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ABSTRACT
Even today, safety-critical systems in many fields of appli-
cation use separate processors to isolate software of different
criticality from another. The resulting system architecture
is non-optimal in regard to flexibility, device size and power
consumption. These drawbacks can be prevented by the
use of partitioning operating systems that enable the inte-
gration of applications with different criticality on a single
processor. However, their application for deeply-embedded
devices, that are characterized by strict resource constraints
and the lack of advanced processor features such as memory-
management units (MMU), is challenging. In this work, we
show that the impact of virtualization on performance and
predictability is smaller in the field of deeply-embedded de-
vices than in more complex systems, making it a compelling
choice as a partitioning technology. We present a hypervisor
that provides time and space partitioning for an MMU-less
system, as well as mechanisms for communication and re-
source sharing. To satisfy the strict power and resource
constraints found in deeply-embedded devices, we focus on
solutions with a minimal runtime overhead. Furthermore,
the hypervisor is integrated with the processor power man-
agement, often enabling significant power savings in the re-
sulting system architecture.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.8
[Operating Systems]: Performance

1. INTRODUCTION
In safety-critical systems, a separation of safety-critical

and non-critical software is mandatory. Pioneered in the
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avionic industry [17], partitioning operating systems provide
a space and time separation between software of differing
criticalities or certification status. Faults are contained in
the defective partition by memory protection, access control
and a static, time-triggered scheduling scheme. Since ap-
plications in different partitions cannot influence each other
in disallowed ways, they can be developed and certified in-
dependently of another. As a consequence, the process of
safety certification is significantly simplified. Furthermore,
partitioning operating systems provide a flexible system ar-
chitecture which enables an optimization for safety concerns.

However, in most industries with safety constraints, the
introduction of partitioning operating systems has not gained
traction. The underlying reasons are strong resource con-
straints such as power consumption, memory requirements
and processing capacity.

The adoption of partitioning operating systems (OSs) is
especially difficult in severely power-constrained systems.
This is the case for industrial measurement and control de-
vices that have to operate in hazardous atmospheres [6],
as well as for ambulant medical devices or wireless sensors.
Due to the strong power constraints found in these indus-
tries, computations are performed by small micro-control
units (MCUs). These systems have only a few kilobytes of
RAM at their disposal and do not contain a memory man-
agement unit (MMU) or advanced virtualization features.
Usually a small real-time operating system (RTOS) or even
a bare-metal application serves as runtime executive. We
refer to this class of systems as deeply-embedded.

In deeply-embedded systems, the partitioning of appli-
cations of different criticality is performed by a physical
separation of the subsystems on different MCUs. This ap-
proach is called the federated architecture. Hence, a deeply-
embedded device for a safety-critical application usually fea-
tures several MCUs, which are interconnected by bus com-
munication.

Whereas the federated architecture has good isolation qual-
ities, it results in a strongly limited flexibility. The system
designer is bound by a hard limit on the number of par-
titions, and has few options to optimize the software ar-
chitecture towards safety or security goals. Furthermore,
physical separation is non-optimal in terms of device size
and power consumption, since several separate MCUs must
be supplied and communication is performed by costly bus
transactions. Related to the problem of safety, security chal-
lenges emerge due an increasing interconnectivity and the
expansion of computing devices into new fields of applica-
tion. More flexible architectures are required to handle the



Figure 1: Federated architecture of safety-critical systems.
Safety-critical and non-critical subsystems are physically
separated on distinct MCUs.

conflicting safety and security issues. All of these problems
question the suitability of the federated architecture for fu-
ture device generations.

The improved flexibility provided by an integrated archi-
tecture enables the development of enhanced safety concepts
and security architectures and leads to improvements in soft-
ware certification and reusability [14]. As outlined above,
an integrated architecture can also lead to a reduced power
consumption and smaller devices. To exploit these benefits,
the partitioning OS has to achieve a high predictability and
minimal resource consumption in order to satisfy the con-
straints for deeply-embedded devices. Furthermore, it must
be highly efficient, because otherwise the additional runtime
overhead reduces or even exceeds the power reduction that
can be accomplished by abolishing physical separation.

