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Abstract� One promising technology to interface battery
packs in electric and hybrid electric vehicles are multilevel
converters. In the work presented here, it is shown how
the switching times (angles) in a multilevel inverter can be
chosen to achieve a required fundamental voltage and not
generate speciÞc higher order harmonics. The method gives
a complete solution to the problem in that all possible solu-
tions are found.

Keywords� Hybrid Electric Vehicles, Multilevel Convert-
ers, Harmonic Elimination, Resultants

I. Introduction

Designs for heavy duty hybrid-electric vehicles (HEVs)
that have large electric drives such as tractor trailers, trans-
fer trucks, or military vehicles will require advanced power
electronic inverters to meet the high power demands (> 100
kW) required of them. Development of large electric drive
trains for these vehicles will result in increased fuel effi-
ciency, lower emissions, and likely better vehicle perfor-
mance (acceleration and braking). One promising tech-
nology to interface battery packs in electric and hybrid
electric vehicles are multilevel converters. Transformerless
multilevel inverters are particularly suited for this applica-
tion because of the high VA ratings possible with these in-
verters [6]. The multilevel voltage source inverter�s unique
structure allows it to reach high voltages with low har-
monics without the use of transformers or series-connected,
synchronized-switching devices. The general function of
the multilevel inverter is to synthesize a desired voltage
from several levels of dc voltages. For this reason, multi-
level inverters can easily provide the high power required
of a large electric traction drive. For parallel-conÞgured
HEVs, a cascaded H-bridges inverter can be used to drive
the traction motor from a set of batteries, ultracapacitors,
or fuel cells. The use of a cascade inverter also allows the
HEV drive to continue to operate even with the failure of
one level of the inverter structure [8][11][10].

In the work presented here, it is shown how the switch-
ing times (angles) in a multilevel inverter can be chosen
to achieve a required fundamental voltage and not gener-
ate speciÞed higher order harmonics. The method gives a
complete solution to the problem in that all possible solu-
tions are found.

II. Cascaded H-bridges

The cascade multilevel inverter consists of a series of H-
bridge (single-phase full-bridge) inverter units. The general
function of this multilevel inverter is to synthesize a desired
voltage from several separate dc sources (SDCSs), which
may be obtained from batteries, fuel cells, or ultracapaci-
tors in a HEV. Figure 1 shows a single-phase structure of
a cascade inverter with SDCSs [6].Each SDCS is connected
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Fig. 1. Single-phase structure of a multilevel cascaded H-bridges
inverter.

to a single-phase full-bridge inverter. Each inverter level
can generate three different voltage outputs, +Vdc, 0 and
−Vdc by connecting the dc source to the ac output side
by different combinations of the four switches, S1, S2, S3
and S4. The ac output of each level�s full-bridge inverter is
connected in series such that the synthesized voltage wave-
form is the sum of all of the individual inverter outputs.
The number of output phase voltage levels in a cascade
multilevel inverter is then 2s+1, where s is the number of
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dc sources. An example phase voltage waveform for an 11-
level cascaded multilevel inverter with Þve SDCSs (s = 5)
and Þve full bridges is shown in Figure 2. The output phase
voltage is given by van = va1 + va2 + va3 + va4 + va5.With
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Fig. 2. Output waveform of an 11-level cascade multilevel inverter.

enough levels and an appropriate switching algorithm, the
multilevel inverter results in an output voltage that is al-
most sinusoidal.

III. Switching Algorithm for the Multilevel
Converter

The Fourier series expansion of the (stepped) output
voltage waveform of the multilevel inverter as shown in
Figure 2 is [2][8][11][10]

V (ωt) =
∞X

n=1,3,5,...

