
A.H. Chan and V. Gligor (Eds.): ISC 2002, LNCS 2433, pp. 1–16, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Real-Time Intruder Tracing through Self-Replication

Heejin Jang and Sangwook Kim

Dept. of Computer Science, Kyungpook National University,
1370, Sankyuk-dong, Buk-gu, Daegu, Korea
{janghj, swkim}@cs.knu.ac.kr

Abstract. Since current internet intruders conceal their real identity by
distributed or disguised attacks, it is not easy to deal with intruders properly
only with an ex post facto chase. Therefore, it needs to trace the intruder in real
time. Existing real-time intruder tracing systems has a spatial restriction. The
security domain remains unchanged if there is no system security officer’s
intervention after installing the tracing system. It is impossible to respond to an
attack which is done out of the security domain. This paper proposes self-
replication mechanism, a new approach to real-time intruder tracing,
minimizing a spatial limitation of traceable domain. The real-time tracing
supports prompt response to the intrusion, detection of target host and
laundering hosts. It also enhances the possibility of intruder identification.
Collected data during the real-time tracing can be used to generate a hacking
scenario database and can be used as legal evidence.

1 Introduction

An identification service is a service which identifies which person is responsible for
a particular activity on a computer or network [1]. Currently, most internet attackers
disguise their locations by attacking their targets indirectly via previously-
compromised intermediary hosts [2,3]. They also erase their marks on previous hosts
where they have passed. These techniques make it virtually impossible for the system
security officer of the final target system to trace back an intruder in order to disclose
intruder’s identity post factum. Chasing after the intruder in real time can be an
alternative. The real-time tracing supports prompt response to the intrusion, detection
of target host and laundering hosts. It also enhances the possibility of intruder
identification.

There are several approaches that have been developed to trace an intruder. They
fall into two groups such as an ex post facto tracing facility and a real-time
identification service [1]. The first type of the intruder tracing approach contains
reactive tracing mechanisms. In this approach, before a problem happens, no global
accounting is done. But once it happens, the activity is traced back to the origin.
Caller Identification System (CIS)[4] is along this approach. It is based on the
premise that each host on the network has its own tracing system. The second type,
the real-time identification service, attempts to trace all individuals in a network by
the user ID’s. The Distributed Intrusion Detection System (DIDS)[5] developed at UC

2 H. Jang and S. Kim

Davis is an example of a system which did this for a single local area network. It
tracks all TCP connections and all logins on the network. It maintains a notion of a
Network Identifier at all times for all activities on the system. Its major disadvantage
is that DIDS can account the activities only when those stay in the DIDS domain. As
we have seen from above, it is possible for the existing intruder tracing systems to
keep track of the intruder if they are installed in the hosts on the intrusive path in
advance. That is, the biggest problem in the existing real-time intruder tracing
approaches is a restriction on the traceable domain.

As a solution, this paper presents the Self-Replication mechanism that meets the
aforementioned requirements. It also introduces the HUNTER which is a real-time
intruder tracing system based on the Self-Replication mechanism. The Self-
Replication mechanism keeps track of a new connection caused by the intruder and
replicates the security scheme to the target host through the connection. It broadens
the security domain dynamically following the intruder’s shifting path. It means that
the traceable domain is extended. The HUNTER traces an intruder and gathers
information about him/her. Collected data about an intruder can be used to generate a
hacking scenario database and can be used as legal evidence. If an intruder attempts to
access the source host while attacking the trusted domain, the System Security Officer
(SSO) could determine the origin of the attack. The Self-Replication mechanism is
applicable to general security solutions, such as system/network level monitoring
systems, intrusion detection system, intruder tracing system and intrusion response
system.

The remainder of this paper is structured as follows. Section 2 defines terminology.
Section 3 proposes the Self-Replication mechanism for real-time intruder tracing.
Section 4 shows that the security domain for real-time tracing is extended through the
Self-Replication. Section 5 presents the architecture, the working model of the
HUNTER and an implementation example. Section 6 shows performance evaluation.
Finally, section 7 draws some conclusions and outlines directions for future research.

