that card neutralizes the problem card.

This argument can be discussed, but it will only take effect if all players agree. As mentioned

before, this discussion can be mediated by an instructor.

The “submit round” [T4] can be performed in the beginning of the player turn. When the

player integrates one module he/she can submit the product. Then the other players have to

inspect those artifacts that are not inspected (faced up). The module will be accepted if the

number of remaining bugs is lower than or equal to the quality attribute number in the project

card (Figure 2). The player who finishes first all the modules within the quality required by

the project card wins the game.

SimulES was conceived for teaching software engineering in general. Alternatively, it can

be configured to focus on a particular subject of knowledge as well. Since cards can be

configured, we can use problem and concept cards tuned to the topic of interest. We can also

configure project cards as to only deal with certain artifacts. In the examples of problem and

concept cards (Figure 4 and 5) we use cards related to code artifacts (CD). A player can

assign the Duplicate Code (CD-P4) card to another player if that player has less than 2 design

artifacts and more or equal 4 code artifacts. The argumentation in this case is that this

software engineer has built code artifacts duplicating code, so more code artifacts were

needed. However, the player who receives this problem can neutralize the card with the

35

concept card CD – C4, arguing that clone detection alerts about the problem. See that this

concept card can also be used by itself saying that the software engineer avoids the problem

by thinking ahead, so the player adds a white design artifact to one of his software engineers.

This scenario aims at conveying how the educational purpose of the game is implemented.

The key to learning is the understanding of why “duplicate code” is a problem. On the other

hand, if proper tools are available you could avoid such problem.

SimulES, differently from the Problems and Programmers (PnP) game [1 and 14], does

not impose an order towards types of artifacts, as such the player may choose, for instance, to

start with design or code artifacts and produce requirements artifacts later. As such the game

does not embrace a particular production process. Requirements (RQ), code (CD), help (HP),

trace (TR, design (DE) artifacts must exist, but the player decides how to approach it, as

mandated by the project profile (Figure 2), which lists the types of artifacts needed to

complete the game. It is also important to stress that artifacts must be inspected [7] as well,

and that trace artifacts [8] must be produced. In brief, SimulES has the necessary elements to

emphasize or generalize knowledge to be transmitted and also may enact particulars of the

software process as per concept and problem cards, making SimulES a powerful and useful

tool, but also a fun way to teach.

3. Lessons Learned

The interactive process among SimulES, students and instructors has been reported

elsewhere [4, 9, 10, 11, 16, and 20]. The improvements built into SimulES-W were based on

an experimental case study of SimulES 3.0 in a Software Engineering course in a

multidisciplinary graduate program, where the students interacted with each other and were

observed by the instructor and an external observer to analyze the situation. Based on a

survey with participants [10], we found that: a) the students should receive more training

about SimulES before the game; b) contents in the cards needed to be revised because some

were difficult to understand by the average students; c) some rules in the game needed to be

better explained; d) concepts/problems should be tuned to the group´s background.

The experiment was also important to confirm game acceptance by students. They reported

that SimulES is fun and motivates positive competition; as one of the players wrote: “…the

game promotes the ability to develop artifacts with a consistent criterion for project

requirements, monitoring and testing. It also encourages interaction between players and

teamwork, creating healthy competition.”

These feedbacks had supplied evidence to make a number of important changes. These

changes are reflected on how the game is played now. For example, in [4] there is the first

reported improvement of SimulES (version 1.0) that has included and reformulated resources

such as the new individual board, and typed problem and concept cards. Version 2.0 [16] was

specified using scenarios, the main board was created and the proportion of defects (bugs)

were balanced. Version 3.0 [11] shows the first intentional modeling [13] of the game.

Finally, version 4.0, SimulES-W, is a digital version of the game, which better supports game

customization (tailoring of concept cards/problem cards), allows for non local playing and

improves its own modeling [9]. As in similar proposals [6], automation improves play

dynamics and control activities are delegated to software. Consequently, players can pay

more attention to the important aspects of the game, as the discussions about the use of

problem/concept cards.