4Vdc
nπ

(cos(nθ1) + cos(nθ2) + · · ·+ cos(nθs)) sin(nωt)
(1)

where s is the number of dc sources. Ideally, given a de-
sired fundamental voltage V1, one wants to determine the
switching angles θ1, · · · , θn so that (1) becomes V (ωt) =
V1 sin(ωt). In practice, one is left with trying to do this ap-
proximately. The approach here is to eliminate the lower
dominant harmonics and Þlter the output to remove the
higher residual frequencies. SpeciÞcally, the goal here is to
choose the switching angles 0 ≤ θ1 < θ2 < · · · < θs ≤ π/2
so as to make the Þrst harmonic equal to the desired funda-
mental voltage V1 and speciÞed higher harmonics of V (ωt)
equal to zero. As the application of interest here is a three-
phase motor drive, the triplen harmonics in each phase

need not be canceled as they automatically cancel in the
line-to-line voltages. Consequently, the desire here is to
cancel the 5th, 7th, 11th, 13th order harmonics as they dom-
inate the total harmonic distortion.
The mathematical statement of these conditions is then

4Vdc
π

(cos(θ1) + cos(θ2) + · · ·+ cos(θs)) = V1

cos(5θ1) + cos(5θ2) + · · ·+ cos(5θs) = 0

cos(7θ1) + cos(7θ2) + · · ·+ cos(7θs) = 0 (2)

cos(11θ1) + cos(11θ2) + · · ·+ cos(11θs) = 0

cos(13θ1) + cos(13θ2) + · · ·+ cos(13θs) = 0.

This is a system of 5 transcendental equations in the un-
knowns θ1, θ2, · · · , θs so that at least 5 steps are needed
(s = 5) if there is to be any chance of a solution. One ap-
proach to solving this set of nonlinear transcendental equa-
tions (2) is to use an iterative method such as the Newton-
Raphson method [3][8][11][10]. The correct solution to the
conditions (2) would mean that the output voltage of the
11−level inverter would not contain the 5th, 7th, 11th and
13th order harmonic components. However, such itera-
tive techniques do not Þnd all solutions; they Þnd only
one solution or do not converge. In contrast, the method
presented here will determine any and all solutions to the
problem. In particular, it will be shown below that a solu-
tion exists for only speciÞc ranges of the modulation index1

ma , V1/ (s4Vdc/π) and for some ranges there are more
than one solution set. This method is based on the theory
of resultants of polynomials [2].
To proceed, let s = 5, and substitute x1 = cos(θ1), x2 =

cos(θ2), x3 = cos(θ3), x4 = cos(θ4), x5 = cos(θ5) into (2)
which upon using some trigonometric identities, (2) be-
comes

p1(x) , x1 + x2 + x3 + x4 + x5 −m = 0

p5(x) ,
5X
i=1

¡
5xi − 20x3i + 16x5i

¢
= 0

p7(x) ,
5X
i=1

¡−7xi + 56x3i − 112x5i + 64x7i ¢ = 0
p11(x) ,

5X
i=1

¡−11xi + 220x3i − 1232x5i+
2816x7i − 2816x9i + 1024x11i

¢
= 0

p13(x) ,
5X
i=1

¡
13xi − 364x3i + 2912x5i − 9984x7i

+16640x9i − 13312x11i + 4096x13i
¢
= 0

(3)

where x = (x1, x2, x3, x4, x5) and m , V1/ (4Vdc/π) =
sma. This is a set of Þve equations in the Þve unknowns

1Each inverter has a dc source of Vdc so that the maximum out-
put voltage of the multilevel inverter is sVdc. A square wave of
amplitude sVdc results in the maximum fundamental output pos-
sible of V1max = 4sVdc/π. The modulation index is therefore
ma , V1/V1max = V1/ (s4Vdc/π) .
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x1, x2, x3, x4, x5. The interest here is to Þnd solutions x for
m ∈ [0, s] which satisfy 0 ≤ x5 < · · · < x2 < x1 ≤ 1. This
development has resulted in a set of polynomial equations
rather than trigonometric equations. Though the degree is
high, the theory of resultants of polynomials [4][5] provides
a systematic way to determine all the zeros of the set of
polynomials (3). This theory is summarized next.

A. Resultants

Given the two polynomials a(x1, x2) and b(x1, x2)

a(x1, x2) = a3(x1)x
3
2 + a2(x1)x

2
2 + a1(x1)x2 + a0(x1)

b(x1, x2) = b3(x1)x
3
2 + b2(x1)x

2
2 + b1(x1)x2 + b0(x1)

how does one Þnd their common zeros? That is, the values
(x10, x20) such that

a(x10, x20) = b(x10, x20) = 0.

