
Summarizing Order Statistics over Data Streams with Duplicates

Ying Zhang1 Xuemin Lin1 Yidong Yuan1

Masaru Kitsuregawa2 Xiaofang Zhou3 Jeffrey Xu Yu4

1The University of New South Wale & NICTA 2University of Tokyo
{lxue,yingz,yyidong }@cse.unsw.edu.au kitsure@tkl.iis.u-tokyo.ac.jp

3University of Queensland 4Chinese University of Hong Kong
zxf@itee.uq.edu.au yu@se.cuhk.edu.hk

1 Introduction
A rank query is essentially to find a data element with

a given rank against a monotonic order specified on data
elements. Rank queries have several equivalent variations
[6, 13, 22] and play very important roles in many real data
stream applications [2, 4, 5, 12, 11, 20, 21], including mon-
itoring high speed networks, trends and fleeting opportuni-
ties detection in the stock market, sensor data analysis, Web
ranking aggregation and log mining, and summarizing data
distributions viaequal-depth histograms. It has been shown
in [16] that an exact computation of rank queries requires
memory size linearly proportional to the size of a dataset by
any one-scan technique; this may be impractical in on-line
data stream computation where streams are massive in size
and fast in arrival speed.

Approximately computing rank queries over data
streams has been investigated in the form ofquantile com-
putation. A φ-quantile (φ ∈ (0, 1]) of a collection ofN data
elements is the element with rank⌈φN⌉ against a mono-
tonic order specified on data elements. The main paradigm
is to continuously and efficiently maintain a small space
data structure (sketch/summary) over data elements to be
on-line queried. It has been shown in [1, 10, 12, 18] that a
space-efficientǫ-approximate quantile sketch can be main-
tained so that, for a quantileφ, it is always possible to find
an element at rankr′ with the uniform precision guaran-
tee |r′ − r| ≤ ǫN (r = ⌈φN⌉). Observe that many real
datasets often exhibit skew towards heads (or tails depend-
ing on a given monotonic order). Relative rank error (or
biased) quantile computation techniques have been recently
developed in [5, 6, 22], which aim to give finer rank er-
ror guarantees towards heads; that is, enforce the preci-
sion |r′ − r| ≤ ǫr instead of a uniform precision guarantee
|r′ − r| ≤ ǫN for each rankr.

In many data stream applications, duplicates may often
occur due to the projection on a subspace if elements have
multiple attributes. For example, in the stock market a deal
with respect to a particular stock is recorded by the trans-
action ID (TID), volume (vol), and average price (av) per
share. To study purchase trends, it is important to estimate
the number of different types of deals (i.e. deals with the
same vol and the same av are regarded as the same type of
deal) with their total prices (i.e. vol*av) higher (or lower)

than a given value. It is also interesting to know the to-
tal price (of a deal) ranked as a median, or25th percentile,
or 10th, or 5th percentile, etc. among all different types
of deals. These two types of rank queries are equivalent
[6, 13]; we focus on the later form in this paper. To accom-
modate processing such queries, each deal transaction (TID,
vol, av) is projected on (vol, av) and then summarize the dis-
tribution ofdistinct (vol, av)s according to a decreasing (or
increasing) order of vol*av; that is, (TID, vol, av) is mapped
to (vol, av). Clearly, any generated duplicates (vol, av) must
be removed while processing such rank queries. Moreover,
relative (or biased) rank error metrics need to be used to pro-
vide more accurate results towards heads (or tails depend-
ing on which monotonic order is adopted). Note that the
generality of rank queries (quantiles) remains unchanged in
this application since two different types of deals (i.e., (vol,
av)s) may also have the same value vol*av. The unique
challenge is to detect and remove the effect of duplicated
elements without keeping every element.

Duplicates may also occur when data elements are ob-
served and recorded multiple times at different data sites.
For instance, as pointed out in [5, 7] the same packet may
be seen at many tap points within an IP network depend-
ing on how the packet is routed; thus it is important to
discount those duplicates while summarizing data distribu-
tions by rank queries (quantiles). Moreover, to deal with
possible communication loss TCP retransmits lost packets
and leads to the same packet being seen even at a given
monitor more than once. In such applications, continuously
maintaining order sketches for processing rank queries may
be conducted either centrally at one site or at a set of co-
ordinating sites depending on the computing environment
and the availability of software and hardware devices. Nev-
ertheless, in either situation a crucial issue is to efficiently
and continuously maintain a small space sketch with a pre-
cision guarantee, at a single site, by discounting duplicates.

