
A Hardware-Assisted Proof-of-Concept for Secure
VoIP Clients on Untrusted Operating Systems

Maik Ender∗, Gerd Düppmann†, Alexander Wild∗, Thomas Pöppelmann∗ and Tim Güneysu∗
∗Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

Email: {maik.ender, alexander.wild, thomas.poeppelmann, tim.gueneysu}@rub.de
†University of Duisburg-Essen, Germany

Email: gerd.dueppmann@uni-due.de

Abstract—In this work we propose a secure architecture for
Voice-over-IP (VoIP) that encapsulates all security and privacy
critical components and I/O functions into secure hardware and
thus drastically reduces the underlying trusted computing base.
Our proof-of-concept implementation shows that high security
and reliance on established standards and software (e.g., device
drivers, transmission control, and protocols) to keep development
costs down are no contradiction. Security is ensured as all security
and privacy critical operations of the VoIP system are performed
in protected hardware and as a consequence a successful attack on
any software component (e.g., buffer overflow) does not lead to a
violation of security. All I/O devices like microphones, speakers,
displays, and dial buttons are directly connected to the secure
hardware and cannot be controlled by an adversary even if the
software part has been compromised.

I. INTRODUCTION

Voice-over-IP (VoIP) has emerged to replace conventional
telephones due to its greater flexiblity and voice quality at
reduced costs. However, switching from a dedicated infras-
tructure (e.g., landline phones or switching boxes) for voice
communication to an IP-based network introduces a large num-
ber of security and privacy issues. For example, Ang Cui [1]
showed in 2012 how to exploit security vulnerabilities of the
operating system in Cisco Voice-over-IP (VoIP) phones. These
phones are predominantly used by governments, enterprises
and research organizations in privacy and security-sensitive
areas. The attacks were mainly possible as the analyzed phones
are based on general-purpose hardware with an Unix-like
Operating System (OS) kernel and userland software. Even
though the operating system was hardened, it was possible
for attackers to develop exploits and acquire administrator/root
privileges. This allowed eavesdropping of ongoing communi-
cation, modification of transmitted speech data but also eaves-
dropping on verbal communication performed in the room the
phone is located in, by silently turning on the microphone.
In this case, encryption and integrity checking of data during
transport provides no protection, as the adversary is able to
obtain or exchange the encryption keys or the raw audio data
directly on the endpoint.

A possible reason for such vulnerabilities is the require-
ment of minimal time-to-market and availability of powerful
embedded processors (e.g., the ARM series) so that vendors
are tempted to use full-blown operating systems like Linux,
Android, or custom Unixes for products which are connected
to the Internet. In this case, developers can directly rely on
available libraries, drivers, operating system functions, and

tools to realize Wi-Fi routers, printers, TVs, digital cameras,
point of sale terminals, or the above mentioned VoIP tele-
phones. However, the usage of large software stacks requires
the reliable deployment of security updates. Unfortunately, not
all vendors release updates due to maintenance costs and not
all users install them, e.g., due to compatibility reasons. As a
consequence, a large number of network-enabled embedded
devices is currently running with vulnerable outdated soft-
ware [2]–[5].

Contribution. In this work we are dealing with this un-
pleasant situation by proposing an alternative architecture
to secure VoIP by an implementation that (1) encapsulates
security-critical operations on reasonably cheap hardware, (2)
is protected against software attacks, and (3) still allows to
utilize the full power of the operating system and previously
developed drivers as easy interface to the hardware. For this
we have analyzed all privacy and security critical components
of the VoIP system and achieved a higher level of security
by moving all security-relevant components into the hardware
fabric of a low-cost Xilinx Zynq platform. As all physical
interfaces (e.g., microphone, display, or loudspeakers) are
directly connected to the hardware components, no attacker
can intercept unencrypted and security-sensitive data streams
– even with full access to the operating system.