In this work, we argue that the problem of partitioning un-
der severe resource constraints can be solved by applying vir-
tualization techniques. We show, that for deeply-embedded
systems, the overhead of virtualization is minimal due to
three factors: Firstly, a bare-metal system or a system using
a simple RTOS can be virtualized with minimal hypervisor
interaction. Secondly, modern MCUs for deeply-embedded
markets are optimized for low IRQ latencies, and therefore
enable to handle hypercalls and the delivery of exceptions
very efficiently. And finally, MCUs for deeply-embedded ap-
plications usually do not have cache memories and therefore
do not suffer from increased cache contention due to the
intervention of the hypervisor.

In addition, virtualization can be of remarkable impor-
tance for safety-critical systems, since it allows to reuse
safety-certified operating systems and applications in a new
environment, significantly reducing the need for costly and
longsome recertification.

In this work, we present a hypervisor which provides space
and time partitioning for deeply-embedded applications. To
our knowledge, we present the first hypervisor for deeply-
embedded applications and demonstrate its performance.
In addition, we compare the power consumption of a vir-
tualized system to that of a federated approach. Further-
more, we present communication mechanisms that allow to
decrease the runtime overhead compared to traditional so-
lutions and still maintain a temporal separation between
safety-critical and non-critical subsystems.

2. CONCEPTS AND TECHNIQUES

2.1 Architecture
A diagram of a federated architecture which can frequently

be found in safety-critical systems is shown in Figure 1.

Figure 2: Use of a partitioning hypervisor to create an inte-
grated architecture.

Safety-critical and non-critical subsystem are executed on
two distinct MCUs. Sometimes, a complex operating system
such as Linux can be found in the non-critical subsystem,
in order to maximize reusability and ease user interaction.
But usually, a libOS is used, that means the applications
are linked to the underlying RTOS. Both, application and
RTOS run in the privileged processor mode. In this setup,
a systemcall is equivalent to execution of a function and
therefore the overhead of systemcalls is minimized. As we
will show later, this property allows for a very low virtualiza-
tion overhead [16]. The only way of interaction between the
MCUs is a bus interface, which is used to transfer data or
request services on the other partition. Bus communication
is relatively slow, costs a significant amount of energy and
creates additional runtime overhead for protocol processing
and checksum calculation.

Figure 2 shows the architecture that we applied in our sys-
tem. In order to achieve a separation on a single processor, it
is necessary to move the safety-critical and non-critical sys-
tem to the deprivileged application mode. Otherwise, fault
containment cannot be achieved. The partitioning kernel op-
erates in the privileged processor mode. It assures space and
time partitioning and provides basic system services to the
partitions. However, transferring control between the privi-
leged processor mode and the application mode is costly. In
order to achieve high efficiency, the number of mode switches
has to be minimized. This can be achieved by virtualization.
Since it results in a certain autonomy of the partitions from
the underlying partitioning kernel, most functionality can
be handled by the guest OS internally, without the need for
costly processor mode switches.

The processors used in deeply-embedded systems do not
offer virtualization support. However, virtualization can
still be achieved with a para-virtualization approach. Using
para-virtualization, hardware dependencies in the guest OS
are replaced by hypervisor functionality. As a result, para-
virtualization is independent on virtualization features of
the processor and therefore applicable in deeply-embedded
systems. Furthermore, it has only a small penalty on per-
formance and, since the manufacturer usually has control of
the device’s source-code, is relatively easy to achieve.

To achieve a para-virtualized system, we developed a small
research hypervisor, optimized for use in deeply-embedded
systems. It provides space partitioning between the subsys-
tems by a static access control scheme and use of the proces-
sors memory protection unit (MPU). Since virtual memory
is not provided by the MCU, applications have to be linked
to specific address regions. Time partitioning is provided
by a cyclic scheduling scheme. Although the hypervisor is
non-preemptive, IRQs and partition switches are not sig-



Figure 3: A virtual CPU structure is the main interface to
the hypervisor. It emulates a physical processor.

nificantly delayed since all hypercalls are short (below 500
cycles in the worst-case). In our setup, the hypervisor runs
on ARM Cortex-M3 MCUs and, in a configuration with two
partitions and several communication channels, adds only
about 7 kB ROM and 1 kB RAM to an existing system.