While most existing quantile approximate computation
techniques are duplicate-sensitive (i.e. cannot discountdu-
plicates appropriately), the techniques in [7, 14, 17] can pro-
vide a duplicate-insensitive approximate quantile solution,
with the uniform rank precisionǫn and confidence1−δ, by
spaceO(1

ǫ3 log 1
δ log m). Here,n is the number of distinct

elements andm is the maximal possible number of distinct
elements. Nevertheless, the techniques do not provide rel-

1

ative rank error guaranteeǫr unless linear spaceO(n) is
used.

Motivated by this, in this paper we present novel, space-
efficient algorithms to continuously maintain order sketches
over data streams, in the presence of arbitrary data du-
plicates, with relative rank error guaranteeǫr. They re-
quire spaceO(1

ǫ2 log 1
δ log m). They significantly reduce

the space requirement in [7, 14, 17] fromO(1
ǫ3 log 1

δ log m)

to O(1
ǫ2 log 1

δ log m), while also improves rank error preci-
sion guarantee fromǫn in [7, 14, 17] toǫr for any given
rankr. To the best of our knowledge, this is the first work
regarding such a problem.

The rest of the paper is organised as follows. Section
2 presents problem definitions and related work. Section 3
presents preliminaries. In Section 4, we present our algo-
rithms. This is followed by conclusions and remarks.

2 Problem Statement
In our problem setting, an elementx may be either an

original element in data streams or the “image” of a projec-
tion on an original element (e.g. (vol, av) in the example
in section 1). Each elementx is augmented to(x, v) in our
computation wherev = f(x) (called “value”) is to rank
elements according to a monotonic order ofv, andf is a
pre-defined function; for instancef could be specified as
vol ∗ av (or just av) regarding the example in section 1.
Without loss of generality, we assumev > 0 and a mono-
tonic order is always an increasing order.

In a collectionS of elements, there may be manydupli-
cated elements; DS denotes the set of distinct data elements
in S. In this paper, we study the following rank query over
a data streamS.

Rank Query (RQ) : Given a rankr, find the the rankr
element inDS.

We investigate the problem of processing RQ queries
with ranks to be approximated where ranks are obtained
fromDS rather thanS. Suppose thatr is the given rank in a
RQ query, andr′ is the rank of an approximate solution. In
this paper, we enforce the relative error metric:|r′−r|

r . An
answer to a RQ regardingr is relative ǫ-approximate if its
rankr′ has the precision|r′ − r| ≤ ǫr.

In DS, there are no duplicates; however, many different
elements may happen to have the same values. With the
presence of duplicated element values, the rank of an ele-
ment against its value is not well defined; it can take any
rank in [rmin,v, rmax,v]. Here,rmin,v andrmax,v denote
the minimum rank and the maximum rank of an element
in DS with valuev, respectively, against a monotonic or-
der (the increasing order as assumed above). Consequently,
the definition of relativeǫ-approximate may be equivalently
stated as follows. An answerx (with valuev) to RQ regard-
ing r is relativeǫ-approximate iff:

[rmin,v, rmax,v] ∩ [(1− ǫ)r, (1 + ǫ)r] 6= ∅ (1)

Quantile Computation VS RQ. Without loss of general-
ity, we assume that aφ-quantile is an element with rankφn
againstn distinct elements. Althoughn is not pre-known
in a data stream, our techniques can always guarantee an

ǫ-approximate estimationA of n; that is, |A − n| ≤ ǫn
(∀ǫ > 0). Consequently, we useφA in the corresponding
rank query instead ofφn. Immediately, we can verify that a
relativeǫ-approximate answer (with rankr′) to RQ regard-
ing φA leads to aφ′ (φ′ = r′/n) such that|φ−φ′|

φ ≤ 2.5ǫ if

ǫ ≤ 2
9 ; that is,φ′ is relative2.5ǫ-approximate toφ.