A consequence of the famed Nullstellensatz theorem of
Hilbert [4] is that the polynomials a(x1, x2) and b(x1, x2)
do not have a common zero if and only if there exists an-
other pair of polynomials

α(x1, x2) = α2(x1)x
2
2 + α1(x1)x2 + α0(x1)

β(x1, x2) = β2(x1)x
2
2 + β1(x1)x2 + β0(x1)

such that

α(x1, x2)a(x1, x2) + β(x1, x2)b(x1, x2) = 1.

Let

a(x1, x2) = a3(x1)x
3
2 + a2(x1)x

2
2 + a1(x1)x2 + a0(x1)

b(x1, x2) = b3(x1)x
3
2 + b2(x1)x

2
2 + b1(x1)x2 + b0(x1)

and

α(x1, x2) = α2(x1)x
2
2 + α1(x1)x2 + α0(x1)

β(x1, x2) = β2(x1)x
2
2 + β1(x1)x2 + β0(x1).

Equating powers of x2, the equation

α(x1, x2)a(x1, x2) + β(x1, x2)b(x1, x2) = 1

may be rewritten in matrix form as

Sa,b(x1)


α0(x1)
α1(x1)
α2(x1)
β0(x1)
β1(x1)
β2(x1)

 =

1
0
0
0
0
0


where

Sa,b(x1) ,
a0(x1) 0 0 b0(x1) 0 0
a1(x1) a0(x1) 0 b1(x1) b0(x1) 0
a2(x1) a1(x1) a0(x1) b2(x1) b1(x1) b0(x1)
a3(x1) a2(x1) a1(x1) b3(x1) b2(x1) b1(x1)
0 a3(x1) a2(x1) 0 b3(x1) b2(x1)
0 0 a3(x1) 0 0 b3(x1)

 .

The polynomials a(x1, x2)and b(x1, x2) do not have a com-
mon zero iff the resultant polynomial

r(x1) , detSa,b(x1) 6= 0 for all x1.
The polynomials {a(x1, x2), b(x1, x2)} have a common zero
at (x10, x20) only if r(x10) , detSa,b(x10) = 0 [1][5]. (For
an arbitrary pair of polynomials {a(x), b(x)} of degrees
na, nb in x respectively, the matrix Sa,b is of dimension
(na + nb)× (na + nb).)
Procedure to compute the common zeros:

1. Compute the roots x1k, k = 1, ..., nr1 = degx1{r1(x1)}
of r(x1) = 0
2. Substitute these roots into a(x1, x2).
3. For k = 1, ..., nr1 solve a(x1k, x2) = 0 to get the roots
x2k/ for 8 = 1, ..., na2 = degx2{a(x1k, x2)}.
4. The common zeros of {a(x1, x2), b(x1, x2)} are then
those values of (x1k, x2k/) that satisfy b(x1k, x2k/) = 0.

B. Seven Level Case

To illustrate the procedure of using the theory of resul-
tants to solve the system (3), the seven level case is con-
sidered. The conditions are

p1(x) , x1 + x2 + x3 −m = 0, m , V1
4Vdc/π

= sma

p5(x) ,
3X
i=1

¡
5xi − 20x3i + 16x5i

¢
= 0 (4)

p7(x) ,
3X
i=1

¡−7xi + 56x3i − 112x5i + 64x7i ¢ = 0.
Substitute x3 = m− (x1 + x2) into p5, p7 to get

p5(x1, x2) = 5x1 − 20x31 + 16x51 + 5x2 − 20x22 + 16x52
+5(m− x1 − x2)− 20(m− x1 − x2)3
+16(m− x1 − x2)5

p7(x1, x2) = −7x1 + 56x31 − 112x51 + 64x71 − 7x2
+56x32 − 112x52 + 64x72 − 7(m− x1 − x2)
+56(m− x1 − x2)3 − 112(m− x1 − x2)5
+64(m− x1 − x2)7

The goal here is to Þnd solutions of

p5(x1, x2) = 0

p7(x1, x2) = 0.