2.2 Virtual processor interface
We achieve para-virtualization by use of a virtual pro-

cessor interface (vCPU). The use of virtual CPUs has been
shown to be more efficient than other approaches for para-
virtualization [10]. Since it provides a very similar interface
to a real processor, the guest ported to the vCPU abstrac-
tion with fewer modifications, resulting in a lower runtime
overhead and porting effort.

The structure of a vCPU is shown in Figure 3. The
vCPU resides in the partition’s address region and is freely
accessible to the partition. Most interaction between the
guest OS and the hypervisor can be performed using the
vCPU interface. Therefore it is seldomly necessary to in-
voke a costly hypercall. An intervention of the hypervisor is
only required for the delivery of IRQs, partition scheduling
and inter-partition communication. In contrast, communi-
cation inside a partition, synchronization between threads
and scheduling can be handled autonomously by the guest
OS, resulting in a very low virtualization overhead.

The main task of the hypervisor is IRQ delivery, which
is done in FIFO order. If an IRQ is pending for a spe-
cific vCPU, the hypervisor stores the program position and
writes the partition’s current stack pointer to the main stack
variable of the vCPU. Then it modifies the stack pointer and
program counter of the partition. The partition is resumed
using the irq stack at the program position of the corre-
sponding entry in the irq vector table. When returning from
an IRQ, the procedure is performed in reverse.

Real-time operating systems usually synchronize by fre-
quent use of critical sections. For a highly efficient virtual-
ization, it is therefore mandatory that critical sections can be
used without resorting to costly hypercalls. Using a virtual
processor as interface, the guest OS simply sets or clears the
irq enable bit in the vCPU. In case an IRQ for the specific
partition gets pending, the hypervisor checks if the partition
is in a critical section. If the partition is in a preemptable
state, the hypervisor delivers the IRQ. Otherwise it sets the
delayed irq pending bit. The partition has to check the de-
layed irq pending bit when exiting a critical section and, if
necessary, process a delayed interrupt.

In contrast to a more complex system, the guest OS is

Figure 4: A schedule of a system with two partitions. Parti-
tion 1 requests a period of two timeslices and enters the idle
mode. Partition 2 requests a period of one timeslice.

agnostic of memory protection or memory management fea-
tures in a deeply-embedded device. Consequently, this func-
tionality does not have to be provided by the hypervisor.
Furthermore, the guest OS usually consists of a library that
is linked with the application, whereas system calls are is-
sued by software interrupts in a general-purpose system.
Therefore the hypervisor usually does not have to forward
system calls. As a result, the virtualization overhead for
deeply-embedded operating systems and software is signifi-
cantly smaller than that of complex, general-purpose OSs.

2.3 Partition Scheduling
Partitions are scheduled by the hypervisor in a simple

cyclic scheme. Each partition receives the same amount of
processing time and is scheduled with the same frequency.
The cyclic scheme realizes a reservation based policy in a
very simple way. This policy was chosen, because it pro-
vides a very low scheduling overhead. Therefore, the length
of the timeslices can be made very small in order to enable
short IRQ latencies. Since the guest OSs realize their own
scheduling policy on top of the hypervisor, the complete sys-
tem has a hierarchical scheduling policy [18].

The partition scheduler is furthermore responsible for pro-
viding a timebase to the partitions. For this purpose, it
realizes a virtual timer peripheral that is controlled by the
partition using the timer registers in the vCPU interface.
The scheduler keeps track of the timer’s state. If it has ex-
pired, it reloads the timer and delivers a timer interrupt to
the partition. The timer can for example be used by parti-
tions as scheduling timer or as watchdog.

An exemplary schedule for a system with two partitions is
shown in Figure 4. The partitions control the virtual timer
peripheral and cause the hypervisor to deliver timer IRQs at
fixed multiples of the activation times. If a partition is idle,
it can voluntarily issue a waitForIrq() hypercall. As a conse-
quence, the partition yields control of the processor as long
as it does not have pending IRQs, enabling the hypervisor
to use the processors low-power mode.

2.4 Low-power Policy
Frequently, power-efficiency is the most critical constraint

in deeply-embedded devices, and it is therefore important
that the partitioning approach does not lead to an increased
power consumption.