Problem Description. We investigate the problem of con-
tinuously maintaining a sketch (consisting of several sub-
sketches) over a data streamS such that at any time, the
sketch can be used to return a relativeǫ-approximate answer
to a RQ againstDS . The aim is to minimize themaximum
memory space required in such a continuous computation.

3 FM Algorithm
Suppose thatS is a collection of elements whose domain

isD. FM algorithm [9] proceeds as follows.
Let B be a bitmap of lengthk with subindexes[0, k −

1]. Suppose thath() is a randomly generated hash function
D → B, such that∀x ∈ D, 1) for each bit,h(x) has the
equal opportunity to have0 or 1, 2)h(x) is enforced to have
one and only one bit with value1, and 3)h(x) assigns the
last bit (the bit with subindexk−1) with value1 iff the first
k − 1 bits (from left) take value0. To enforce property 2),
h(x) may be interpreted as a serial binary hash functions
that start from the first bit and terminate once the current bit
is assigned by value1. It can be immediately shown [3] that
on average,h() runs in timeO(1) (two calls of a binary hash
function) per data element and the probability of having the
ith bit with value1 is 1

2i+1 . In our implementation, we use
the public code from Massive Data Analysis Lab [19] to
randomly generate such hash functions.

A FM sketch onS is defined asFM(S) =
∨

x∈S h(x),
whereFM(S) is a bitmap with lengthk and theith bit of
FM(S) takes value1 iff ∃x ∈ S such thath(x) assigns the
value1 to theith bit. We defineFMmin(S) as follows:

• If i is the least bit (from left) with value0, FMmin(S)

is defined asi.
• Otherwise,FMmin(S) is defined as∞ (in our imple-

mentation, we defineFMmin(S) ask).

To improve the accuracy of FM algorithm, multiple
copies (say,l) of FM sketches are constructed. Therefore,
each data element is hashed intol FM sketches,FM1(S),
FM2(S), ... , FMl(S), respectively. The numbernS of
distinct elements inS is estimated by:

AS =
1

ϕ
2

P

l
i=1

FMi,min(S)/l. (2)

Here,ϕ
def
= 2E(FM1,min(S))/nS ,1 and eachFMi,min(S)

related to FMi(S) is defined in the same way as
FMmin(S) related to FM(S). As shown in [9],
E(FMi,min(S)) = E(FMj,min(S)) (1 ≤ i < j ≤ l).
From Theorem 2 in [9] and theCentral Limit Theorem (pp
229 in [8]), the following lemma can be immediately veri-
fied using the independence assumption.

1As E(FM1,min(S)) cannot be explicitly represented andnS is un-
known, in our implementation we approximately chooseϕ as0.775351
according to the approximate results in [9].

2

Lemma 1. Suppose that AS is returned by FM algorithm
as shown in (2). Then, the probability P (|AS−nS | > ǫnS)
is smaller than δ, for any given 0 < δ < 1, 0 < ǫ < 1,
and L = 1

ǫ , if k = O(log m + log ǫ−1 + log δ−1) and
l = O(1

ǫ2 log δ−1), where m = |D|.

4 Relative Error Sketches
Below is a key observation. For a datasetS, if we first

select the data elements fromS with element values not
greater than a givenv (the result is denoted byS|v−) and
apply FM Algorithm onS|v− , then the obtained estimation
AS,v of the numbernS,v of distinct data elements inS|v−

follows Lemma 1. Recall thatrmax,v is the maximum rank
of the data element with valuev in DS against the non-
decreasing order ofv. Consequently,rmax,v = ns,v.

Intuitively, we can get a good approximate solution if for
eachv, nS,v may be estimated accurately. Note that main-
taining sketches with the presence of every valuev is not
only expensive in space but also expensive in running time
in case that the total number of distinct values isΩ(|DS |).
Below, we present a novel, space-efficient data structure
(sketch) to be continuously maintained to achieve a relative
ǫ-approximation. We also present a theoretic analysis to-
wards space complexity, time complexity, and correctness.