For each Þxed x1, p5(x1, x2) can be viewed as a polynomial
of (at most) degree 5 in x2 whose coefficients are polynomi-
als of (at most) degree 5 in x1. A pair (x10, x20) is a simul-
taneous solution of p5(x10, x20) = 0, p7(x10, x20) = 0, if and
only if the corresponding resultant polynomial r5,7(x10) =
0. Consequently, Þnding the roots of the resultant polyno-
mial r5,7(x1) = 0 gives candidate solutions for x1 to check
for common zeros of p5 = p7 = 0. Here, the resultant
polynomial r5,7(x1) of the pair {p5(x1, x2), p7(x1, x2)} was
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found with the use of the software package Mathematica
using the Resultant command. The polynomial r5,7(x2)
turned out to be a 22nd order polynomial. The algorithm
is as follows:
Algorithm for the 7 Level Case

1. Given m, Þnd the roots of r5,7(x1) = 0.
2. Discard any roots that are less than zero, greater than 1
or that are complex. Denote the remaining roots as {x1i}.
3. For each Þxed zero x1i in the set {x1i}, substitute it into
p5 and solve for the roots of p5(x1i, x2) = 0.
4. Discard any roots (in x2) that are complex, less than
zero or greater than one. Denote the pairs of remaining
roots as {(x1j , x2j)}.
5. Compute m− x1j − x2j and discard any pair (x1j , x2j)
that makes this quantity negative or greater than one. De-
note the triples of remaining roots as {(x1k, x2k, x3k)}.
6. Discard any triple for which x3k < x2k < x1k does not
hold. Denote the remaining triples as {(x1l, x2l, x3l)}. The
switching angles that are a solution to the three level sys-
tem (4) are

{(θ1l, θ2l, θ3l)} = {
¡
cos−1(x1l), cos−1(x2l), cos−1(x3l)

¢}.
The results are summarized in Figure 3 which shows the

switching angles θ1, θ2, θ3 vs m for those values of m in
which the system (4) has a solution. The parameter m was
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Fig. 3. The switching angles θ1, θ2, θ3 in degrees vs m

incremented in steps of 0.01. Note that for m in the range
from approximately 1.49 to 1.85, there are two different
sets of solutions that solve (4). On the other hand, for
m ∈ [0, 0.8], m ∈ [0.83, 1.15] and m ∈ [2.52, 2.77] there are
no solutions to (4). Interestingly, for m ≈ 0.8,m ≈ 0.82
and m ≈ 2.76 there are (isolated) solutions. In the range
m ∈ [1.49, 1.85] for which there are two sets of solutions,
the solution which gives the smallest distortion due to the
11th and 13th harmonics is a good choice. This set of angles
is given in Figure 4. As mentioned earlier, for m ∈ [0, 0.8],
m ∈ [0.83, 1.15], m ∈ [2.52, 2.77] andm ∈ [2.78, 3] there are
no solutions satisfying the conditions (4). Consequently, for
these ranges of m, the switching angles were determined by
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Fig. 4. Angles that give zero 3rd and 5th harmonics and the smallest
11th and 13th harmonics.

minimizing
q
(p5/5)

2 + (p7/7)
2. Figure 5 shows a plot of

the resulting minimum error
q
(p5/5)

2 + (p7/7)
2 vs. m for

these values of m. As Figure 5 shows, when m ≈ 0.81

Fig. 5. Error =
q
(p5/5)

2 + (p7/7)
2 vs. m

and m ≈ 2.76, the error is zero corresponding to the iso-
lated solutions to (4) for those values of m. For m = 1.15
and m = 2.52, the error goes to zero because these values
correspond to the boundary of the exact solutions of (4).
However, note, e.g., whenm = 0.25, the error is about 0.25,
that is, the error is the same size as m. Other than close to
the endpoints of the two intervals [0, 0.8], [2.78, 3] the min-

imum error
q
(p5/5)

2
+ (p7/7)

2 is too large to make the
corresponding switching angles for this interval of any use.
Consequently, for m in this interval, one must use some
other approach (e.g., PWM) in order to get reduced har-
monics. For the other two intervals [0.83, 1.15], [2.52, 2.77],
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the minimum error
q
(p5/5)

2
+ (p7/7)

2 is around 5% or
less so that it might be satisfactory to use the correspond-
ing switching angles for these intervals.