The opportunities for voltage frequency scaling are sub-
stantially limited in deeply-embedded systems, since many
peripheral devices require a fixed voltage level and because
providing several voltage levels requires additional energy.
Furthermore, the error rates of memories, processors and



peripheral devices rise strongly when the supply voltage is
decreased [21][7], making voltage scaling in safety-critical
applications risky.

As a result, most systems apply a race-to-halt policy, that
means they execute at a high clock frequency and enter a
low-power mode as fast as possible. In this way, the static
power consumption can be reduced, often below the level
that can be achieved by voltage frequency scaling [3].

Most MCUs provide several low-power modes. In a stan-
dard low-power mode, which we call idle mode, the processor
core is deactivated, but still connected to the power line. All
peripheral devices remain functional, leading to power sav-
ings of approximately 75%. In a deep-sleep mode, the MCU
and most of the peripheral devices are disconnected from
the power line and hence do not consume static nor dynamic
power. In this case, the power consumption is strongly re-
duced, often to the low µW range. Deep-sleep modes can
however only be entered in special circumstances, when the
application is not depending on peripheral devices.

To make efficient use of the processor’s low-power modes,
the hypervisor synchronizes with the partitions to choose a
low power policy. Partitions can request a specific low-power
mode in a register of the vCPU. When a partition enters the
wait for IRQ mode, the hypervisor checks the state and the
requested low power mode of all partitions. If all partitions
are in a wait for IRQ state and agree to deep-sleep, the
hypervisor can safely enter the deep-sleep mode. The system
has to be woken by an IRQ of one of the few peripheral
devices that remain active in the deep-sleep mode. When
an IRQ arrives, the hypervisor is woken, resumes normal
operation and delivers the IRQ to the respective partition.

The effectiveness of the power mode synchronization is
increased by a timeslice donation policy. When a partition
requests to wait for interrupts, but other partitions remain
active, the scheduler cannot enter the deep-sleep mode, since
the active partitions might be relying on peripheral devices.
That means, that only the idle mode can be used. Instead
of using the relatively ineffective idle mode, the scheduler
searches for another partition that can be scheduled for the
remaining timeslice. As a result, excess processing time is
transferred between partitions, enabling the scheduler to
bundle active intervals. Consequently, frequent switching
between idle mode and active mode is avoided and the sys-
tem can enter a deep-sleep mode as soon as possible. On
the next timeslice after a donation, the scheduler returns to
the cyclic scheduling scheme, guaranteeing a fixed minimum
progress for each partition.

Timeslice donation can be of special benefit in systems
with mixed timing constraints. The policy allows to trans-
fer execution time slack [12] between the partitions. In
most devices, tasks without real-time constraints or with
soft constraints can be found in addition to hard, safety-
critical workloads. Using timeslice donation, it is possible
to speculate that execution time slack received from other
partitions helps to complete these tasks. As a result, the to-
tal processing power in the system can be reduced, leading
to additional power savings.

An exemplary schedule under the use of the low power
policies is shown in Figure 5. When one of the partitions
enters the idle mode, its processing time is donated to the
other partition, enabling it to finish without switching be-
tween power modes. When both partitions are waiting for
interrupts, the scheduler checks the requested power modes

Figure 5: Example for timeslice donation. When Partition 1
is idle, it donates its processing time to Partition 2, enabling
it to finish earlier. Timeslice donation reduces the number of
processor mode switches and improves the use of deep-sleep
modes.

of both partitions, and enters the appropriate low-power
mode.

3. COMMUNICATION MECHANISMS
When a partitioning OS is used to execute applications

of mixed criticality on a single MCU, some services and de-
vices usually need to be shared between the partitions. This
can for example be achieved by providing a system parti-
tion, which is responsible for shared devices and provides
services to the other partitions. As a result, there can be a
significant number of communication connections and mes-
saging between the partitions, requiring efficient and safe
communication services.