4.1 Algorithm
In our approach, we follow the framework of FM algo-

rithm. To effectively keep values information, we map a
bitmap into an array by replacing the bit with hashed value
1 by its corresponding data element value. At each element
of such an array, we keep only the smallest data value if
multiple data elements have been hashed into this element.

Below, we present our continuous sketch construction
and maintenance algorithm in Algorithm 1. We maintain
l arrays{si : 1 ≤ i ≤ l} each of which is generated, as
described above, by a randomly picked hash functionhi,
and hask elements with subindexes from0 to k− 1. Recall
that without loss of generality, we assumed each element
takes positive values. Thus, each arraysi can be initial-
ized to(0, 0, ..., 0). For everyhi(x) (1 ≤ i ≤ l), ρ(hi(x))
denotes the position (subindex) of the bit, with value1, in
hi(x). Note thatsi[ρ] is theρ-th element insi. Moreover,
to ensure relative rank errors for a give rankr < 1

ǫ precise
answers are the only possibility; consequently, we always
keep theL smallest distinct elements (i.e.,L distinct ele-
ments with the smallest element values) inL in addition to
{si : 1 ≤ i ≤ l},2 so that RQ with ranks smaller thanL
can be answered exactly. We usevmax to denote the max-
imal data element value inL andxmax is the element with
maximal value. Note that inL we keep each elementx in
its augmented form -(x, v). In each si, we link every non-
zero value to the corresponding data element so that we can
return a data element by a RQ.

The following theorem is immediate.

Theorem 1. Algorithm 1 requires the space of L + l × k
elements.

2All duplicates for the elements inL are removed according to the al-
gorithm.

Algorithm 1 RQ-FM Sketches (RQ-FM)

Input: l, k, L, a streamS of (x, v).
Output: L: the set ofL smallest distinct elements;
{si : 1 ≤ i ≤ l}: eachsi is an array withk elements.

Description:
1: Initialize {si : 1 ≤ i ≤ l}; L ← ∅; j ← 0;
2: Generatel hash functions{hi() : 1 ≤ i ≤ l};
3: for each newx with valuev do
4: if (x, v) 6∈ L then
5: if j < L then
6: L ← L ∪ {(x, v)}; j ← j + 1
7: else ifv < vmax then
8: replace(xmax, vmax) in L by (x, v);
9: for i=1 to l do

10: ρ← ρ(hi(x));
11: if si[ρ] > v or si[ρ] = 0 then
12: si[ρ]← v;
13: ReturnL & {si : 1 ≤ i ≤ l}.

To estimatenS,v for a givenv, our query algorithm pro-
ceeds as follows. Ifv < vmax then we only queryL. Oth-
erwise, in the light of key observation we first select the
elements insi with positive values (corresponding to data
elements inDS) but not greater thanv; the result is denoted
by si|v− . Then, we return the location of the left-most ele-
ment insi that is not included insi|v− . If such a left-most
element does not exist, we returnk (corresponding to the
situation∞ when we presented FM Algorithm). LetΠ de-
note a subset of elements in an array andI(Π) denote the
set of subindexes of the elements inΠ. Our query algorithm
is presented in Algorithm 2.

Algorithm 2 ApproximatingnS,v

Input: v, L, {si : 1 ≤ i ≤ l} generated by Algorithm 1;
Output: AS,v;
Description:

1: getvmax fromL;
2: if vmax > v then
3: AS,v ← |L|v−|;
4: else
5: for i = 1 to l do
6: if [0, k − 1]− I(si|v−) 6= ∅ then
7: fi,v ← min{j : j ∈ [0, k − 1]− I(si|v−)};
8: else
9: fi,v = k;

10: AS,v ←
1
ϕ2

P

l
i=1

fi,v/l;
11: ReturnAS,v.

From Lemma 1, the following Lemma immediately
holds.
Lemma 2. For a given v, ǫ, and δ, AS,v returned by Al-
gorithm 2 against the output of Algorithm 1 has the prop-
erty that P (|AS,v − nS,v| > ǫnS,v) < δ if L = 1

ǫ ,
l = O(1

ǫ2 log 1
δ) and k = O(log m + log δ−1 + log ǫ−1).