IV. Experimental Work

A prototype three-phase 11-level wye-connected cas-
caded inverter has been built using 100 V, 70 A MOS-
FETs as the switching devices [9]. A battery bank of 15
SDCSs of 48 Volts DC each feed the inverter (5 SDCSs
per phase). In the experimental study here, this prototype
system was conÞgured as a 7-level (3 SDCSs per phase)
converter with each level being 12 Volts. A 50 pin ribbon
cable provides the communication link between the gate
driver board and the real-time processor. In this work, the
OpalRT real-time computing platform [7] was used to in-
terface the computer (which generates the logic signals) to
this cable. The OpalRT system allows one to write the
switching algorithm in Simulink which is then converted
to C code using RTW. The OpalRT software provides
icons to interface the Simulink model to the digital I/O
board and converts the C code into executables. Using the
XHP (extra high performance) option in OpalRT as well
as the multiprocessor option to spread the computation be-
tween two processors, an execution time of 16microseconds
was achieved.
Experiments were carried out to validate the theoretical

results of section III-B. The value m = 2 is a case in
which these harmonics can be eliminated. The frequency
was set to 60 Hz in each case, and the program was run in
real time with a 16 microseconds sample period, i.e., the
logic signals were updated to the gate driver board every
16 microseconds.
The voltage was measured using a high speed data

acquisition oscilloscope every T = 5 microseconds re-
sulting in the data {v(nT ), n = 1, ..., N} where N =
3(1/60)/

¡
5× 10−6¢ = 10000 samples corresponding to

three periods of the 60 Hz waveform. A fast Fourier
transform was performed on this voltage data to get
{�v(kω0), k = 1, ..., N} where the frequency increment is
ω0 = (2π/T )/N = 2π(20) rad/sec or 20 Hz. The num-
ber �v(kω0) is simply the Fourier coefficient of the kth har-
monic (whose frequency is kω0 with ω0 = 2π

N
1
T ) in the

Fourier series expansion of the phase voltage signal v(t).
With ak = |�v(kω0)| and amax = max

k
{|�v(kω0)|}, the data

that is plotted is the normalized magnitude ak/amax.
Figure 6 is the plot of the phase voltage for m = 2.

The corresponding FFT of this signal is given in Figure 7.
Figure 7 shows 5th (300 Hz) and 7th (420 Hz)harmonics
are zero as predicted in Figure 5. For m = 1.83, there
are two possible set of solutions which generate zero 5th

and 7th harmonics (See Figures 3 and 4). To compare the
two sets of switching angles, Figure 8 shows the FFT of
the data where the 5th and 7th harmonics are zero and
the normalized 11th and 13th harmonics (at 660 Hz and
780 Hz, respectively) are both about 0.04 if the switching
angles are chosen according to Figure 4. In contrast, Figure
9 is an FFT of the data (m = 1.83) in which the other set
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of switching angles is chosen. In this case, Figure 9 shows
the 5th and 7th harmonics are zero, but the normalized 11th

and 13th harmonics are about 0.06 and 0.04, respectively.

V. Elimination of Harmonics in a Multilevel
Converter with Non Equal DC sources

The above methodology can be extended to the case
where the separate DC sources do not have equal volt-
age levels [3]. In this case, the Fourier series expansion
of the (stepped) output voltage waveform of the multilevel
inverter is given by

V (ωt) =
4Vdc
π

× (5)

∞X
n=1,3,5,...

1

n

³
V1 cos(nθ1) + · · ·+ Vs cos(nθs)

´
sin(nωt)
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where s is the number of DC sources and the product ViVdc
is the value of the ith DC source (if all the DC sources have
the same value Vdc, then V1 = V2 = · · · = Vs = 1). With
three DC sources, the switching angles are chosen so as to
not generate the 5th, 7th order harmonics while achieving
the desired fundamental voltage. The mathematical state-
ment of these conditions is then

V1 cos(θ1) + V2 cos(θ2) + · · ·+ Vs cos(θs) =
πVf
4Vdc

V1 cos(5θ1) + V2 cos(5θ2) + · · ·+ Vs cos(5θs) = 0

V1 cos(7θ1) + V2 cos(7θ2) + · · ·+ Vs cos(7θs) = 0. (6)

