
Software Engineering for Large-Scale Multi-Agent Systems – SELMAS 2003:
Workshop Report

Alessandro Garcia1, José Sardinha1, Carlos Lucena1, Jaelson Castro2, Júlio Leite1, Ruy Milidiú1,

Alexander Romanovsky3, Martin Griss4, Rogério de Lemos5, Anna Perini6

1Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil
2Federal University of Pernambuco (UFPE), Brazil

3University of Newcastle Upon Tyne, UK

4University of California - Santa Cruz, USA
5University of Kent, UK

6ITC-irst, Italy

Abstract
This paper is intended to sum up the results of the Second
International Workshop on Software Engineering for Large-Scale
Multi-Agent Systems (SELMAS’03) held in Portland, Oregon,
USA, May 3-4, 2003, as part of the International Conference on
Software Engineering (ICSE’03). The main purpose of this
workshop was to share and pool the collective experience of
people, both academics and practitioners, who are actively working
on software engineering for large-scale multi-agent systems. The
call for papers elicited some 26 submissions, of which 19 papers
were accepted for presentation. A selected set of the workshop
papers and invited papers are to appear in the 2nd edition of the
book Software Engineering for Large-Scale Multi-Agent Systems
(LNCS, Springer, 2003). The workshop consisted of an opening
presentation, several paper presentations organized into five
sessions, and three panels. During the workshop we informally
reviewed ongoing and previous work and debated a number of
important issues. The SELMAS’03 Web page, including the
papers and the electronic version of this report, can be found at
<www.teccomm.les.inf.puc-rio.br/selmas2003>. We begin by
presenting an overview of our goals and the workshop structure,
and then focus on the workshop technical program.

1. Introduction
Advances in networking technology have revitalized the
investigation of agent technology as a promising paradigm for
engineering complex distributed software systems. Nowadays, the
agent technology has been applied in a wide range of application
domains, including e-commerce, human-computer interfaces,
telecommunications and concurrent engineering. In general,
software agents are viewed as complex objects with an attitude.
Like objects, agents provide a specific set of services for their
users. In fact, objects and agents exhibit several points of
similarity. However, the development of multi-agent systems
(MASs) poses challenges for software engineers since software
agents are inherently different abstractions than objects.

A single software agent is driven by goals, knowledge and a
number of behavioral properties, such as autonomy, adaptation,
interaction, collaboration, learning and mobility. While these
features introduce additional complexity to the different phases of
the software process, there are many techniques for dealing with

individual agents or systems built using only few agents.
Unfortunately, existing software engineering approaches still are
unable to cope with the complexity of large MASs. This is so
because software engineering for MASs is still in its infancy. MAS
features are now being applied to the development of large
industrial software systems. Such systems involve hundreds,
perhaps thousands of agents and there is a pressing need for
software engineering techniques that allow their complexity to be
effectively managed. Rigorous methods also are required to guide
the process of MAS development. Without appropriate
development techniques and methods, such systems will not be
sufficiently dependable, trustable, extensible and easy to
comprehend nor will their components be reusable.

The complexity associated with large MASs is not straightforward
and involves numerous facets and dimensions. When a huge
number of agents interact over heterogeneous environments,
various phenomena occur which are not as to easy to explain as the
behavior of few agents in a closed environment. As the multiple
software agents become highly collaborative, new problems
emerge. It makes their coordination and management more
difficult and increases the probability of manifestation of
heterogeneous exceptional situations, security holes, privacy
violations, unexpected global effects and so on. Moreover, since
users and software engineers delegate more autonomy to their
MASs, and put more trust in their results, new concerns arise in
real-life applications. Commercial success for MAS applications
will require scalable solutions based on software engineering
approaches in order to enable reuse and effective deployment.
However, many existing agent-oriented solutions are far from
ideal; in practice, the systems are often built in an ad-hoc manner
and are error-prone, not scalable, not dynamic and are not
generally applicable to large-scale MAS.

The above considerations motivated the organization of the
SELMAS’03 workshop. The main goals of this workshop were:

1. to discuss the interplay between agents and objects from a
software engineering viewpoint,

2. to understand those issues in the agent technology that
complicate or improve the production of large-scale
distributed systems, and

3. to provide a comprehensive overview of software
engineering techniques that may successfully be applied

to deal with the complexity associated with realistic multi-
agent software.

Other particular interests of the workshop were to collect
experience reports regarding empirical studies, identify best
practices for MAS development and to establish a research agenda
for those researchers interested in multi-agent software
engineering. The workshop brought together researchers interested
in pushing the frontier in this important and burgeoning area, and
practitioners who have experience with MAS development that can
help guide their research. The workshop consisted of an opening
presentation, three panels and five paper sessions, organized
around some of the key themes that emerged from the position
papers. The paper sessions were introduced by brief presentations
and continued with general discussion.

2. Workshop Proceedings and Program Committee
The papers were collected in the ICSE workshop proceedings [1],
and through the SELMAS’03 Web site. The Program Committee
(PC) was composed of the following members:

Alessandro Garcia (PUC-Rio – Brazil) - Chair
Alexander Romanovsky (University of Newcastle - UK) - Chair
Anand Tripathi (University of Minnesota - USA)
Andrea Omicini (University of Bologna - Italy)
Andrés Díaz Pace (UNCPBA University - Argentina)
Anna Perini (University of Trento - Italy)
Awais Rashid (Lancaster University - UK)
Brian Henderson-Sellers (University of Technology-Australia)
Bruno Schulze (LNCC - Brazil)
Carlos A. I. Fernandez (Politechnical University of Madrid-Spain)
Carlos Lucena (PUC-Rio – Brazil) - Chair
Catholijn Jonker (Vrije Univ. Amsterdam - The Netherlands)
Cecilia Rubira (UNICAMP - Brazil)
Dan Marinescu (Central Florida University - USA)
Donald Cowan (University of Waterloo – Canada) - Chair
Eric Yu (University of Toronto - Canada)
Evandro de Barros Costa (UFAL - Brazil)
Federico Bergenti (University of Parma - Italy)
Franco Zambonelli (Univ. of Modena and Reggio Emilia - Italy)
Gerd Wagner (Eindhonven Univ. Technology – The Netherlands)
Gerhard Weiss (Technical University of Munich - Germany)
Gustavo Rossi (Universidad Nacional de La Plata - Argentina)
Jaelson Castro (UFPE – Brazil) - Chair
Jean-Pierre Briot (Laboratoire d'Informatique Paris 6-France)
John Debenham (University of Technology - Australia)
José Alberto R. P. Sardinha (PUC-Rio – Brazil) - Chair
José Carlos Maldonado (USP S. Carlos - Brazil)
Juergen Lind (AgentLab - Germany)
Julio Leite (PUC-Rio - Brazil)
Katia Sycara (Carnegie Mellon University - USA)
Liz Kendall (Monash University - Australia)
Luiz Cysneiros (York University - Canada)
Marco Mamei (University of Modena & Reggio Emilia - Italy)
Marcus Fontoura (IBM Almaden Research Center - USA)
Marie-Pierre Gervais(Laboratoire d'Informatique Paris - France)
Marie-Pierre Gleizes (Universite Paul Sabatier - Toulouse)
Markus Endler (PUC-Rio - Brazil)
Martin Fredriksson (Blekinge Institute of Technology - Sweden)

Martin Griss (University of California, Santa Cruz - USA)
Michael Huhns (University of South Carolina - USA)
Michael Stal (Siemens - Germany)
Michael Weiss (Carleton University - Canada)
Olivier Gutknecht (LIRMM - France)
Paolo Giorgini (University of Trento - Italy)
Paulo Alencar (University of Waterloo – Canada) - Chair
Robert Kessler (University of Utah - USA)
Rogério de Lemos (University of Kent - UK)
Ruy Milidiu (PUC-Rio - Brazil)
Tom Holvoet (Katholieke Universiteit Leuven - Belgium)
Tom Maibaum (King's College London - UK)
Van Parunak (Altarum Institute - USA)
Walt Truszkowski (NASA - USA)
Yannis Labrou (Fujitsu Laboratories of America, Inc.)

3. Workshop Organization and Structure
The organization was under the responsibility of the organizing
chairs José Sardinha, Alessandro Garcia, Carlos Lucena (PUC-
Rio), Jaelson Castro (UFPE, Brazil), Alexander Romanovsky
(University of Newcastle, UK), Paulo Alencar and Donald Cowan
(University of Waterloo, Canada) and with the assistance of the
PC. Two full days were allocated for the workshop (May 3-4,
2003). There were about 45 participants who contributed, largely
with position papers, which were reviewed and revised before the
workshop. We received some 26 submissions from different
countries. We selected 19 papers for presentation in the workshop.
Each paper was reviewed by at least four members of the PC or
additional reviewers; the final selection was made by the workshop
organizers based on the evaluation forms. The presented papers
were chosen because they offered different or novel perspectives
on the workshop topics and because they had a high potential for
generating issues that would stimulate the discussions. An
additional description of the selection process, as well as all the
participants’ position papers, can be found at the SELMAS Web
site.

The meeting provided a forum for the exchange of ideas on case
studies and diverse approaches to the development of MASs. In
preparation for the workshop, participants were requested to read
all other submissions and asked to prepare a clear position
statement and questions that were likely to stimulate discussion.
Moreover, each presenter tried to identify open questions that
could provide the basis for further research in the coming years.
The talks were common to all participants, providing a sense of
thematic unity by addressing different important topics in MAS
engineering theory and practice. The quality of the presentations at
SELMAS’03 was high and triggered a highly interesting discussion
between workshop participants – whom we sincerely want to thank
for their active participation and the level of their contributions to
the debate. Interactions between the participants were lively and
the discussion sessions often ran overtime.Furthermore, workshop
participants discussed the benefits of future collaborations during
the lunch and coffee breaks.

The workshop was structured into the following parts:

• An opening presentation by Carlos Lucena was the starting
point and introduction for the morning and the afternoon
sessions. He reported on the meeting’s topics and goals and

the workshop organization process (see section 4).

• Five technical sessions provided the framework to present
theoretical and practical issues concerning MAS engineering.
The first session addressed the interplay between agents and
objects from a software engineering viewpoint. The second
session was dedicated to presenting development methods for
engineering large-scale MASs. The third session introduced
interesting examples of large-scale MASs. The fourth session
was about dependability and QoS aspects in the context of
MAS development. Some frameworks for MAS development
and their specifics were presented in the fifth technical
session. At the end of each presentation, time was reserved for
discussion. To maximize time, we appointed a chair for each
session to coordinate the discussions. The most important
topics of each session are briefly summarized in section 6.

• Three interesting panels addressed important workshop topics.
The panelists answered questions from the audience and
discussed with each other. Unfortunately, there was too little
time to resolve many open issues. More information about the
panels and the topics discussed is given below.

Following this successful workshop a number of workshop papers
have been selected for extension and publication in a forthcoming
special LNCS volume. Moreover, we will publish some invited
papers in this special volume. It is also hoped that it will be
possible to hold a third edition of the workshop as part of the ICSE
2004.

4. Opening Presentation: Setting the Stage
SELMAS’03 began with a kick-off presentation by Carlos Lucena.
Lucena established a brief overview and the motivation for the
workshop. Lucena also explained the selection process for the
LNCS volume. The foils of this opening presentation are available
at the SELMAS Web site.