2 Preliminaries

We first define terminology.

2.1 States, Events, and Logs

We assume that the set of entities O and a set of well-formed commands E can
characterize the computer system completely [6]. O is what the system is composed
of and E is the set of events that can cause it to change. Following [7], a system state s
is a 1-tuple (O). The collection S of all possible states is the state space. The relevant
part of the system state σ � s is the subset of (O). The collection Σ of the relevant
parts of all possible system states is the relevant state space.

Monitoring activity is indispensable for security management. Monitoring is
classified into two types, system state monitoring and change monitoring [7]. System
state monitoring periodically records the relevant components of the state of the
system. Change monitoring records the specific event or action that causes altering
relevant component of the state of the system as well as the new values of those

Real-Time Intruder Tracing through Self-Replication 3

components. The output of each monitoring activity is a log L={m0, m1, … , mp}, mk

� I for all k � 0. Monitoring of relevant state space Σ makes the state log entry I = NO

× NV and that of relevant state space Σ and event E generate the change log entry I =
NS × NO × NV × NE. NS are the names of users who cause events, NO the names of the
objects such as files or devices, NV the new values of the objects, and NE the names of
the events.

2.2 A Trusted Domain and a Security Domain

We here define a trusted domain. The trusted domain Dt is composed of several
domains including single administrative domains or cooperative domains. In the
trusted domain, each administrator of constituent domains also has the administrative
privilege in other domains.

If we consider that a security scheme is a way of controlling the security of
systems or networks, the security domain [8] DS is the set of machines and networks
which have the same security scheme. Each of the heterogeneous security
management systems generates its own security domain. Single administrative
domain includes more than one security domain and single security domain is made
up of more than one host. The security domain DS has a static characteristic, for it
does not change if the SSO does not install a security management system
additionally. Those attributes of a security domain cause spatial restriction for general
security management. Especially, it is the point at issue to identify intruders. If T is a
security scheme, a security domain DS controlled by T is defined by the function
dom(T). The result of dom(T) is composed of various data representing the domain,
such as network topology information Nt, network component information Nc and
monitoring information M which is basically obtained by T. Nc contains information
about hardware, operating system, services to be provided and etc. M is a set of log
which is defined above. Since Nt and Nc have a regular effect on the extension of the
security domain as expected, we consider only M that decides attributes of dom(T). M
consists of m1, m2, m3, … , mk, … in which mi is single monitoring information, i.e. a
log entry. Each mi has an occurrence time, denoted by t(mi). They are totally ordered,
that is, t(mi) � t(mi+1) for all t �1. M has spatial location as well as temporal
sequence.

2.3 Real-Time Intruder Tracing

When a user on a host H0 logs into another host H1 via a network, a TCP connection
C1 is established between them. The connection object Cj (j � 0) is constructed as
<connectionType, fromHostID, toHostID, fromUserID, toUserID, toPasswd, Time>.
connectionType is the type of connection and fromHostID and fromUserID are the
source host id and the user id on the source. toHostID is the target host id, toUserID
and toPasswd are the user id and the password information on the target and Time
indicates when the connection occurs.

When the user logs from H1 into another host H2, and then H3, … , Hn successively
in the same way, TCP connections C2, C3, … , Cn are established respectively on each

4 H. Jang and S. Kim

link between the computers. We refer to this sequence of connections CC=<C1, C2, …
, Cn> as an extended connection, or a connection chain [9].

The task of a real-time intruder tracing is to provide intruder’s movement path
completely from source host to target host. In order to do this, the security domain
must be secured.