Related Work. Lightweight protection of systems and keys
has been previously achieved by the deployment of a hardware-
based root of trust [6]. The extension of this concepts has led
to new architectures for secure systems using cryptography
or hardware-based methods for protection against physical
and runtime attacks [7], [8]. However, these architectures are
usually not commercially available or provide only protec-
tion against certain attack vectors. Practically realized ap-
proaches for secure key storage [9], [10] or against software
exploits [11], [12] usually rely on the extension of Field
Programmable Gate Array (FPGA) soft-cores or small research
processing platforms. On reconfigurable hardware the designer
can also exploit security features build in by the FPGA
vendor [13], like bitstream encryption. However, the perfor-
mance of soft-cores is limited compared to hard-cores that
become available with the ARM Cortex family on some FPGA
devices. As auditing of large software stacks for applications
in the Internet of Things (IoT) [14] or mobile computing
is expensive and error-prone, concepts like TrustZone have
been introduced [14]. TrustZone uses proprietary hardware
features of the processor to create an authenticated and trusted
execution environment for security-critical programs. However,

this still requires correct usage and implementation of all
TrustZone features as the CPU and memory is shared and
not physically separated. We also refer to general security
requirements for VoIP which are described in standards [15]
and works like [16], and [17].

Outline. This work is structured as follows: In Section II
we introduce VoIP and our target hardware. In Section III
we details our security assumptions and provide a high-level
overview of the proposed design. Implementation details are
given in Section IV and we discuss results in Section V. We
finish with a conclusion and future work in Section VI.

II. PRELIMINARIES

In this section, we introduce relevant VoIP protocols and
the target device.

A. Voice-over-IP

The term Voice-over-IP (VoIP) refers to techniques that
are used to establish voice calls using the IP protocol in local
networks or the Internet. As almost all offices and households
are connected to an IP network, usage of VoIP promises
large cost savings as no separate telephone infrastructure is
necessary anymore (e.g. land lines and switching equipment).
Usually, for session initialization and data transmission sepa-
rate protocols are used. In most implementations the Session
Initiation Protocol (SIP) [18] is used for session control and
call initiation and thus provides control mechanisms to create,
modify or terminate a session of multiple media streams. It
works in conjunction with Session Description Protocol (SDP)
for identification and encapsulation of the media content. The
transmission of actual media content is handled by the Real-
Time Transport Protocol (RTP) or Secure Real-Time Protocol
(SRTP) [19]. RTP is a widely used and flexible standard that is
able to adapt media content to the available network bandwidth
by compressing it with different audio and video codecs. For
multimedia security, SRTP defines a profile of RTP which adds
message authentication, integrity, encryption and replay attack
prevention to RTP’s standardized packet format for delivering
media content. The most important security-related entries in
a packet are the payload, a sequence number, as well as an
authentication tag. The payload is the encrypted audio stream
while the authentication tag is generated by a Hash Based
Message Authentication Code (HMAC) over the payload. By
default, SRTP supports Advanced Encryption Standard (AES)
in counter mode or in f8-mode (a variant of output feedback
mode of operation) for the payload encryption. For HMAC
generation SHA1 is used by default [19]. As SRTP requires
a symmetric key for protection of multimedia data it can be
used with a pre-shared key but for scalability and usability an
(authenticated) key exchange is necessary. Possible choices are
Zimmermann RTP (ZRTP) [20], Session Description Protocol
Security Descriptions (SDES) [21], and Multimedia Internet
KEYing (MIKEY) [22] which are discussed in Section III-B.

B. Zedboard and Xilinx Zynq

For our proof-of-concept implementation of a secure VoIP
client we have chosen the Xilinx Zynq 7020 that is the core
of the Zedboard1. The Zynq 7020 is a hybrid architecture

1See http://www.zedboard.org

including an ARM Cortex-A9 dual-core processor and an
Artix-7 FPGA in one package which are connected via in-
ternal high-speed interfaces. Generally, we refer to the ARM
processor by Processing System (PS) and to the FPGA part
by Programmable Logic (PL). The Zedboard provides audio
Analogue Digital Converter (ADC) and Digital Analogue
Converter (DAC) for audio playback and recording that are
hardwired to the PL so that the FPGA has full control of the
audio stream before it is forwarded to the PS. An example for
an OS targeting Zynq-based devices is Xillinux2 that imple-
ments an environment supporting a large amount of already
available software, including video and audio management.

III. DESIGN DECISIONS

In this section, we discuss the required security goals, our
concept for secure VoIP, explain design decisions and their
impact on security. Details on the low-level implementation
can be found in Section IV.