5. Workshop Presentations
As we explained above, 19 papers were accepted for presentation.
Unfortunately, two of the speakers were not able to travel to
Portland. In this sense, we had actually 17 paper presentations
during the workshop. In the first day, there were seven
presentations in the morning and three presentations after the lunch
break. On the second day, two speakers presented their work in the
morning and there were five more presentations in the afternoon.
Each speaker had 20 minutes per presentation, followed by 10
minutes for discussion. The papers and their authors were as
follows. Summaries of these presentations are presented in the
following section of this workshop report.

• Extending UML to Modeling and Design of Multi-Agent
Systems, Krishna Kavi, David Kung, Hitesh Bhambhani,
Gaurav Pancholi, Marie Kanikarla.

• Agents and Objects: An Empirical Study on the Design and
Implementation of MASs, Alessandro Garcia, Claudio
Sant’Anna, Christina Chavez, Viviane Silva, Carlos Lucena,
Arndt von Staa.

• An OO Framework for Building Intelligence and Learning
properties in Software Agents, José Alberto Sardinha, Ruy

Milidiú, Carlos Lucena, Patrick Paranhos.
• An Agent-Based Requirements Engineering Framework for

Complex Socio-Technical Systems, Paolo Donzelli, Paolo
Bresciani.

• TROPOS-T: Extending the Tropos Methodology to Include
Requirements, Jaelson Castro, Rosa Pinto, Andrea Castor,
John Mylopoulos.

• Lexicon Based Ontology Construction, Karin Breitman, Julio
Cesar Leite.

• On Security Requirements Analysis for Multi-Agent Systems,
Paolo Bresciani, Paolo Giorgini, Haralambos Mouratidis.

• From Static to Dynamic and back: Three Approaches for Role
Composition, Elke Steegmans, Kurt Schelfthout, Tom
Holvoet.

• InQuality: A Multi-Agent System for Enterprise Quality
Management, Andres Diaz Pace, Marcelo Campo, Alvaro
Soria, Mario Zito.

• A Multi-Agent System for Analyzing Massive Scientific Data,
Joel Reed, Thomas Potok, Mark Elmore.

• On Monitoring and Steering in Large-Scale Multi-Agent
Systems, Takahiro Murata, Naftaly Minsky.

• A Proposition for Exception Handling in Multi-Agent Systems,
Frédéric Souchon, Christelle Urtado, Sylvain Vauttier,
Christophe Dony.

• Object-Oriented Modeling Approaches to Agent-Based Cross-
Organizational Workflow Systems, M. Brian Blake, Hassan
Gomaa.

• A Pragmatic Agent Architecture for Layered Component
Reuse using Subsystems, Steven Fonseca, Martin Griss.

• A Multi-Agent Platform for Reconfiguration, Adaptation and
Evolution of a System at Architectural Level, Amar Ramdane-
Cherif, Samir Benarif, Nicole Levy.

• Farm: A Scalable Environment for Multi-Agent Development
and Evaluation, Bryan Horling, Roger Mailler, Victor Lesser.

• Software Engineering Challenges for Mutable Agent Systems,
Ladislau Boloni, Majid Khan, Xin Bai, Guoqiang Wang,
Yongchang Ji, Dan Marinescu.

6. The Sessions
As mentioned above, there were five sessions of presentations and
discussions. Each of the sessions was organized according to
common themes in the position papers. The session summaries as
produced by the respective session chair are presented below.

Session 1: Interplay between Agents and Objects
Chair: Prof. Anna Perini (ITC-irst, Italy)

Three papers have been presented in the first session (25 minutes
for presentation, plus five minutes for questions).

• Hitesh Bhambhani presented the first paper. The authors have
proposed an UML-based framework for modeling, analysis and
construction of agent-based systems, which refer to the Belief
Desire Intention (BDI) paradigm. Questions concerned:
environment dynamicity issues; how objects (which are
inherently reactive) can be used to build proactive agents; open
system issues, such as those related to the possibility of PDA-

based system to enter into the environment of the MAS.

• Alessandro Garcia presented the second paper. He presented an
empirical study that compares the maintenance and reuse
support provided by abstractions associated with two OO
techniques for MAS development, i.e. aspect-oriented
development and pattern-oriented development. Questions
concerned: the relationship between aspect and pattern
instantiations (what if aspects are considered as patterns at the
code level?); contribution of the work respect to the definition
of a new methodology (or a standard); the effectiveness of the
used metric and possible results on performance measurements.

• José Sardinha presented the third paper. Sardinha presented an
extension of OO frameworks that has been previously
developed for designing MAS. The extension (called MAS-RL)
allows implementation of learning properties in software agents
by exploiting Machine Learning (ML) techniques called
“Reinforcement Learning”. An application of the framework to
Trading Agent Competition was discussed. Questions
concerned: the meaning of the term services in the framework;
the scalability of GAIA (i.e. of the original framework); the
relationship between agents and ML components (are they
wrapper?); the extensibility of the framework respect to other
ML techniques and the possibility of the developer of a new
MAS-RL application to select those to be used.

Session 2: Development Methods for Large-Scale MASs
Chair: Prof. Julio Leite (University of Toronto, Canada)

There were five presentations during this session:

• An Agent-Based Requirements Engineering Framework for
Complex Socio-Technical Systems

• TROPOS-T: Extending the Tropos Methodology to Include
Requirements Traceability

• Lexicon Based Ontology Construction

• On Security Requirements Analysis for Multi-Agent Systems

• From Static to Dynamic and back: Three Approaches for Role
Composition

The first presentation given by Paolo Bresciani dealt with the issue
of modeling early requirements and how this modeling is used to
drive an agent based requirements engineering process. Since the
strategy is based on the i* framework, there was an emphasis on
the distinction of soft and hard goals. Questioned about the
difference between these types of goals, Paolo explained that the
softgoals are the ones related to the aspects that are not functional.