4.2 Space VS Accuracy
We first present our rank query algorithm against the

sketches generated by Algorithm 1. To retain relativeǫ-
approximation, the basic idea is that for a given rankr, find

3

the maximalAS,v but not greater thanr by invoking Algo-
rithm 2 multiple times. If|AS,v − r| < ǫ1r (ǫ1 = ǫ/3 for
0 < ǫ < 1), then returnx with valuev otherwise returnx′

with valuev′ wherev′ is the value in the sketch immediately
greater thanv.
Remark 1: Clearly, if r ≤ L, then we only need to get a
data element inL with therth smallest value. It is the exact
solution. Therefore, below we only discussr > L; that is,
we only query{si : 1 ≤ i ≤ l}.

Our query algorithm is presented in Algorithm 3. It is
based on the following monotonic property that can be im-
mediately verified according to Algorithm 2.
Lemma 3. Applying algorithm 2 to {si : 1 ≤ i ≤ l} (gen-
erated by Algorithm 1), AS,v1

≤ AS,v2
for any v1 < v2.

Algorithm 3 Processing a Rank Query

Input: r > L, 0 < ǫ1 < 1, {si} generated by Algorithm
1;

Output: x′;
Description:

1: a← max{v : AS,v ≤ r & v ∈ ∪l
i=1si};

2: getx′ such that its valuev′ is a;
3: if |a− r| ≤ ǫ1r then
4: Returnx′;
5: else
6: if a is the maximum value in∪l

i=1si then
7: Returnr > nS ; (outside solution range)
8: else
9: a← min{v : AS,v > r & v ∈ ∪l

i=1si};
10: Returnx such that its valuev′ is a;

Now, we show the precision guarantee of Algorithm 3.
Theorem 2. For any 0 < δ < 1, 0 < ǫ < 1 and r > L,
suppose that the element x′ is returned by Algorithm 3 with
value v′. Then,

P ([rmin,v′ , rmax,v′] ∩ [(1 − ǫ)r, (1 + ǫ)r] = ∅) < δ

if l = O(1
ǫ2
1

log 1
δ), k = O(log m + log δ−1 + log ǫ−1

1),

L = 1
ǫ , and ǫ1 = ǫ

3 .
Proof. The proof is quite lengthy and we omit it here due
to the space limit. The basic idea is to prove that for two
“consecutive” values,v1 andv2, occurred in the sketch, the
difference of their correspondingnS,v1

andnS,v2
is within

ǫ
3 max{nS,v1

, nS,v2
}.

Theorem 2 states that with the set of parameters, the
data element returned by Algorithm 3 isǫ-approximate with
probability at least1 − δ. It can be immediately veri-
fied that another output, “r > nS”, has the probability at
least1 − δ to be correct with this set of parameters. The-
orems 2 and 1 immediately imply that to ensure the rel-
ative ǫ-approximate property for rank queries against dis-
tinct elements in a data stream, the space requirement is
O(1

ǫ2 log δ−1 log m) if m ≥ ǫ−1 andm ≥ δ−1.
Remark 2: In Algorithm 3, the outputr > nS (i.e.
the answer is outside solution range) implies the condition
r > AS

1−ǫ whereAS is an estimation ofnS by Algorithm 2.
According to the discussions above, such an answer (out-
put) is correct with probability at least1 − δ. Similarly,

in our other techniques presented in the paper this property
also holds. Therefore, without loss of generality we assume,
thereafter, that in a rank queryr, 1 ≤ r ≤ AS

1−ǫ whereAS is
an estimation ofnS by the corresponding query algorithm
to estimateAS . Consequently, we no longer need to handle
the situation that no element is returned.
Remark 3: To accommodatet quantile queries, it is im-
mediate thatO(1

ǫ2 log t
δ log m) space is required to ensure

relativeǫ-approximate with the confidence1− δ.
4.3 Time Complexity

In Algorithm 1, it runs in timeO(log 1
ǫ) per element to

dynamically maintainL if we maintain a search tree onL.
As discussed earlier, eachhj() (1 ≤ j ≤ l) takes constant
time on average to hash a data element. Thus, Algorithm
1 runs in timeO(1