In avionic systems, communication between partitions is
provided by point-to-point connections [2]. Each commu-
nication connection is an exclusive resource and therefore
resource contention between partitions cannot occur. Re-
ceiving from a point-to-point connection can only be done
in a polling mode in order to avoid temporal interferences
between the partitions. The resulting system has good sep-
aration qualities, but a significant runtime overhead, since a
high amount of unnecessary polling operations takes place.
Furthermore, the resulting communication latencies can be
very long, since messages have to traverse the static, time-
triggered scheduling scheme.

In order to minimize the overhead for inter-partition com-
munication, we provide two communication mechanisms. An
asynchronous queue mechanism, which is well-suited for com-
munication of applications with differing criticality, and a
Remote Procedure Call (RPC) mechanism which allows to
efficiently invoke a service on a trusted partition and there-
fore is optimal to realize shared services. The communica-
tion connections and the required buffers are created and
registered in the hypervisor during the startup phase of the
system. For this purpose, the hypervisor uses a configura-
tion that is specified by the system’s designer. Both services
are protected by the use of an access control scheme. Only
those partitions that are explicitly allowed to use a specific
communication connection can do so.

3.1 Message Queues
Figure 6 shows a diagram of the queue mechanism, which

enables asynchronous communication. It provides two mod-
ifications over the traditional approach used in avionic sys-
tems. Instead of providing a point-to-point connection, sev-
eral senders can send to a single receive port. In this way, the



Figure 6: Asynchronous communication is provided by
multiple-sender-single-receiver connections. Since each
sender has a dedicated buffer, the isolation between par-
titions is guaranteed.

Figure 7: Remote procedure calls are performed using a spe-
cial communication device which is part of the virtual CPU.
The vCPU triggers an interrupt to inform the application of
an RPC request.

receiver can avoid the repeated overhead of checking several
connections. Resource contention between the senders can-
not take place, because each sender has a dedicated FIFO-
buffer. The receiver can choose between receiving from the
last sender, or using round-robin scheduling between active
senders. In addition to the message, a message tag is trans-
ferred to the receiver, which holds information about the
sender and the received message. In this way the receiver
can identify the sender and check if it has the rights to in-
voke the requested operation.
Furthermore, a partition can enter the idle mode until a
message is available on one of its receive ports, leading to a
reduction of unnecessary polling operations and lower power
consumption.

3.2 Remote Procedure Calls
Remote Procedure Calls allow to invoke a service that is

shared with other partitions. The sender of an RPC opera-
tion is referred to as client, and the receiver as server. The
client is blocked for the duration of the RPC and continues
processing using the received answer once the RPC has fin-
ished. In the ideal case, an RPC operation simply looks like
a function call.

When a RPC operation is requested by a partition, the
hypervisor performs an instant switch to the server parti-
tion. That means, that the service is provided by another
partition using the timeslice of the client. Therefore, the
server partition does not have disadvantages when provid-
ing a service and cannot be overloaded by faulty clients.

In order to embed the RPC functionality in the virtual-
ization interface, we implemented the receiver side of a RPC
as a virtual device. The RPC device contains a data buffer,
as well as several fields for message identification. Each par-
tition can have several RPC devices. When a RPC message
is sent to a server, the data is transferred directly from a
buffer in the client to a local buffer in the server and an IRQ
is triggered. The RPC is then handled in a special interrupt

service routine. When the server has finished processing,
an answer is returned to the clients buffer and control is
returned to the client.

If the server is handling another IRQ or a critical section,
the server schedules the RPC just like a normal IRQ. It con-
tinues processing in its current state and processes the RPC
directly when leaving the non-preemptable state. This ar-
rangement allows the server partition to handle a request
as fast as possible and still synchronize with other function-
ality by the use of critical sections. It is not necessary for
the server to perform a blocking call on a receive routine
or periodically poll on a receive port. As a result, the ab-
straction of the server as an independent virtual processor
is sustained.

The RPC operation must be finished before the timeslice
of the requesting partition ends. Otherwise, the shared re-
source is blocked and might only be available to other parti-
tions after a delay, leading to a reduced timing predictability
and a possible denial-of-service situation.