A. Security Goals and Assumption

Our system should prevent social threats by clearly identi-
fying the phone that is called or the phone of a caller. All
attempts to reroute calls or impersonate phones should be
prevented or be detectable by the user. As it is not possible to
identify the actual user without impacting the usability, e.g.,
by requiring a password or smart card, we assume that phones
are protected against theft and misuse. Denial of service (DOS)
attacks on the service are hard to prevent and thus not taken
into account for this work [16].

We further assume an attacker that has full control over the
network connection and can thus freely manipulate, intercept,
or retransmit the data. Moreover, we assume that the attacker
is able to compromise common operating systems (e.g., Linux)
and services running on them (e.g. a web server). This assump-
tion seems realistic given the high frequency of found (and
fixed) security relevant bugs in common operating systems
and services3. The trustworthy infrastructure is a Certificate
Authority (CA) which we assume to be operated securely,
e.g., by using a hardware security module (HSM). We further
assume that the hardware security features [13] of common
FPGAs cannot be circumvented by an attacker.

B. Cryptography Protection

Protection against eavesdropping and manipulation of traf-
fic send over the network is achieved by usage of public key
cryptography and a secure CA. In general we assume a network
that consists of n phones Pi for i = 0, . . . , n−1. Each phone is
associated with a unique identifier IDi. Each identifier IDi is
associated with a unique phone number numi. Each phone
number numi is associated with a public private key pair
(pki, ski). Each phone Pi holds a secret key ski that never
leaves the phone, a certificate certskCA

i (IDi, numi, pki) that
is signed by a CA and the public key pkCA of the CA. To
initialize a call, the caller Pi enters the phone number numj

of the callee. The call request is forwarded to a look-up service
which maps the phone number to the Internet Protocol (IP)

2See http://xillybus.com/xillinux
3See http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?

vendor id=33

address of the callee. The call request is forwarded to the callee
and both parties exchange their certificates certi and certj for
mutual authentication and the IDs of the involved parties are
displayed. In case the verification fails, the call is denied. Oth-
erwise, a key exchange protocol ks = EXCHANGE(pki, pkj)
is triggered to generate a symmetric session key ks. If the call
is established, the session key is used to achieve authenticity
and confidentiality of exchanged audio packets by calling
ENCAPSULATEks(audio).

As our goal is high security we modified some of the
VoIP protocols4 to support stronger and more up-to-date
cryptography with the goal of an efficient implementation
on reconfigurable hardware in mind. In order to implement
ENCAPSULATEks(audio) using SRTP we rely on an HMAC-
SHA-256 to generate message authentication codes. Secure
and authenticated key establishment to implement ks =
EXCHANGE(pki, pkj) is the most critical task that is not well
supported by previously proposed protocols. As an example,
ZRTP [20] does not support mutual authentication and the
SDES [21] protocol requires transport layer security achieved
by heavyweight and complex protocols like Transport Layer
Security (TLS). The most promising preexisting standard is
MIKEY [22]. However, all modes of operation of MIKEY
require a timestamp which cannot be created trustworthy on
reconfigurable hardware. Beside that, the implementation of
forward secrecy schemes like DHKE are not mandatory in
the MIKEY standard. Therefore, we decided to rely on the
approach used in the NaCl library [23] for key establishment.
NaCl provides an easy to use interfaces for cryptographic
primitives, without any difficult setup phase to minimize
implementation bugs. The used Curve25519 [24] is highly
secured against real world Elliptic Curve Cryptography (ECC)
attacks [25]. For signature generation NaCl used the Edwards
DSA (EdDSA) algorithm. It is a variant of Digital Signature
Algorithm (DSA) algorithms using Edwards curves. For the
EXCHANGE function, our ephemeral elliptic curve Diffie-
Hellman key exchange (DHKE) is based on Curve25519. To
start the key establishment, party Pi generates a nonce ni.
This is the party’s ephemeral secret key for the DHKE, which
also ensures key freshness. Using elliptic curve cryptography,
the party’s ephemeral public key of the DHKE is niG, the
nonce multiplied with the base point (G) of the curve. To
ensure authenticity and integrity of the parties ephemeral
public key, niG is signed with the users long-term secret key
ski: sigski(niG). The long-term secret key is bound to the CA
signed certificate certi. With that the DHKE message consist
of the ephemeral public key niG, the signature of sigski(niG)
and the certificate certi. This results in two messages that have
to be exchanged between the parties Pi and Pj :

DHKEi = niG||sigski(niG)||certskCA
i (IDi, numi, pki)

DHKEj = njG||sigskj (njG)||certskCA
j (IDj , numj , pkj).