4. SimulES-W

SimulES-W was developed based on a review of the literature on educational games, as

36

explained in [9], and SimulES usage feedback. It was identified [9] that educational games

did not use any modeling, or the games were modeled without any particular method, or

without explanations about the modeling, or models were very superficial. As such,

Monsalve [9] paid special attention to modeling using the ideas of intentional modeling [13].

The intentional modeling approach was chosen because it explicitly represents the interaction

among players; other representation approaches do not model this interaction, which we

believe is beneficial for reasoning about the game even before it is designed. As a result, these

models were used in the development of SimulES-W, which was implemented in Java. i*

diagrams [13] were mapped to a general MVC (Model View Controller) architecture and the

code was instrumented with scenarios describing i* tasks. SimulES-W is played on a browser

over the internet, which allows for distributed cooperative playing. This is an advantage

related to groupware, according to [5], since individuals cooperate to exchange information,

organize and operate together in a shared space. This cooperation is supported by a common

interface that allows players to play, make decisions and observe what is happening. Figure 7

presents the development environment and the software components organization.

Figure 7. Development Environment of SimulES-W.

Figure 8 exhibits the main page of the game where the messages exchanged between

players and system messages are displayed. System messages are displayed when a player

makes moves in the game. The project data is also displayed. Figure 9 shows The Individual

Board with two situations exhibited (a) Build Artifacts and (b) Inspect Artifacts. The software

engineer employed by the player is displayed on the board and each software engineer has a

link which displays information about him, for example: salary, ability, maturity and a

description like the one presented in Figure 3. The Individual Board (Figure 9 a) also shows

the white artifacts cards and the gray artifacts Cards which have not been inspected yet. The

bottom of this Figure presents the different operations that can be executed on the board. Part

b of Figure 9 shows when some artifacts have already been inspected and also the result of

the inspection. The Figure portrays when the artifact has a defect (bug) or not. This result is

chosen randomly by SimulES-W and is based on two premises: white artifact cards are less

likely to present defects, and conversely, gray artifact cards are more likely to have a defect.

SimulES-W brings the advantage of customization, since cards can be edited and stored in

named files, so the game can be played with different emphasis as well as with different

philosophies. Other customization may be enacted, as for example changing the rate of white

and gray artifact cards, remembering that the game artifact cards (white and gray) have

different defect probability. This customization would be part of a stage of game preparation

when the instructor has to plan how to use SImulES in his/her class. Alternatively, the

concept (white and gray cards) helps students to reason about the fact that, artifacts built with

better quality are less prone to defects and that artifacts built with lesser quality is a risky

business. Besides, the game stresses the importance of quality control, by means of a built in

cycle of inspection [1] that should be applied to all kinds of artifacts. So, it is possible to play

37

with no inspection, but the game aims at teaching that this strategy involves risk. A player

can choose to do inspection during the game or leave this activity to the end for random

inspection, following the project card (Figure 2) and other player’s choice. Choosing not to do

inspection allows the player to quickly build without spending resources with inspection,

taking the risk as to finish earlier. A player strategy should be based on an analysis of

constraints and possible alternatives. For this, the player must interpret the current

environment and analyze his/her situation, as well as the contender´s situation as well. In a

realistic context, any person competing in the professional market must imagine future

scenarios. Hence the creation of strategies may give players (students) an idea of the possible

situations that occur in the future work environment.

Figure 8. Main Page of SimulES-W.

The control of the game in SimulES-W was not all automated because this is a

collaborative approach that aims at training the players in real project situations. The system

should be a regulator not a controller of all the players´ moves. For instance, all the players

have to pay attention to a move action so they have to know how many artifacts one software

engineer has the ability to build. The player´s strategy is another example where he/she

chooses a way to achieve the goal of the project. This approach is different from the other

descendents of PnP [3, 6 and 18] in which much of the game is played by the software, where

SimuES-W is, basically, a collaborative platform.