In order to avoid that the timeslice runs out during a
RPC operation, a worst-case-execution-time (WCET) for
the RPC connection is registered during the systems con-
figuration. When a partition requests an RPC, the hyper-
visor compares the remaining length of its timeslice to the
registered WCET. If the RPC can be performed during the
timeslice, it is permitted. Otherwise, the hypervisor stores
a continuation structure [8] for the client partition and en-
ters the idle mode for the rest of the timeslice. The RPC is
continued the next time the client is scheduled.

If a timeslice runs out during an ongoing RPC, this might
indicate a serious error in the server. The hypervisor inter-
rupts the ongoing RPC, triggers an exception for the server
partition and resumes scheduling normally. In the client,
the RPC operation returns with an error value. In this way,
the participants of the RPC operation are aware of the error
and can react if the safety of the system is compromised.

In effect, the RPC mechanism allows to use shared services
in a time-multiplexed way. Client partitions can act as if
they had exclusive access to the resource. Therefore the use
of a RPC mechanism also allows smaller delays and results in
a better timing predictability than the use of asynchronous
communication.

4. EVALUATION
We test the performance and the power consumption of

our hypervisor on a low-power MCU running at 14 MHz
and 28 MHz respectively. This MCU is designed for use
in deeply-embedded systems. It has no caches, only a few
kilobytes of RAM and and a few tens of Flash memory. It
is however optimized towards low IRQ latencies. When an
exception occurs, the processor automatically stores a part
of the context on the stack and restores it on exception exit,
resulting in a total overhead of only 24 cycles. This feature
enables to switch between the application and the hyper-
visor rapidly, enabling a fast delivery of interrupts to the
partitions. Furthermore, it improves the performance of hy-
percalls since they are issued by a software interrupt and
lowers the overhead caused by the hypervisor’s scheduling
tick.

The lack of cache memories and intricate performance op-
timizations in processors for deeply-embedded systems has
several benefits. Processing operations usually execute in
the same number of clock cycles and the performance can



Table 1: Execution time of frequently used hypervisor func-
tionality.

cycles
Scheduling and virtual timer handling 165
Deliver IRQ from thread 212
Return from IRQ to thread 144
Return from IRQ to next IRQ 151
Queue send 4 byte 367
Queue receive 4 byte 303
RPC 4 byte (send + reply) 887

be easily predicted. This is in contrast to an application
processor, where non-linear effects have to be taken into ac-
count when a para-virtualization approach is used. In such
a system, frequent intervention of the hypervisor can lead
to increased cache contention and the performance does not
scale linearly with the clock frequency due to limited mem-
ory latency and bandwidth. Due to these characteristics
of deeply-embedded systems, the overhead of using para-
virtualization is significantly smaller and more predictable
than in other systems.

4.1 Hypervisor
The execution time of important hypervisor functionality

is shown in Table 1. The scheduling time determines how
short the timeslices of the cyclic scheduling scheme can be
made, without resulting in a large overhead. Shorter times-
lices allow for better interrupt latency and an improvement
in the proportionality of the partitions progress.

The time to enter and return from an interrupt is crucial
for systems that handle a large number of interrupts. Fur-
thermore, it is important for the virtualization of operating
systems that issue system calls by the use of software inter-
rupts. The total overhead of approximately 350 cycles can
have a noticeable effect on the latency of interrupts. Since it
takes less time to dispatch an exception than to dispatch a
thread, the latency is however lower than the time to deliver
an event from hardware to thread level in a partitioning op-
erating system. Whereas, the virtualization approach does
not reach the IRQ handling efficiency of a federated system,
it is usually more efficient than a traditional partitioning
operating system.

A 4-byte RPC creates a total overhead of 887 cycles, in-
cluding send and reply phase. Using a queue, two send op-
erations and two receive operations would be required to
establish a communication between client and server. In
our setup, RPC communication is therefore approximately
35% faster than the use of queues. In addition, the use of
RPC communication increases the timing predictability and
simplifies the implementation of the client.

4.2 Guest OS
We ported the FreeRTOS [1], which is fairly representa-

tive for the class of RTOSs used in deeply-embedded applica-
tions, to the vCPU interface of our hypervisor. To evaluate
the performance of FreeRTOS as guest OS, we measure the
number of system calls that are performed in fixed duration
in a federated architecture with two processors and compare
it to the number that are performed in a virtualized system.
To test the partitioning approach in a realistic use case, two
instances of FreeRTOS are executed in parallel on the hy-
pervisor. In order to keep the total processing power in both

Table 2: FreeRTOS systemcall performance in a federated
and virtualized architecture with the same processing power.
The timeslice length of the hypervisor is 5 ms. Normalized
to federated architecture. Higher is better.