After exchanging the DHKE messages, both parties val-
idate the signature sigsk of the incoming message by using

4Clearly, this design decision breaks interoperability with other implemen-
tations. However, most VoIP clients only implement basic security functions
with small key sizes or are prone to man-in-the-middle attacks. Thus for a
high-security solution we assume that the benefit of being able to rely more
trustworthy cryptography outweighs the disadvantage of breaking interoper-
ability.

Internet

Display

Speaker

Microphone

AcceptgCallKey
Establishment

Hardware

Audio
Encg/gDec

Operating
System

VoIP
Client

SessiongKeyg(ks)

certi
skca(IDi, numi, pki)

ski, pk
ca Numpad

Fig. 1. Proposed VoIP architecture.

the public key pk, that is included in the certificate. If the
messages validity is verified, the session key is generated by
ks = ni(njG) = nj(niG).

C. System Design

While the modifications of existing protocols and the
concepts proposed in Section III-B are rather straightforward,
the actual challenge is to securely design the system with
minimal attack surface, maximum usability, and re-usage of
existing components for minimal development efforts and
costs. As a consequence, we propose to seal all security critical
components and functions (e.g., EXCHANGE/ENCAPSULATE)
into a trusted hardware based environment while the remaining
VoIP functions like call control and protocol handling over
the network remain in software (e.g. SIP). This results in a
hardware-software co-design that ensures confidentiality and
authenticity and takes into account the assumed ability of an
attacker to compromise operating systems (see Section III-A).

The partitioning of the VoIP system is shown in Figure 1
where a modified VoIP client (in our case Linphone) is
executed on the Xillinux operating system. The client handles
signaling for incoming or outgoing calls, transmission control,
and buffering of network packets. Moreover, it has been
modified to simplify processing in the PL section as packets
are parsed and eventually reordered in software.

The key exchange and audio data encryption and decryp-
tion are handled in the PL section which is regarded as trusted
environment. The reason is that the OS is not able to access
or manipulate the PL of the Zynq. As a consequence, we store
and process all security credentials ski, certi, pkCA and ks in
the PL where they are inaccessible by the peripheral system
and PS. Protection of the credentials is ensured by using
bitstream encryption supported by the SRAM-based Artix-7
FPGA representing the PL in the Zynq system [13]. Bitstream
encryption is necessary as the bitstream is part of the boot
image and loaded by the boot loader before it is forwarded
to the FPGA. As a consequence, an attacker might be able to
extract key information from an unencrypted bitstream. The
key for the bitstream decryption is set beforehand in Zynq’s
internal fuses that are only readable by the bitstream decryption
unit of the FPGA. This prevents manipulation and usage of a
stolen bitstream on a different device to impersonate a phone.
As shown in Figure 1, all VoIP-relevant I/O devices like
speakers or displays are directly connected to the PL section
and inaccessible by the OS running on the PS. This ensures
that a trusted channel (or trusted path) with the user exists to
allow verification of identities of callers or callees and secure
input of telephone numbers. Additionally, no voice data ever

AES-CM

HMAC
(generate)

AudiobInterface

Audio
Buffer

Audio
Buffer

ADCb/bCDA

AES-CM

HMAC
(verify)

Microphone Speaker

Datab
Interface

Enable
Signal

Datab
Interface

ksH

ksA

ksH

ksA

Fig. 2. The audio processing in the PL section.

leaves the PL section unencrypted which also prevents secret
eavesdropping by turning on the microphone.

As previously mentioned the NaCl-based key establishment
has to be implemented in the PL. In contrast to the audio
encapsulation, the key establishment is based on asymmetric
cryptographic primitives and complex protocols that are hard
and expensive to implement in hardware. However, as it is
performed only once during the setup phase of a call no
real-time performance is required. As a consequence, we
implemented the key establishment in a softcore (MicroBlaze)
in the PL. Even though this approach does not result in a pure
hardware implementation, protection and auditability of the
program running on the softcore are ensured due to its minimal
code size. Moreover, we do not rely on an operating system and
instantiate the softcore only with internal memory (BRAM).
Additionally, the communication interfaces between the PS
and the softcore is deliberately limited so that buffer size
restrictions are enforced by hardware which further reduces
the attack surface from a potentially compromised PS.