ǫ2 log δ−1) on average per data element,
given there areO(1

ǫ2 log δ−1) such arrays.
Algorithm 3 can be implemented as follows. We sort

∪l
i=1si on element values, and then scan the sorted list, by

calling Algorithm 2 iteratively, till find suchv′. Note that
in each iteration, we do not run Algorithm 2 from scratch;
instead we incrementally update the result from last itera-
tion. Clearly, the dominant costs appear in the sorting pro-
cess; consequently Algorithm 3 run in timeO(K log K)
whereK = O(1

ǫ2 log δ−1 log m) (assumingm ≥ ǫ−1 and
m ≥ δ−1) if subsketches have not been pre-sorted.
4.4 PCSA-based

Note that in Algorithm 1, each element is hashed into
Ω(1

ǫ2 log δ−1) arrays (subsketches). This potentially makes
the algorithm less efficient. Our experiment demonstrates it
can only handle300-400 elements per second.

In this section, we modify the algorithm based on the
PCSA technique [9] to our algorithm, Algorithm 1. The
basic idea is to hash each data element randomly toζ arrays
(subsketches) among thel arrays (subsketches). Algorithm
1 may be modified as follows.

• First, we pick at random anotherζ hash functions:
{Hi : 1 ≤ i ≤ ζ} besides thel hash functions in Al-
gorithm 1, where eachHi hashes the element domain
D to [1, l].
• Then, in Algorithm 1 instead of the iteration (in line

9) from i = 1 to l, we do the iteration for eachi ∈
{H1(x), H2(x), ..., Hζ(x)}. The others in Algorithm
1 remain the same.

We call such a modified Algorithm 1 “Algorithm RQ-
PCSA”. Suppose that all the parameters are selected as
those in Theorem 2. It is immediate Algorithm RQ-PCSA
runs in timeO(log 1

ǫ + ζ) for each data element.
In the light of PCSA technique, Algorithm 2 is modified

accordingly as follows to estimate anS,v. We change line

10 in Algorithm 2 toAS,v ←
l

ζϕ2
Pl

j=1
fj,v/l. Then, Algo-

rithm 3 remains the same to answer a rank query but calls
the modified version of Algorithm 2. It can be implemented
in the same way as what we described in Section 4.3 with
the same time complexity. These, together with the facts in
[9], immediately imply that the expected accuracy of Algo-
rithm RQ-PCSA is relativeǫ-approximate. Note that in our

4

implementation, we use pairwise independent hash func-
tion for Hi and our performance study indicates that when
ζ ≥ 10, its accuracy remains quite stable.

5 Conclusions and Remarks
In this paper, we investigated the problem of approx-

imately processing rank queries against distinct data ele-
ments in a data stream with the presence of duplicated data
elements. Novel space and time efficient techniques are de-
veloped for continuously maintaining order statistics so that
rank queries can be answered with a relative error guaran-
tee. This is the first work providing the space and time ef-
ficient data stream techniques to process approximate rank
queries withrelative error guarantees againstdistinct data
elements.

We have also done a thorough performance evaluation
of our sketch techniques and the corresponding query al-
gorithms. Due to the space limit, we only present the fol-
lowing results regardingspace ratio (i.e., the number of tu-
ples in sketches over that in a data stream),accuracy (i.e.,
the relative error), and efficiency. They are based on a real
dataset WCH (World Cup 98’s HTTP request data) down-
loaded from the Internet Traffic Archive [15]. It consists of
17 million records of requests made to the 1998 World Cup
Web site between April 30, 1998 and July 26, 1998. There
are total more than1.53M duplicated data elements and the
maximum duplication number of an element is235.

All experiments have been carried out on a PC with Intel
P4 2.8GHz CPU and 1G memory. In our experiment, we
chooseǫ = 0.02, δ = 0.05, l = 2

ǫ2 log δ−1, andL = 1
ǫ in

both RQFM and RQPCSA. We also setk = 32 in both
algorithm because we use the public code from Massive
Data Analysis Lab to generate hash functions [19] and232

is large enough to accommodate massive number of distinct
data elements. We assignζ = 10 in RQPCSA.