Federated Virtualized
Number of Processor 2 1
Clock Frequency 14 MHz 28 MHz
Cooperative Thread Switching 100 78.6
Preemptive Thread Switching 100 95.7
Queue send + receive 100 104.7
Queue preemption 100 102.6

Figure 8: Effect of the hypervisors scheduling rate and the
IRQ frequency in the guest OS on performance. Compared
to a federated system.

systems constant, the reduction in the number of processors
is compensated by an increase of the clock frequency.

As can be seen in Table 2, the performance numbers vary
only marginally and simply reflect small differences in the
architecture specific part of the guest OS. The largest dif-
ference can be seen for cooperative thread switching. On a
Cortex-M3 MCU, thread switching is performed by a special
exception and the MCU automatically stores and restores a
part of the context. Because the use of exceptions would
require a costly interaction with the hypervisor, we use a
purely software-based thread switching routine which has
a larger overhead. The overhead is clearly visible in the
extremely fast cooperative thread switching, but much less
pronounced in the slower, preemptive thread switching op-
erations.

Most system calls for communication and synchronization
even perform better on the virtualized system. The reason
is that the use of critical sections is slightly faster on the
virtual processor than in the native system. This is due to
the fact that setting a single bit in memory is faster than
a modification of the processors interrupt mask [19]. Since
the total overhead of the RTOS accounts only for a small
fraction of the processor utilization in a realistic system, we
expect an almost unaltered performance in a federated and
virtualized system.

The performance can however be affected, if high IRQ
rates have to be supported. In order to support IRQs with
high arrival rates and short latencies in a reservation-based
system, it is necessary to frequently make a scheduling deci-
sion. To evaluate the performance reduction caused by the
hypervisor’s scheduling, we reduce the length of the timeslice
step-wise from 10ms to 50us and measure the performance of
a thread in the guest OS. However, a timeslice length of 50us



Figure 9: Power consumption of the virtualized system nor-
malized to a federated system with two processors. The
processing power of the systems is equal.

is an extremely demanding test case and a length of 500us
(corresponding to a scheduling rate of 2kHz) will easily suf-
fice for the bulk of embedded systems. Figure 8 shows that
at a scheduling rate of 2kHz the performance loss is merely
1.3%, although our test system is an ultra-low-power MCU
which runs at a clock frequency of only 28MHz.

Decreasing the timeslice length below ranges of 1ms can
lead to severe performance degradation in application pro-
cessors that have a much higher performance. It is possible
in our system, since there are no indirect costs caused by in-
creased cache contention, the IRQ latency of the processor
is low and since the scheduling algorithm is lightweight.

As the scheduling rate increases, it is possible for the par-
titions to handle IRQs with higher frequencies. Assuming a
system has two partitions and a timeslice length of 500us,
each partition is scheduled once per millisecond and can
therefore handle IRQs with rates of 1kHz. The systems total
IRQ rate is 2kHz. Then, an additional overhead is caused
by the hypervisor during IRQ delivery and the system per-
formance is decreased to 97.6% of a federated system.

At even higher IRQ frequencies a significant performance
loss occurs. If an IRQ with very high frequency has to be
handled, it could be executed below the level of the applica-
tion, in parallel to the level of the hypervisor, thus avoiding
the virtualization overhead. The resulting system would not
provide the same level of fault containment, leading to an
increased effort for safety certification. However, this point
illustrates that the virtualization approach is not limited to
systems with average or low IRQ rates.

4.3 Power Consumption
We measure and compare the power consumption of a fed-

erated system, consisting of two processors, with the corre-
sponding virtualized system. The power consumption of the
federated system is measured at clock frequencies of 7MHz
and 14MHz. Each processor executes the same task, that
is triggered at fixed intervals of 10ms by an external IRQ.
When the task has finished processing, the processor enters
the idle mode. We modify the load of the task and measure
the utilization and power consumption of the processors.