IV. IMPLEMENTATION

In this section we provide details on the implementation
of the secure VoIP client. We deal with audio encapsulation,
implementation of the audio decryption and encryption as well
as secure key exchange.

A. Audio Encapsulation

For audio transmission we partially implemented the
widely used SRTP protocol in hardware (PL) as shown in
Figure 2. However, we replaced the SHA-1 hash algorithm
with Secure Hash Algorithm (SHA)-256 and allowed only
AES-128 in counter mode (CM) for media encryption. SRTP
packets contain the payload which is the audio data encrypted
with AES-Counter Mode (CM), a continuous sequence num-
ber, an authentication tag which is an HMAC value over
the SRTP packet and some further header values. For the
payload encryption and HMAC authentication tag generation
the established 256 bit session key ks is split into two 128 bit
subkeys ksA and ksH and forwarded to the AES and HMAC
cores.

1) Audio Encryption/Decryption: RTP specifies some au-
dio compression algorithms to improve the quality of trans-
mitted data. In the proposed system, the PS receives only en-
crypted audio data. As an efficient hardware implementation of
audio compression is out of the scope of this work, we decided

to use the simple L16 codec for this proof-of-concept [26].
L16 delivers a reasonable audio quality on uncompressed 16
bit audio samples at a variable sample rate. Our hardware
implementation is equipped with two AES modules, one for
encrypting outgoing and one for decrypting incoming audio
streams. Both are initialized with the established session key
ksA. Even though the required throughput is low and could
be handled by one AES implementation we instantiated two
cores to keep a clear structure and isolate incoming and
outgoing audio traffic. The AES-CM instances generate a 128
bit keystream output per run, while the audio samples given
by the ADC or forwarded to the DAC are just 16 bit wide.
Thus the generation of 128 keystream bits is just triggered by
each eighth audio sample. Our design is running with 100MHz
clock frequency while the audio sample rate of the chosen
L16 codec is set to a high quality rate of 44.1 kHz. As a
consequence, the performance requirements of the AES cores
are low, as they have to be updated only approximately every
8·100·106
44.1·103 = 18140 clock cycles. In general, User Datagram

Protocol (UDP) is used to transmit SRTP packets due to
latency and throughput reasons. As UDP packet can be lost
during transmission the receiver or especially the AES-CM
core responsible for the audio decryption must be able to
deal with lost packets. Thus the counter value used during
decryption by the AES core is derived from the SRTP se-
quence number. The FSM controlling the AES-CM core for
the recorded audio stream and the ADC are connected to a
hardware switch which keeps them in reset state. This switch
is an additional security mechanism to ensure, that no audio
data is silently transmitted to the PS. For usability, this switch
can be combined with a user interaction like the raise of the
phone handset.

2) Data Authenticity: To ensure data authenticity the SRTP
standard uses an HMAC initialized with the session key ksH .
The HMAC value is generated over the encrypted packet
payload, the sequence number, some other meta data and is
stored in the header of each SRTP packet. Similar to the audio
encryption, two HMAC instances are placed in our design to
isolate incoming from outgoing data. As depicted in Figure 2,
both HMAC instances are connected to the audio channel
and the data interface to the PS. The HMAC verification
is performed by recalculating the HMAC value from the
incoming audio packet and meta values and by comparing
it with the received HMAC value. Beside the authenticity
check of the incoming audio stream, the HMAC core stores
the last processed sequence number and compares it with the
sequence number of an incoming packet. The HMAC accepts
only increasing sequence numbers and rejects all packets with
an equal and lower sequence number to prevent forgery and
packet injection attacks.