Jaelson Castro was responsible for the second presentation. He
emphasized the importance of dealing with early requirements and
gave an overview of the Tropos approach to the construction of
agent based systems. The papers emphasized the importance of
traceability in the process, and detailed a meta-conceptual model to
deal with traceability. The meta concepts are stored in traceability
matrices. Jaelson was questioned about the level of granularity
necessary for this type of traceability. He noted that this could be
adjusted in the model.

Julio Leite presented the idea that elicitation of ontologies can be

performed by a previous construction of the lexicon of the
application language. Since ontologies will be necessary by a
series of web services, a method was presented on how to
transform lexicons onto ontologies, with these ontologies described
in the Oiled editor. Asked about the distinction between
connotation and denotation, the two different types of entries of the
lexicon, he explained the difference and stressed that the
connotation provides contextual information. Regarding quality
aspects, a question was posed on how to guarantee that the entries
are correctly described; he mentioned that the lexicon has a well-
defined validation and verification process.

Paolo Bresciani presented a paper dealing with security
requirements. He presented an extension to Tropos in order to
explicitly label security softgoals in order to make it more visible
and ready to be treated as a first class concept in the Tropos
requirements models. In the networks of goals the idea of labeling
with numbers the relations among security softgoals and other
requirements in order to be able to estimate the issues related to
complexity and criticality of the security requirements was
presented. Questions were posed regarding the issues of executable
models, like statecharts, for instance. Paolo argued that the
proposal did not required execution but proved a very early
analysis of the networks of goals in terms of security issues.

Kurt Schelfthout presented the last paper of the Session. He
described design issues in defining agents as compositions of roles.
He also presented three approaches for composing multiple roles
and described a basic taxonomy for role composition. The
approaches were illustrated using a simple example.

Session 3: Large-Scale Multi-Agent Systems
Chair: Prof. Ruy Milidiú (PUC-Rio, Brazil)

This session had two presentations:

• InQuality: A Multi-Agent System for Enterprise Quality
Management

• A Multi-Agent System for Analyzing Massive Scientific Data

InQuality is a framework to help building XML document driven
applications that support Enterprise Quality Management. The
proposed framework provides workflow management features in
order to operate with concepts such as processes, documents, roles,
activities, assignments and resources. Through an extensive case
study the authors discussed the gains on separation of concerns that
results from the MAS approach.

Using the Oak Ridge Mobile Agent Community Framework, the
authors developed a large-scale distributed MAS. The system goal
was to help validate massive datasets generated when simulating
complex physical phenomena. An experiment within the Terascale
Supernova Initiative was used to illustrate the MAS advantages.
Upon request, 800 agents work together to produce a visual
representation of the dataset that enables the user to validate the
simulation results.

Session 4: Dependability and QoS in MASs
Chair: Prof. Alexander Romanovsky(University of Newcastle, UK)

The second day of the workshop started with a session on
Dependability and QoS in Large-Scale MASs. There were two
presentations during this session:

• On Monitoring and Steering in Large-Scale Multi-Agent
Systems

• A Proposition for Exception Handling in Multi-Agent Systems
The first talk of the session was delivered by T. Murata. N.
Minsky, the second co-author of this work, attended the workshop
and helped the attendees in clarification of a number of issues
raised. The focus of this work is on proposing a novel paradigm
supporting and enforcing coordination and control in large and
open MASs. The idea is to use the Law-Governed Interaction
mechanism to express specific policies related to monitoring and
steering. A working example of a department store employing a
number of buyers and a manager was used throughout the talk to
demonstrate the main ideas of the approach proposed.

The second talk of the session on was delivered by F. Souchon.
The talk started with an outline of the main requirements for the
exception handling mechanisms suitable for developing complex
MASs. Next, the speaker introduced the novel mechanism, in
which, depending on the application needs, exception handlers can
be associated with a service, an agent and/or a role. A simple set of
rules describing how exceptions can be propagated and what the
exception contexts for each possible exception are was
demonstrated using a travel agency example. Some experimental
work on implementing this mechanism in the MadKit multi-agent
system was presented. The approach allows complex systems
consisting of a number of cooperating agents to be developed with
incorporating exception handling capability in a disciplined and
regular fashion.

Session 5: Development Frameworks for Large MASs
Chair: Prof. Hassan Gomaa (George Mason University, USA)

In this session, architectures and frameworks for MAS
development together with lessons learned were presented. The
intention was to help software engineering researchers get a feeling
for the critical issues to consider in the construction of MAS
frameworks. This session had five presentations:

• Object-Oriented Modeling Approaches to Agent-Based Cross-
Organizational Workflow Systems

• A Pragmatic Agent Architecture for Layered Component Reuse
using Subsystems

• A Multi-Agent Platform for Reconfiguration, Adaptation and
Evolution of a System at Architectural Level

• Farm: A Scalable Environment for Multi-Agent Development
and Evaluation

• Software Engineering Challenges for Mutable Agent Systems

Hassan Gomaa presented a large-scale agent-based architecture to
support a distributed services environment. In addition, he
introduced a software engineering approach towards the
programming, configuration and operational control of the agents
that manage processes in a cross-organizational workflow
environment. Martin Griss reported on his experience in the
development of an MAS framework. He argued that the proposed
architecture is more flexible and extensible than current MAS
frameworks provide. This architecture includes a component
decomposition framework and infrastructure that guides
application developers to decompose agent behavior in reusable

ways. At the highest level, agents are constructed from reusable
subsystems. Subsystems interact by an event-based software bus
that acts as the central nervous system of an agent.