Another advantage of SimulES-W is that the references for concept cards are links to

existing Web based material (Figure 10). Having a direct access to the bibliography or

summary of the topic will certainly improve student performance, since references would be

easily accessed in the right context. This enables an even more targeted education, with a

combination of cards and proper educational material.

5. Future Work

The version of SimulES-W presented in [9] is being packed and will be released as open

source software. This version of the game was implemented as open software and allows

anyone to evolve it. Furthermore, it works as a Web application and exhibits its interfaces on

a Web browser. Moreover, it does not require downloads, installations or configurations. This

software is less intrusive than other applications available to download.

38

We will use SimulES-W as an experience that allows us to provide new ways to explore

the reality in software engineering and different strategies to operate on it. In a way,

SimulES-W will allow the group (students) to discover new facets of their knowledge about

the project by finding alternatives so they will solve the problems and analyze the concepts

proposed. In other words, our objective with SimulES-W is that the students interact with

software engineering concept in a game that simulates problems that happens in a real project

development. It is important to stress that our approach, as by the legacy of PnP, incentives a

collaborative view as well as competitive view (problem cards) found on real projects. As

part of SimulES-W evaluation process and to make it available to potential users, techniques

based on usability IHC (Interaction Human Computer) for Web applications are being

applied, focused especially on the analysis of consistency.

 Figure 9. Individual Board of SimulES-W. Figure 10. Concept Card of SimulES-W.

As we make the game widely available, we hope that this will impact positively on the

quality of feedback. The pedagogical instructions will also be developed as to be an

attachment to the distribution package. We are also revising the original material (concept and

problem cards), which was last changed in version 3.0 of SimulES. Two sets should be

available by the end of 2011: one centered on Requirements Engineering and the other on

Software Engineering in general.

6. Conclusion

Educational games are a powerful learning approach for teaching Software Engineering

where the students are encouraged to participate, helping educators to simulate real

environments, improving students´ skills and stimulating individual and social groups’

experiences. SimulES-W is a game that can achieve effective results of disseminating

Software Engineering knowledge providing technological resources that can be customized

by the instructor. The changes in different versions are the results of improvements identified

by positive and negative feedbacks given by people who interacted with the game. SimulES-

W has been used in several classes and we plan to conduct more experiences. In these studies

we need to focus, not only on the advantages of automation, but mainly on how the lack of a

live discussion around a game table will influence the efficacy of the game.

39

Acknowledgment

Leite acknowledges the partial support of CNPq and Faperj, Cientista do Nosso Estado;

Monsalve acknowledges the support of Capes; Leite and Monsalve also acknowledge the

support of the CNPq 557.128/2009-9 and FAPERJ E-26/170028/2008 grants for the Brazilian

Institute for Web Science Research.

7. References

 [1] A. Baker, E. O. Navarro, and A van der Hoek, “Problems and Programmers: an educational software
engineering card game”.In Proceedings 25th International Conference on Software Engineering, IEEE
Computer Society Press, 2003, pp 614-619.

[2] J. Beatty and M. Alexander, “Games-Based Requirements Engineering Training: An Initial Experience
Report”, International Requirements Engineering, RE '08. 16th IEEE, Catalunya, Spain. (Sept. 2008). Pp. 211-
216.

[3] T. Birkhoelzer, E. Navarro and A. Van Der Hoek, “Teaching by Modeling instead of by Models”,
Proceedings 6th International Workshop on Software Process Simulation and Modeling, St. Louis, MO, 4,
2005.

[4] E. M. L. Figueiredo, C. A. Lobato, K. L. Dias, J. C. S. P. Leite, C. J. P. Lucena, “Um Jogo para o Ensino de
Engenharia de Software Centrado na Perspectiva de Evolução”, Workshop sobre Educação em Computação
(WEI – 2007), pp. 37-46.