The default Xilinux distribution provides different com-
munication interfaces between the PS and the PL. These
interfaces are used to transmit parts of the SRTP header
from the PL to the PS and the other way around. The SRTP
header transmission between the PS and PL is implemented
differently for incoming and outgoing data. The reason for
this is that the OS sometimes drops audio packet forwarded
to the audio plug-in. For incoming data, the PS forwards
the sequence number, the HMAC tag and the corresponding
encrypted audio samples to the audio interface. The PL filters
the specific header information from the audio stream. The

remaining SRTP header information is static for each session
and is transmitted once at the beginning of a call through
the data interface. With this information, the PL is able to
decrypt the audio stream and packet loss caused by the PS
based audio handling has no impact on the decryption process.
The outgoing SRTP header is fully transmitted via a separate
data interface. The PS now has to make sure to combine the
SRTP header with the corresponding payload.

B. Key Establishment

For our proof-of-concept we use the NaCl library [23]
executed on a Xilinx MicroBlaze to realize the authenticated
key exchange (EXCHANGE). The MicroBlaze is a highly
customizable 32-bit processor optimized for Xilinx FPGAs.
Due to the simple and small program code of NaCl, block
memory inside the PL is sufficient as main memory to store
code, constants, and variables. Therefore, no external memory
controller or caching unit is necessary which allows to keep
all data protected on-chip.

1) MicroBlaze Modifications: The communication between
the VoIP client software running on the PS and the MicroBlaze
in the PL is realized via a dual port block RAM (BRAM) for
which Xillinux automatically creates a device file for simple
access from the PS. Seek and write operations in the device file
are mapped to read or write operations on the BRAM. Prior
to any calculation, all data is copied into the MicroBlaze’s
memory domain using the AXI interface and therefore the
PS does not have direct access to data used in calculations
or intermediate results. Providing the session key ks to the
audio encapsulation module is done by standard MicroBlaze
General-Purpose Input/Output (GPIO) ports. As the DHKE
requires random input and no entropy source is available on the
small MicroBlaze configuration we have instantiated a pseudo
random number generator (PRNG)5. The PRNG core is con-
nected via GPIO pins directly to the MicroBlaze and constantly
generates new pseudo random numbers. Additionally, the
Organic Light Emitting Diode (OLED) display is connected
via GPIO to the MicroBlaze. This enables the MicroBlaze to
present the phone identifier IDj of the opposite party for each
call. The phone identifier IDj is bound to the phone certificate
certj which is verified by the MicroBlaze. Displaying the
phone identifier allows a caller and a callee to identify the
opposite phone preventing impersonation attacks.

2) MicroBlaze Software: To control and report the status
of the state-machine from the PS, two words are reserverd in
the BRAM. With the first word, the VoIP client writes requests
to the MicroBlaze in order to trigger the key exchange. The
second word is used to report the last processed state, e.g.,
which computation is done. The VoIP client is able to request
the generation of DHKEi or the calculation of the session key
ks and waits until the computation is done. The state-machine
has three states.

1) Reset: In this initial state all messages and registers
used in previous calls are cleared. This state can be
reached at any time.

2) DHKE generation: A nonce ni is generated and
used for the Diffie-Hellman part niG. niG is signed

5For a final product this PRNG would have to be seeded by a true random
number (see for example [27]).

and concatenated with its signature sigski(niG) and
the personal certificate certi. Finally, DHKEi is
transmitted to the PS by moving it to a specific
position in BRAM.

3) DHKE verification: An incoming message DHKEj

is verified and the session key ks calculated. First,
the certificate certj and the signature sigskj (njG)
are verified. Then the phone identifier IDj is shown
on the OLED display. At last the session key ks is
generated, e.g., the final step of the Diffie-Hellman
Key Exchange (DHKE) is performed and ks provided
to the audio encapsulation section. Reaching this
state is only possible after state (2) was successfully
processed.

As mentioned, just specific parts of the VoIP client are
moved to the PL. Thus, the handling of a call session, sorting
of incoming audio packets and further control instances still re-
main in the software client. Therefore, the client only needs to
forward messages provided or addressed to the state machine,
which are the DHKE messages. For performance reasons,
the VoIP client can trigger the MicroBlaze to precompute the
DHKEi and keep it in registers. During the initialization of a
call, the cached DHKEi is wrapped into an SDES packet and
send to the opponent party and the VoIP client waits for the
incoming message DHKEj . Further, this packet is forwarded
to the MicroBlaze and the ks generation will be triggered.