Using our hypervisor, the federated system is integrated
on a single MCU with an increased clock frequency. In this
setup, the hypervisor uses a scheduling period of 5ms.

The supply voltage of the processor is kept at 3V in both,
the federated and integrated architecture. A higher amount

Figure 10: Significant amounts of power are saved when the
virtualized system has a lower processing power than the
federated system.

of bus communication is necessary in the federated system,
that leads to additional runtime overhead and power con-
sumption, which is not considered in this setup.

The comparison is mainly affected by two factors. The
overhead of the hypervisor, which causes an increase in ex-
ecution time and dynamic power consumption. And the re-
duction to one processor, which leads to a reduction of the
static power consumption (mainly leakage power). Since we
use a low-power MCU which is optimized for minimal static
power consumption, higher power savings can be expected
in other systems.

The relative power consumption of the virtualized sys-
tem compared to the federated system is shown in Figure
9. The behaviour is surprisingly complex. At large utiliza-
tions, the total power consumption is high, and neither the
hypervisor’s overhead nor the amount of static power plays
a large role. Instead, the results seem to be dominated by
small variations in the processors efficiency. In total, the
virtualized system is slightly more power efficient than the
federated architecture.

As the utilization of the system decreases, the impact of
the static power consumption as well as the hypervisor’s
overhead increase. The result is a race between the two
competing factors. Below utilizations of 20%, the power
reduction that can be achieved by saving static processor
power exceeds the hypervisors overhead. As a result, power
savings around 10% are achieved, making virtualization a
good choice for systems with low processor utilizations.

Since execution time slack can be transferred by the times-
lice donation policy and since the overhead of handling bus
communication is reduced, the processing performance of
the virtualized system can often be chosen smaller than in
a federated system. We test two virtualized systems whose
processing performances are approximately 25% smaller (Fig-
ure 10), resulting in power savings of up to 35%.

5. RELATED WORK
The use of virtual processors is most notable in the Xen

project [4] [20]. Recently, vCPUs were applied for virtualiza-
tion in the L4 microkernel [10]. L4 microkernels are known
for their high inter-process communication (IPC) perfor-
mance [11]. The basic concept of RPC used in this work
is derived from L4’s IPC mechanism, but extended for com-
munication between virtual processors and strong temporal
separation.



Several works cover the problem of sharing resources in
a reservation-based scheduling scheme, usually by use of
the priority-ceiling-protocol [5][15][18]. In our approach, re-
sources are shared by the use of a RPC mechanism that uses
a critical section for synchronization. The method proposed
by us is comparatively simple, resulting in longer response
times to events, but also in very low runtime overhead and
predictable timing behaviour. It is therefore well-suited for
the use in deeply-embedded systems.

XtratuM [13], is a hypervisor for safety-critical systems. It
is following the ARINC 653 [2] standard for avionic architec-
tures, which requires a relatively high overhead for resource
sharing. The SPIRIT µKernel [9] provides strong partition-
ing to legacy RTOSs by use of an Event Delivery Object,
which is similar to a vCPU and results in a very efficient
virtualization. Unfortunately, SPIRIT does not seem to be
continued.

None of the approaches known to us target deeply-embedded
systems nor systems with strong power-constraints.

6. CONCLUSION
We present a hypervisor for partitioned deeply-embedded

systems, enabling to improve safety and security architec-
tures and reuse certified software in a new context. Since
power consumption is frequently a critical constraint in these
systems, we focus on solutions with a minimal runtime over-
head. A federated system which handles demanding IRQ
rates of 2kHz was ported to the hypervisor, resulting in a
performance reduction of only 2.4%.

Due to the properties of deeply-embedded systems, such
as simple operating systems and cache-less processors, para-
virtualization has a smaller performance overhead and bet-
ter predictability than in more complex systems. Further-
more, compared to federated systems, it lowers the required
processing power and bus communication, leading to a re-
duced power consumption in most systems. In summary, the
use of partitioning and virtualization techniques in deeply-
embedded devices deserve higher consideration.

We are currently testing our approach under different sys-
tem architectures and loads. In the future, we intend to
verify it using a safety-critical industrial system.
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