In her talk, Nicole Levy presented the conception and
implementation of a platform for reconfiguration, adaptation and
evolution of MASs. This platform can evaluate an MAS
architecture with respect to some quality attributes to improve its
structural and behavioral properties. Roger Mailler introduced the
Farm environment for simulating large-scale MASs. This
environment uses a component-based architecture to support the
researcher to easily modify and augment the simulation. Moreover,
it allows distributing the various pieces to spread the
computational load and improve running time. Mailler described
technical details of the proposed environment along with
discussion of the rationale behind the design.

In the last talk, Ladislau Boloni addressed mutability in MASs.
Mutation was a term used to indicate controllable and well-
specified changes of a program at runtime. He presented the Bond
system, a FIPA compliant agent framework with support for
mutability. He proposed a set of extensions to the Gaia
methodology to handle certain important classes of mutable
systems.

7. The Panels
During the workshop three panels were organized to discuss
important topics of MAS engineering. The panelists answered
questions from the audience and discussed with each other. On the
first day there was only one panel that discussed the development
methodologies for large-scale multi-agent systems while on the
second day there were two panels: the first discussed the
dependability and QoS in large-scale multi-agent systems; and the
second panel discussed frameworks and architectures for large
multi-agent systems. The panel summaries, produced by their
respective moderators, are presented below.

Panel 1: Development Methodologies for Large-Scale MASs
Moderator: Jaelson Castro
Panelists: Naftaly Minsky, Carlos Lucena, Paolo Bresciani, Anna
Perini.

This was the closing panel of the first day of workshop. The
growth of interest in software agents and multi-agent systems has
recently led to the development of new methodologies based on
agent concepts. These methodologies propose different
approaches in using agent concepts and techniques at various
stages during the software development lifecycle.

The moderator, Jaelson Castro, in order to stimulate the discussion,
produced a list of some modeling languages and methodologies
that emerged in the recent years, such as Gaia, AAII, AOR, MaSE,
Message/UML, AUML, OPEN/Agent, Tropos, PASSI and
Prometheus. He then emphasized that the goal of this panel was to
identify, analyze, and illustrate the commonalties and distinctions
across different methodologies.

The first panelist, Paolo Bresciani, focused on the issue of
Expressiveness and Usability in Requirements Engineering
Methodologies for Multi Agent Systems. He claimed that these are

the basic questions that may help us to understand if and why agent
and goal-based Requirements Engineering are a promising
evolution in Software Engineering. As an example he mentioned
that Tropos allows for a very expressive requirements language
with the potential of capturing various aspects. However, he argued
that the Requirement Engineering process in Tropos was quite
complex because it had to deal with many diverse elements,
compromising its usability. On the other hand, he pointed out
that a simpler approach, such as REF, could be easier to be
adopted by practitioners, at the expense of expressiveness. To
conclude he noticed that there are no simple answers, it all
depends on the domain, the application and stakeholders. The
solution could be the fusion of REF and Tropos (and other
methodologies) in order to take advantage from both.

The next panelist, Naftaly Minsky, focused on coordination and
protocols. He began defining what he called an "open"
community of agents (or MAS):

• community whose members are heterogeneous---which may
be designed and maintained independently of each other, and
possibly written indifferent languages; and

• community whose membership may change dynamically.

He argued that for such a community to operate harmoniously and
safely, its design needs to start with a collection of global
constraints, or "law", designed to govern the interaction between
its various member agents. This, in some analogy to the manner in
which vehicular traffic is governed by the traffic laws, and to the
manner in which countries are governed by their constitutions.

He also described some of the desired properties of such laws,
and how such properties are satisfied by the Law-Governed
Interaction (LGI)mechanism. He claimed that there is a
complementarily between such laws of a MAS, and the more detail
specification of its member agents, via a methodology like Tropos.

The next panelist, Anna Perini, discussed problems that need to be
faced when going from system requirement analysis to system
architecting adopting an agent-oriented approach. In her
presentation she discussed her experience with the Tropos
methodology for the development of distributed systems such as
web-based system and peer-to-peer systems for knowledge
management.

She explained that systems requirements analysis is driven by the
questions of the following type: What are the goals of the users?
Are there alternative means to achieve them or are there
goals/plans that contribute to their achievement? What are the
reasons for choosing one alternative over the others? Are some of
them dependent on the system-to-be? How does the system
accomplish (execute) these goals (plans) for the user? Again, are
there alternative ways to do this? How are them evaluated.

 Anna Perini also noticed that when we move to system design we
are faced by different questions, such as : How can we identify
system components which ensure an appropriate level of cohesion?
How can we reduce coupling among components? How can we
evaluate different architectural options analyzing non-functional
requirements? Is there any architectural styles that we can exploit
in an effective way? How can we exploit OO/AO development
environment, development skills, …?

Carlos Lucena described the ongoing work at PUC-Rio, where
they have been performing research and development efforts for
achieving new software engineering technologies in the context of
multi-agent systems, including:

• High-Level Aspect-Oriented Design Language for MAS
Development

• Metric Suite for Aspect-Oriented Development (Empirical
Studies)

• Viewpoints and Goal-Driven Requirements

• The TAO Meta-model for MAS's

Work is also under way at PUC-Rio to present a new method for
integrating agents into object-oriented software engineering from
an early stage of design. The proposed approach encourages the
separate handling of MAS concerns, and provides a disciplined
scheme for their composition. The proposal explores the benefits
of aspect-oriented software development for the incorporation of
agents into object-oriented systems. Achieving the benefits of
separation of concerns is not a trivial task and demands the use of
appropriate principles from an early stage of design.

An empirical study was also conducted ad PUC-Rio to compare
the maintenance and reuse support provided by abstractions
associated with two OO techniques for MAS development: aspect-
oriented development and pattern-oriented development. The
preliminary results indicated that abstractions from the aspect-
oriented approach allowed the construction of a MAS with
improved separation of MAS concerns.