V. RESULTS

In this section we discuss our results which were obtained
after place-and-route (PAR) synthesis on a Xilinx-XC7Z020-3
using Xilinx ISE 14.6. Table I provides the resource consump-
tion on the FPGA with the most resource consuming parts of
the design beeing the HMACs and the MicroBlaze core. The
resource consumption of the MicroBlaze is rather high as the
numbers also include Xillinux components like an Integrated
Interchip Sound (I2S) core and communication buffers which
are mostly responsible for the BRAM utilization.

TABLE I. POST-PAR RESOURCE CONSUMPTION ON THE
XILINX-XC7Z020

Component LUT FF DSP BRAM
HMAC (incoming) 5750 3920 10 0
HMAC (outgoing) 5829 4000 10 0
AES-CM 1059 303 0 1
MicroBlaze 4932 6473 6 65
LFSR 33 32 0 0
OLED 779 450 0 1
Total 22087 (41%) 16867 (16%) 27 (12%) 66 (47%)

Beside the resource utilization, latencies and processing
times of the components play an important role, especially
in time critical applications like VoIP. A comparison of the
obtained timings between a plain software client and the
hardware/software co-design can be found in Table II. As a
reference client we chose Linphone 3.66.

However, a fair runtime comparison between the plain
software and co-design implemented key establishment is hard
due to the use of different schemes and protocols. Linphone
supports just SDES and ZRTP while our proposed scheme
uses a certificate based DHKE. As one can see, the key

6See http://www.linphone.org

TABLE II. MEASURED LATENCY OF THE DESIGNS.

Key Establishment Execution time Execution Time
(SW, Linphone 3.6) (Co-Design)

Ephemeral Public Key 3.2ms 64.32ms
Signature Generation 1.2ms 34.6ms
Signature Verification 3.4ms 100.80ms
Session Key (Precomp. Eph. Key) 10.2ms 284.75ms
Audio Encapsulation
AES Encryption – 140ns
HMAC Generation – 1700ns
Total 120µs 1840ns
Audio Decapsulation
AES Decryption – 140ns
HMAC Verification – 1710ns
Total 120µs 1850ns

establishment runtime of the co-design is significantly higher.
In general, the hardware supported key establishment timings
can be decreased by implementing the key exchange in logic
instead of using a softcore. But the timing delay of 284.75ms
during the setup phase of a call seems acceptable for a first
prototype implementation and can be certainly reduced by
additional optimizations. Note also that besides the even faster
audio encryption/decryption time, the co-design only adds
minimal latency on the audio stream compared to a non-
protected call. This is due to the parallel audio processing in
hardware.

VI. CONCLUSION AND FUTURE WORK

In this work we have described a hardware-software co-
design prototype for secure VoIP communication on the Zynq
programmable SoC architecture. A central idea is to secure an
interactive system by sealing all I/O operations and keys into
secure hardware and using the software only for transmission
and management of cryptographically protected data. Future
work consists of the application of this concept to other
scenarios like secure video conferencing or industrial control
systems. Moreover, the implementation on other hybrid FPGA
families like the Altera Cyclone V or the design of a custom
board with minimal peripherals for a low-cost prototype seem
worthwhile. Additionally, we plan to improve bandwidth ef-
ficiency and audio quality by implementing a more advanced
audio codec in the PL. Moreover, the current implementation
of NaCl on the MicroBlaze could be removed in favor of a pure
hardware implementation since first results for Curve25519
seem to be promising [28].

REFERENCES

[1] A. Cui and M. Costello, “Hacking Cisco phones: Just because you are
paranoid doesn’t mean your phone isn’t listening to everything you
say,” 29th Chaos Communication Congress (29C3), http://events.ccc.
de/congress/2012/Fahrplan/events/5400.de.html, 2012.

[2] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation,” in NDSS. The Internet
Society, 2013.

[3] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of
embedded network devices: results of a wide-area scan,” in ACSAC,
C. Gates, M. Franz, and J. P. McDermott, Eds. ACM, 2010, pp. 97–
106.

[4] J. Viega and H. Thompson, “The state of embedded-device security
(spoiler alert: It’s bad),” IEEE Security & Privacy, vol. 10, no. 5, pp.
68–70, 2012.