Figure 1(a) shows the space ratio; note that both algo-
rithms always have a same pre-defined sample size if other
parameters are the same. Figure 1(b) shows the accuracy
where we report the average relative error. It shows that
the actual average error is much smaller than the designated
error0.02; in fact, in the experiment we have no query re-
sult with the relative error larger than0.02. Figure 1(c) re-
ports the average time of processing each element in con-
tinuous maintaining sketches. Our experiment shows that
RQFM can only process300-400 elements per second while
RQPCSA can process about75K elements per second. Fi-
nally, Figure 1(d) reports the average query processing time
of processing a batch of1000 quantile queries randomly
generated.

 0

 1

 2

 3

RQPCSARQFM

S
pa

ce
 R

at
io

 (
%

)

(a) Space

 0

 0.001

 0.002

 0.003

RQPCSARQFM

R
el

at
iv

e
E

rr
or

(b) Accuracy

10-6

10-5

10-4

10-3

10-2

RQPCSARQFM

T
im

e
(s

)

(c) Sketch

6x10-4

4x10-4

2x10-4

0
RQPCSARQFM

T
im

e
(s

)

(d) Query

Figure 1. Experiment Results

The experiment demonstrates that besides proven ac-
curacy and space guarantees, both algorithms are very
space efficient and highly accurate in practice. RQPCSA
is efficient enough to support on-line computation of very

high speed data streams with an element arrival rate up to
75K/second. We also report that our performance evalu-
ation against various synthetic datasets have very similar
trends.
Acknowledgement. The work was partially supported by
an ARC discovery grant (DP0666428) and UNSW FRG
(RGP, PS08709). The work was partially done when the
2nd author visited Tokyo University as a JSPS fellow and
visited the Chinese University of Hong Kong.

References
[1] A. Arasu and G. S. Manku. Approximate counts and quan-

tiles over sliding windows. InPODS04.
[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.

Models and issues in data stream systems. InPODS’02.
[3] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate

aggregation techniques for sensor databases. InICDE’04.
[4] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Ras-

togi. Holistic aggregates in a networked world: Distributed
tracking of approximate quantiles. InSIGMOD’05.

[5] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Effective computation of biased quantiles over data streams.
In ICDE’05.

[6] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava.
Space- and time-efficient deterministic algorithms for biased
quantiles over data streams. InPODS’06, 2006.

[7] G. Cormode and S. Muthukrishnan. Space efficient mining
of multigraph streams. InPODS’05.

[8] W. Feller. An Introduction to Probability Theory and Its Ap-
plications. John Wiley & Sons, Inc., 1966.

[9] P. Flajolet and G. N. Martin. Probabilistic counting algo-
rithms for data base applications.Journal of Computer and
System Sciences, 31(2):182–209, 1985.

[10] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
How to summarize the universe: Dynamic maintenance of
quantiles. InVLDB2002.

[11] M. Greenwald and S. Khanna. Power-conserving computa-
tion of order-statistics over sensor networks. InPODS’04.

[12] M. Greenwald and S. Khanna. Space-efficient online com-
putation of quantile summaries. InSIGMOD’01.

[13] A. Gupta and F. Zane. Counting inversions in lists. In
SODA’03.

[14] M. Hadjieleftheriou, J. W. Byers, and G. Kollios. Robust
sketching and aggregation of distributed data streams. Tech-
nical report, Boston University, 2005.

[15] Internet Traffic Archive.http://ita.ee.lbl.gov .
[16] J.I.Munro and M.S.Paterson. Selection and sorting with lim-

ited storage. InTCS12, 1980.
[17] A. Manjhi, S. Nath, and P. B. Gibbons. Tributaries and

deltas: Efficient and robust aggregation in sensor network
streams. InSIGMOD’05.

[18] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random
sampling techniques for space efficient online computation
of order statistics of large datasets. InSIGMOD’99.

[19] Massive Data Analysis Lab. http://www.cs.
rutgers.edu/˜muthu/massdal.html .

[20] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Syn-
opsis diffusion for robust aggregation in sensor networks.In
SenSys’04.

[21] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri.Me-
dians and beyond: new aggregation techniques for sensor
networks. InSenSys’04, pages 239–249, 2004.

[22] Y. Zhang, X. Lin, J. Xu, F. Korn, and W. Wang. Space-
efficient relative relative error order sketch over data streams.
In ICDE’06.

5