Another interesting work reported by Carlos Lucena was the
coupling of the agent technology with the viewpoint concept.
This approach intends to specify a multi-agent system using
integrated views, enabling a better specification of the system’s
features. These views are based on a classification of the structural
and dynamic aspects of a multi-agent system. Each view is
modeled and documented using a notation (ANote) language for
visualizing, specifying, constructing, and documenting the artifacts
of a multi-agent system specification. ANote provides a set of
diagrams, each one modeling a different view of a multi-agent
system.

Carlos Lucena also explained that the goal of TAO (Taming
Agents and Objects conceptual framework) was to provide the
foundations for agent and object-based software engineering. The
work included the definition of an ontology to support essential
concepts, or abstractions, for developing MASs. The benefit of
having a conceptual framework is to provide support for
developing new methodologies, methods and languages based on
the essential concepts defined and related in the framework. Each
concept is viewed as candidate abstraction modeling languages,
methodologies and support environments to be applied in different
phases of the MAS development.

Panel 2: Dependability and QoS in Large-Scale MASs
Moderator: Rogerio de Lemos
Panelists: Tom Maibaum, Arndt von Staa, Paolo Bresciani,
Alexander Romanovsky.

In order to encourage discussion, moderator Rogério de Lemos

initiated the panel by defining key terms associated with its topic.
Computing systems, in general, can be characterized by five
fundamental properties: functionality, usability, performance, cost
and dependability. While quality of services (QoS) refers to the
non-functional properties of systems, dependability, in particular,
refers to the ability of a computer system to deliver service that can
justifiably be trusted.

Since the theme of SELMAS 2003 was the interplay between the
notions of agents and objects, the key question to be asked, from a
software engineering perspective, was how could an agent-based
approach improve the dependability and the QoS of software
systems? Between the four basic means to achieve dependability,
fault tolerance may be the most relevant one from the perspective
of building agent-based systems since it deals with the continuous
provision of services despite the presence of faults. The basis for
designing and building any fault tolerant system is the specification
of the failure assumptions of its components. However, if we
consider that autonomy is a key property of agent systems, it is not
clear how the failure assumptions can be associated with agents
since their full behavior is not known beforehand. Even if we
assume that autonomy can be restricted and the worst class of
failures can be associated with agents, it still is not clear whether a
feasible implementation can be found without making strong
assumptions about the communication between agents.

Agents’ ability to adapt to environmental changes also may
introduce some challenges. This is so because the uncertainties
associated with the outcome of their learning process might lead to
unpredictability, which might impair the ability to evaluate the
dependability attributes of multi-agent systems. Moreover, if
autonomy and adaptability are essential features of these systems,
what type of stability criteria should be associated with these
systems for avoiding divergent behavior among agents? Another
property of an agent is its mental state, and if the notion of this
“mental state” is more anthropomorphic than the more
conventional notion of a “state,” then can this mental state be
observed by other system entities? If this state cannot be observed
then it cannot be controlled, making the provision of fault
tolerance difficult.

Based on the issues raised above, the question to be asked is what
then could be the role of agents in large-scale systems? There are
several ways in which agents could be employed: first, as basic
building blocks, like functions, objects and components; second, as
means for integrating legacy systems; and finally, in a lesser role,
as a means for the provision of specific services, such as an
additional system layer to collect information, inform third parties
and control the allocation of resources. On the other hand, instead
of restricting their applicability, another alternative would be to
impose restrictions on the features offered by agents depending on
the role taken by them upon building systems. Likewise, for the
sake of predictability, inheritance is discarded when designing real-
time systems using object-oriented technology, or a safe subset of
Ada (SparkAda) is employed when building safety-critical systems.

The moderator concluded by raising three questions designed to
provide the basis for the panel: from the software engineering
viewpoint, how do MASs’ features (e.g. autonomy, self-adaptation,
intelligence, mobility, emergent behavior...) make dependability
and QoS easier or more difficult than in object-oriented systems?

To what extent can conventional and object-oriented dependability
and QoS techniques be used in the context of the engineering of
MASs? What are the challenges facing the promotion of
dependability and QoS in development of MASs?

Also within the realm of dependability, Paolo Bresciani discussed
security in the context of agent-oriented software engineering. He
started his talk by emphasizing that security analysis should be
considered early in the lifecycle, instead of after the design of the
system. In order to show the feasibility of this claim, Bresciani
presented an approach for dealing with security requirements using
the Tropos agent-oriented software engineering methodology. The
security process in Tropos consisted of analyzing the security
needs of the stakeholders and the system in terms of security
constraints imposed on the stakeholders and the system, identifying
secure entities that guarantee the satisfaction of the security
constraints and assigning capabilities to the system to help towards
the satisfaction of the secure entities. Bresciani concluded that it
was not easy to consider security issues in a simple way at the
requirements level, hence the reason why they are usually
considered at the late stages of development.

In examining the agent literature, Tom Maibaum has found two
essential new concerns. One, a qualitative difference with software
engineering concerns in the past — namely, agents combine a large
number of underlying technologies and, thus, are very complex
artifacts. The second is a real difference in relation to past software
engineering concerns, i.e., the use of introspection in the
implementation of an agent. The use of anthropomorphisms in
agent technology may be dangerous because it might lead to an
illusion of understanding of concepts that does not actually exist.
For example, Maibaum reiterated that he had never found a proper
definition of the concept of autonomy, at least one that can be used
for the design and analysis of agents. Thus, for him the most
interesting research challenge in relation to agent technology is the
management of the complexity of multiple technologies referred to
above. The use of coordination technologies might be an aid to
deal with this complexity.