This is a system of 3 transcendental equations in the un-
knowns θ1, θ2, θ3. As before, equations (5) are Þrst con-

verted to a polynomial system by setting x1 = cos(θ1), x2 =
cos(θ2), x3 = cos(θ3) and using trigonometric identities to
transform (5) into the equivalent conditions

p1(x) , V1x1 + V2x2 + V3x3 −m = 0

p5(x) ,
3X
i=1

Vi
¡
5xi − 20x3i + 16x5i

¢
= 0 (7)

p7(x) ,
3X
i=1

Vi
¡−7xi + 56x3i − 112x5i + 64x7i ¢ = 0

where x = (x1, x2, x3) and m , Vf/ (4Vdc/π). This
is now a set of three polynomial equations in the three
unknowns x1, x2, x3. Further, the solutions must sat-
isfy 0 ≤ x3 < x2 < x1 ≤ 1. One substitutes x3 =¡
m− (V1x1 + V2x2)

¢
/V3 into p5, p7 to get the two poly-

nomials equations

p5

µ
x1, x2,

m− (V1x1 + V2x2)
V3

¶
= 0

p5

µ
x1, x2,

m− (V1x1 + V2x2)
V3

¶
= 0.

Using a similar procedure as before, these are then solved
using the method of resultants. The results are plotted on
the left side of Figure 10.

This Þgure shows the switching angles θ1, θ2, θ3 vs. m for
those values of m in which the system (2) has at least one
solution set. The parameter m was incremented in steps of
0.01. Note that for m in the range from approximately 1.1
to 2.4, there are at least two different sets of solutions and
sometimes three sets. Interestingly, there are also isolated
values of m at m ≈ 0.7 and m ≈ 0.8 which are solutions
of (6). The right side of Figure 10 is a plot of the set
of switching angles chosen to give the smallest distortion
generated by the 11th and 13th harmonics, i.e., the smallest

value of
q
(p11/11)

2
+ (p13/13)

2.

A. Experimental Work

The same prototype system describe previously was
used. In the experimental study here with varying DC
sources, the prototype system was conÞgured to be a 7-level
(3 SDCSs per phase) converter with each level being nom-
inally 12 Volts (Vdc = 12 V). It turned out that V1Vdc =
12.56 Volts, V2Vdc = 10.19 Volts and V3Vdc = 12.01 Volts
(i.e., V1 = 12.56/12 = 1.05, V2 = 0.85, V3 = 1.01). Due to
space limitations, experimental results are only presented
for the case with m = 1.3. The left side of Figure 11 is the
plot of the phase voltage for m = 1.3. (The spikes on the
plot are due to the low bit resolution of the sampling scope
and are not present on the actual scope display). The cor-
responding FFT of this signal is given on the right side of
Figure 11. This shows the normalized magnitude of the 5th

and 7th harmonics are both about 0.01 which corresponds
well with the predicted value of zero.



7

0.5 1 1.5 2 2.5
10

20

30

40

50

60

70

80

90

m

θ 1, θ
2, a

nd
  θ

3

Switching Angles vs. m (Minimized 11 th and 13 th Harmonics

0.5 1 1.5 2 2.5
0

10

20

30

40

50

60

70

80

90

m

θ 1, θ
2, a

nd
  θ

3
Switching Angles vs. m (All Solutions)

θ1 

θ2

θ3

θ1 

θ2

θ3

Fig. 10. Left: All sets of solutions θ1, θ2, θ3 vs. m (Only one set is annotated). Right: The solution set θ1, θ2, θ3 that generates the smallest
distortion due to the 11th and 13th harmonics.

VI. Conclusions and Further Work

A full solution to the problem eliminating the 5th and
7th harmonics in a seven level multilevel inverter has been
given. SpeciÞcally, resultant theory was used to completely
characterize for each m when a solution existed and when
it did not (in contrast to numerical techniques such as
Newton-Raphson). Further, it was shown that for a range
of values of m, there were two sets of solutions and these
values were also completely characterized. The solution set
minimized the 11th and 13th harmonics was chosen. Exper-
imental results were also presented and corresponded well
to the theoretically predicted results. The method also was
extended to the case where the DC sources are not equal.
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