[5] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large scale
analysis of the security of embedded firmwares,” in USENIX Security.
USENIX Association, 2014.

[6] J. S. Dwoskin and R. B. Lee, “Hardware-rooted trust for secure key
management and transient trust,” in ACM Conference on Computer and
Communications Security, 2007, pp. 389–400.

[7] G. E. Suh, D. E. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“AEGIS: architecture for tamper-evident and tamper-resistant process-
ing,” in ICS, 2003, pp. 160–171.

[8] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a
virtual machine-based platform for trusted computing,” in SOSP, M. L.
Scott and L. L. Peterson, Eds. ACM, 2003, pp. 193–206.

[9] L. Bossuet, M. Grand, L. Gaspar, V. Fischer, and G. Gogniat, “Archi-
tectures of flexible symmetric key crypto engines - a survey,” ACM
Comput. Surv., vol. 45, no. 4, p. 41, 2013.

[10] L. Gaspar, V. Fischer, L. Bossuet, and M. Drutarovský, “Cryptographic
extension for soft general-purpose processors with secure key manage-
ment,” in FPL. IEEE, 2011, pp. 500–505.

[11] S. Lukovic, P. Pezzino, and L. Fiorin, “Stack protection unit as a step
towards securing MPSoCs,” in IPDPS Workshops. IEEE, 2010, pp.
1–4.

[12] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-
grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation,” in DAC. ACM, 2014, pp. 1–6.

[13] S. Trimberger and J. Moore, “FPGA security: Motivations, features, and
applications,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1248–1265,
Aug 2014.

[14] A. Ukil, J. Sen, and S. Koilakonda, “Embedded security for Internet
of Things,” in Emerging Trends and Applications in Computer Science
(NCETACS), 2011 2nd National Conference on, March 2011, pp. 1–6.

[15] Nist and E. Aroms, NIST 800-58 Security Considerations For Voice
Over IP Systems. Paramount, CA: CreateSpace, 2012.

[16] A. D. Keromytis, “A comprehensive survey of voice over IP security
research,” IEEE Communications Surveys and Tutorials, vol. 14, no. 2,
pp. 514–537, 2012.

[17] D. Endler and M. Collier, Hacking Exposed VoIP: Voice Over IP
Security Secrets & Solutions, 1st ed. New York, NY, USA: McGraw-
Hill, Inc., 2007.

[18] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “(RFC 3261): Session initiation
protocol,” RFC 3261 (Proposed Standard), 2002.

[19] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman,
“(RFC 3711): The secure real-time transport protocol,” RFC 3711
(Proposed Standard), 2004.

[20] P. Zimmermann, A. Johnston, E. Avaya, J. Callas, and I. Apple, “(RFC
6189) ZRTP: Media path key agreement for unicast secure RTP,” RFC
3711 (Proposed Standard), 2011.

[21] F. Andreasen, M. Baugher, D. Wing, and C. Systems, “(RFC 4568)
session description protocol (SDP) security descriptions for media
streams,” RFC 4568 (Proposed Standard), 2006.

[22] J. Arkko, E. Carrara, F. Linholm, M. Naslund, K. Norrman, and
E. Research, “(RFC 3830) MIKEY: Multimedia internet KEYing,” RFC
3830 (Proposed Standard), 2004.

[23] D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a
new cryptographic library,” in LATINCRYPT, 2012, pp. 159–176.

[24] D. J. Bernstein, “Curve25519: New Diffie-Hellman speed records,” in
Public Key Cryptography, 2006, pp. 207–228.

[25] D. J. Bernstein and T. Lange., “SafeCurves: choosing safe curves
for elliptic-curve cryptography.” http://safecurves.cr.yp.to, accessed 17-
July-2014.

[26] A.-V. T. W. Group, H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-
cobson, “(RFC 1889) real-time transport protocol (RTP): A transport
protocol for real-time applications,” RFC 1889 (Proposed Standard),
1996.

[27] M. Dichtl and J. D. Golic, “High-speed true random number generation
with logic gates only,” in CHES, 2007, pp. 45–62.

[28] P. Sasdrich and T. Güneysu, “Efficient elliptic-curve cryptography using
Curve25519 on reconfigurable devices,” in ARC, 2014, pp. 25–36.