In his talk, Alexander Romanovsky considered the issue of fault
tolerance and exception handling in large-scale MASs. He started
by stressing that due to types of faults in MASs what is actually
needed is software fault tolerance at the application level rather
than software based mechanisms for tolerating hardware faults
(ACID transactions, replications, atomic broadcasts, etc.).
Moreover, instead of recovery techniques based on rollback,
alternative solutions based on forward error recovery should be
sought. One of these solutions is exception handling, and the
challenge is to develop novel exception handling techniques
suitable for large-scale MASs. There are several advantages in
using exception handling as a means to achieve fault tolerance:
separation of code and flow in terms of normal and abnormal
behavior, and the recursive structuring by multiple level exception
handling as a way to limit the scope of recovery. However, new
problems arise due to the characteristics of MASs. Agents are
autonomous; thus, they cannot report exceptions to a higher level.
Agents are interactive; thus, they need the concept of scope or
exception context. Agents are mobile; thus, requiring special
exception handling techniques since agents can leave the location
and move to another location, or the execution environment and

the resources available can change on the fly. The communication
between agents is asynchronous, thus requiring the decoupling of
producers and consumers, and anonymous communication using
event-based interactions. In order to deal with some of these
limitations, several solutions are possible. Exception handling
contexts should include all the agents involved in a particular
exception or its respective handling, and this could be implemented
by defining all the cooperating agents in a particular location or
dynamically by mutual agreement. In their implementations agents
should include additional information about the sort of services
they provide and assumptions about their environment and other
agents; this additional information could also be store in some sort
of registry.

Arndt von Staa focused his talk on agents and dependability and
how trust can be obtained when using agents for building critical
systems. In his initial statement he said that the 40-plus years he
has dealt with computers has taught him to be skeptical. To support
this statement he enumerated several cases in which either
computers or software were held responsible for system failures. In
order to motivate the usage of agents in critical applications, von
Staa described a hypothetical scenario in which individual
airplanes were agents in an MAS. The collection of airplanes
forms a society of agents in which airplanes and obstacles enter
and leave the space of interest of the society or of a specific
airplane. In this society, each airplane would be able to sense the
proximity of obstacles and other airplanes, to determine the
possibility of collision in the next n time units and to take evasive
action to avoid collision. The question raised by von Staa was
whether anyone in audience would allow themselves to fly in such
system. In the second part of his talk, von Staa’s raised several
issues related to the validation of MASs. For example, can we
prove the correctness of MASs? More specifically, do we really
know how to specify them or are we able to obtain adequate
models? In terms of the development process of MASs, he
questioned whether we correctly understand all agent interface
problems? Can we trust separately (incrementally) developed
agents and their integration? His final query was how one could
test MASs? He concluded his talk by stating that we must still be
very humble when proposing agent-based solutions and that high
risk applications should not be based on MASs, at least for the
time being.

Panel 3: Frameworks and Architectures for Large MASs:
Issues & Challenges
Moderator: Martin Griss
Panelists: Martin Griss, David Kung, Roger Mailler, Ladislau
Boloni

This was the workshop’s closing panel, charged with looking at the
technical issues and challenges related to building and operating
large-scale multi-agent systems. The primary question was to what
degree could traditional object-oriented software engineering
techniques be used to address the peculiar problems of large-scale
multi-agent systems. The panelists focused on similarities and
differences between objects and agents and how these differences
would affect several aspects of software engineering: modeling,
design, programming and reuse.

Introduction. The panel started from several questions:

• What are the problems with the use of OO abstractions for
the construction of frameworks for MAS development?

• How can OO techniques (design patterns, frameworks,
aspects, etc.) be used to develop MASs? How should they
be augmented (e.g. AUML?)

• What are the key challenges (reuse, maintenance,
scalability, interoperability, trust, privacy...) for MAS
frameworks?

• How much should MAS frameworks provide support for
MAS features (e.g. autonomy, self-adaptation,
intelligence, mobility, protocols, emergent behavior...)?

The panelists and audience discussed a subset of the issues.

Software Engineering for Large MASs. Software engineering is
the systematic application of models, methods, processes, metrics,
and tools to create software “economically.” A coherent Agent-
Oriented Software Engineering (AOSE) approach will address:
development, support, management, evolution, and scale. For
large-scale MASs, we could choose to apply traditional software
engineering techniques to MASs (“An MAS is just a distributed
OO system”), or invent a new software engineering technology for
MASs (“An MAS is all about goals and beliefs”). We could even
derive new software engineering techniques for non-MASs from
MAS engineering experience (e.g, WSOSE for web services).

When we say “large,” we could mean number of (active) agents,
number of different kind of agents, number of developers, number
of hosts or variety of platform types; or all of these. When we say
MAS, we are stressing the specific issues that characterize agents’
Autonomy, Emergent behavior, Distributed AI, Goals, Roles and
Mobility and ACL communication to make the problem more
complex.

Agent-Oriented Modeling and Design Language. Development
of large, complex agent-based systems requires an engineering
process. An engineering process requires a modeling approach and
a design methodology. A modeling approach is associated with a
view of the world and a modeling language that can be used to
document the perception of a given world or an application (in the
given view), resulting in a model.

The modeling concepts and constructs affect the resulting
modeling in terms of abstraction, understandability, ambiguity,
complexity and other attributes. For example, the object-oriented
paradigm views the world as consisting of objects that encapsulate
states and behaviors and interact with each other through message
passing.

However, agents are not (just) objects. It is commonly recognized
that there are essential differences between agents and objects.
Agents are characterized as autonomous, goal-oriented, situation-
aware and proactive as well as reactive. Objects, on the other hand,
are passive, responsibility/functionality oriented and, at the most,
reactive. Since agents and objects are so different, the views that
we use to perceive the world to build OO systems and agent based
systems must not be the same.