[5] H. Fuks, A. B. Raposo and M. A. Gerosa, “Do Modelo de Colaboração 3C à Engenharia de Groupware”,
Simpósio Brasileiro de Sistemas Multimídia e Web – Webmidia 2003, Trilha especial de Trabalho
Cooperativo Assistido por Computador, November. 2003, Salvador-BA.

[6] A. Jain and B. Boehm, “SimVBSE: Developing a Game for Value-Based Software Engineering”. Proceedings
19th Conference on Software Engineering Education and Training, 2006, pp. 103 -114.

[7] J.C.S.P. Leite, J. Doorn, G. Hadad and G. Kaplan, “Scenario Inspections”, Requirements Engineering Journal:
Volume 10, Number 1, (January.2005). Springer-Verlag London.

[8] J.C.S.P Leite, G. Rossi, V. Maiorana, F. Balaguer, G. Kaplan, G. Hadad A. and Oliveros, “Enhancing a
Requirements Baseline with Scenarios”, Proceedings of the Third International Symposium on Requirements
Engineering: IEEE Computer Society Press, 1997, pp. 44-53.

[9] E. Monsalve. “Construindo um Jogo Educacional com Modelagem Intencional Apoiado em Princípios de
Transparência”, (May. 2010), Dissertação de Mestrado (Masters Thesis), Departamento de Informática, PUC–
Rio.

[10] E. Monsalve, V. Werneck, and J.C.S.P. Leite, “Evolución de un Juego Educacional de Ingeniería de
Software a través de Técnicas de Elicitación de Requisitos”, 13th Workshop on Requirements Engineering –
WER 10, (April 12-13, 2010 – Cuenca, Ecuador), pp. 63-74.

[11] F. Napolitano, “Uma Estratégia Baseada em Simulação para Validação de Modelos em i*”, Dissertação de
Mestrado(Masters Thesis), (March.2009), Departamento de Informática, PUC–Rio.

[12] A. Padua Oliveira, L. Cysneiros, “Defining Strategic Dependency Situations in Requirements Elicitation”,
9th Workshop on Requirements Engineering. WER 2006, (15 December 2006), pp.12-23.

[13] A. Padua Oliveira, “Engenharia Intencional: Um Método de Elicitação, Modelagem e Análise de Requisitos”,
Tese de Doutorado (PhD thesis), 2009, Departamento de Informática, PUC-Rio.

[14] Problems and Programmers. (April.2009) at http://www.problemsandprogrammers.com/.

[15] G. Regev, D. Gause and A. Wegmann, “Requirements Engineering Education in the 21st Century, an
Experiential Learning Approach”, The 16th International Requirements Engineering Conference (RE'08),
2008, pp. 85-94.

[16] M. Serrano, M. Serrano, F. Napolitano, B. Soares, “Evolução do SimulES Versão 2.0”. Monografia em
Ciências da Computação, 2007, Departamento de Informática, PUC–Rio.

[17] R. Smith, and O. Gotel, “Using a Game to Introduce Lightweight Requirements Engineering”, in Proceedings
of the 15th IEEE International Requirements Engineering Conference, 2007, pp. 379-380.

[18] R. Smith, O. Gotel, “Gameplay to Introduce and Reinforce Requirements Engineering Practices”, in
Proceedings of the 16th IEEE International Requirements Engineering Conference, 2008, pp. 95-104.

[19] Software Engineering Simulation by Animated Models (SESAM) – Stuttgart–Germany. (April.2010)
<http://www.iste.uni-stuttgart.de/se/research/sesam/overview/index_e.html>.

[20] E. Monsalve, V. Werneck, and J.C.S.P. Leite, “SimulES-W: Um Jogo para o Ensino de Engenharia de
Software”, Fórum de Educação em Engenharia de Software – FEES 10, in SBES -10 (Brazilian Symposium
on Software Engineering), 2010 – Bahia, Brasil.

40