Thus the modeling language that we use to document the
perception of the world for OO systems and agent systems must

provide modeling concepts and constructs appropriate for agent
systems. Of course, one could use an OO modeling language as an
agent modeling language. This is analogous to using an ER model
as the modeling language for OO systems. One could even use ER
diagrams and its extensions as the modeling language for agents.
But this choice is even further from the ideal because ER is not
even appropriate as an OO modeling language. The modeling
language could be either Booch diagrams, OMT, UML or any
other OO modeling languages. AUML is one such attempt to
extend UML with agent-specific capabilities; for example,
modifying the interaction diagrams to better document protocol
alternatives.

Agent-oriented programming. Agent-oriented programming
techniques should naturally rely on object-oriented programming
as their foundation. Moreover, we can learn a lot from the object-
oriented field in making complex concepts accessible and easy to
use. The ability to participate in standard interactions
(negotiations, auctions and so on) should be made just as easy as
the use of abstract data types in contemporary object-oriented
libraries. Agent-oriented patterns would also further the field by
automating and standardizing the development and deployment of
multi-agent systems. Mobility and adaptivity features are desirable;
but much work needs to be done towards adequate methodologies.

Agents and Reuse. A key approach to improving quality and
reducing development time for large scale MAS is systematic reuse
involving event-based frameworks, flexible components and
generators. Reuse will bring other benefits, too, including
improving interoperability, more features and ensuring certain
properties for the entire system, such as improved dependability
and security and other cross-cutting aspects.

The agent-oriented reuse process includes the domain-oriented
development of reusable elements, using domain analysis to
identify features, structure commonality and variability needed for
a range of MASs. This is then expressed as a “Kit,” using a
balance of architecture, framework, components, agent-
construction languages and generative tools. The new framework
and components need to leverage standards based on FIPA, JAS,
web-services, semantic web, JMS and JXTA. Then, in order to
develop a new MAS, one simply selects, develops or generates
components, which are then customized and integrated into a
complete system

The reusable elements will include multiple abstraction levels and
granularity, such as (A) UML models, use cases, role models,
architecture and design patterns, protocols in the form of
interaction diagrams, state machines, or Petri nets. Components
and templates in Java or other languages, combined in an event bus
architecture that will permit subsystems and components to register
dynamically and support flexible communication.

Conclusion. Engineering a large-scale multi-agent system is a
complex task that involves designing a system that has well defined
properties while allowing agents within the system to exhibit
learning, autonomy, mobility, etc. For the most part, these goals
are contradictory. If we allow individual agents to do whatever
they want, the system will likely stray from its original design. If,
on the other hand, agent behavior rules are too restrictive, we are
left with simply another engineered, distributed system. What is

clear is that OOP methodologies and paradigms, although
appropriate for designing intra-agent components, fall short of
allowing designers to build rules for inter-agent behavior.
Particularly, OOP is incapable of addressing trade-offs between
system-level guarantees and allowable uncertainty in individual
agent behavior.

8. Conclusions
The particular focus of this second meeting was on the role of
agents and MASs in software engineering. Altogether, the
workshop was a very large success due to the quality of the
submitted papers, the level of participation of the audience and the
profile of the panelists. SELMAS’03 achieved its goal to provide a
forum for interactive discussions on the research issues of software
engineering for large-scale multi-agent systems. The speakers
presented items for a research agenda during several of the talks.

SELMAS’03 put researchers from software engineering together to
discuss the multi-faceted issues that emerge in using MASs to
engineer complex, distributed systems. Given the level of the
contributions, we are confident that the workshop was useful to the
multi-agent software engineering community, by providing many
original and heterogeneous views on such an interdisciplinary topic
as well as several attempts to pull everything together. It is our
hope that SELMAS’03 provided the agent community with a
forum where novel ideas and results can be shared by crossing the
boundaries of the many research and application areas that meet in
the agent field.

Like SELMAS, other important, related workshops have been
organized to discuss research and practice on multi-agent software
engineering (such as AOIS and AOSE workshops [3, 4]). As is
evident from these meetings and this workshop report, work on
agent-based software engineering remains to be done. There are a
number of ways to learn more about current work and get involved,
including:

• Visiting the workshop web site for details of ongoing work.

• Reading the position papers from the SELMAS’02 book [2]
and the SELMAS’03 proceedings [1] for background
information.

• Contacting any of the organizers and authors of the SELMAS
papers for more information.

Finally, a high-quality set of workshop and invited papers is going
to appear in the second edition of the book Software Engineering
for Large-Scale Multi-Agent Systems (LNCS, Springer, 2004). In
addition, this volume will include some invited papers. The
SELMAS’04 workshop is planned for the next year at ICSE 2004.
We look forward to an excellent program also in the next year.

Acknowledgements
The organizers would like to thank all those who contributed with
submissions to the workshop and the program committee members
who invested many hours reviewing such submissions. In addition,
we thank the session chairs and panelists for the fine work in
coordinating the sessions and promoting an interesting panel,
respectively. Finally, we would sincerely like to thank again the

SELMAS’03 participants for their active involvement in the
meeting and the level of their contributions to the debate.

References
[1] Sardinha, J., A. Garcia, C. Lucena, J. Castro, A. Romanovsky, P. Alencar, D.
Cowan (Eds.). Proceedings of the 2nd Workshop on Software Engineering for
Large-Scale Multi-Agent Systems. International Conference on Software
Engineering (ICSE 2003), Portland, USA, May 2003.

[2] Garcia, A., C. Lucena, J. Castro, F. Zambonelli, A. Omicini (Eds.) (2003):
Software Engineering for Large-Scale Multi-Agent Systems. Lecture Notes in
Computer Science, Springer, Vol. 2603, April 2003.

[3] The International Workshop series in Agent-Oriented Information Systems,
http://www.aois.org/

[4] The International Workshop series in Agent-Oriented Software Engineering,
http://www.csc.liv.ac.uk/~mjw/aose/