3 Self-Replication

The Self-Replication mechanism supports dynamic extension of the security domain.
It observes behavior of the user who is presumed as an intruder and acquires activity
and identity information of the user. Using these data, it replicates itself or any other
security scheme automatically into the hosts where an intruder has passed.
Consequently, it broadens the security domain for data collection used for security
management and intruder tracing. The Self-Replication mechanism could not only
work independently but also operate together with any security scheme. The Self-
Replication mechanism consists of monitoring and filtering, replication [10] and self-
protection. Monitoring in the Self-Replication mechanism is a data-collecting phase
for replication. It is done for specific users or all users who enter the trusted domain.
The output of each monitoring activity is a log L. For replication, the Self-Replication
mechanism filters some useful states or events among logs, which is related to
establishing of new connections. Interesting states are aspects of important objects
which can affect system security. They include states of setuid and setgid files, users
with superuser privilege, or integrity of important files. Event under the close
observation is the generation of new connections caused by user session creation
event, account change event or intrusive behavior event. The user session creation
event contains commands such as telnet, ftp, rlogin, rexec and rsh. The account
change event includes gain of other user’s privilege using su command. The intrusive
behavior event comprises illegal acquisition of other user’s or superuser privilege by
buffer overflow attack, backdoor, and creation of malicious process or new trap.

After filtering, a point of time and a target host for replication have to be chosen.
The Self-Replication mechanism decides the target host and starts to replicate itself to
the host when an intruder succeeds in connecting with another host. With respect to
Unix or Linux, there are various methods to connect two hosts [11]. We just take the
connection through the medium object into consideration in this paper. The Self-
Replication mechanism provides all users with medium objects which work normally
but are controllable by this mechanism. It delivers modules and events for replication
to the target host via the medium object, especially the medium object with a
command processing function such as a pseudo terminal with a working shell.

Fig. 1 illustrates the event transmission through the pseudo terminal object. A
lower hexahedron shows the Self-Replication mechanism running on the host. An
upper hexahedron denoted as USX is a user space in each host. It includes all actions
by a specific user and every resource related to those actions. The front rectangle of
the USX is a perceptible part to the user such as standard input or standard output. As
it goes back, it gets closer to the operating system. A solid arrow shows transfer of
specific event er � ER where ER is a subset of E and a set of events such as copying,
compiling or execution command for replication. A dotted arrow indicates forwarding

Real-Time Intruder Tracing through Self-Replication 5

of normal events en � (E - ER). For example, a user UR in a host HR which already has
the Self-Replication mechanism SM attacks a host HT and UR becomes UT who has
superuser privilege in HT. A connection Cn is set up between two pseudo terminal

objects, n

R

C
UMO which is allocated for UR in the HR by SM and n

T

C
UMO for UT in the

HT by an operating system. Therefore, it is possible to send an event to n

T

C
UMO via

n

R

C
UMO in order to remotely execute any command in HT from HR. A normal event en

is delivered to HT via n

R

C
UMO and n

T

C
UMO so that the user UR can accomplish the

event en with the privilege of UT in the HT. The event en is carried out in the HT

normally and the result ne′ is showed to the user UR. For example, when a command

telnet from HR to HT succeeds, a pseudo terminal is allocated [11]. Then if ls
command is transmitted through a pseudo terminal of HR, it is executed at HT and the
result is showed at the pseudo terminal of HR. The SM makes the replication event er

which is delivered to n

T

C
UMO via n

R

C
UMO and executed by means of superuser

authority in the HT. The result at HT comes back to USR but is not showed to UR on
n

R

C
UMO to keep any intruder from watching the whole process. It protects the

replication process and SM itself from detection by UR. As a result, SM of the host HR

replicates itself to the host HT and duplicated Self-Replication mechanism SM’
operates at HT.

Fig. 1. Event Transmission through the Pseudo Terminal Object

Fig. 2A and 2B depict the replication protocols and their timing diagrams which
are performed when the intruder succeeds in penetrating the target host HT from the
host HR through the pseudo terminal object. RPCX shows the replication status in each
host. When a connection is established by the specific event e in the state of RPCP,
host HR sends an authreq message to request the authentication for replication. If
there is the same security scheme or faked scheme, HT delivers a response message
authres like in the Fig. 2A. HR certifies legitimacy of the scheme and terminates the
replication process. If the host HT cannot receive authres during a lapse of a specific

6 H. Jang and S. Kim

time, the host HR enters a replication ready state of RPCR and sends a readyreq
message to check the intruder’s environment in the HT in the Fig. 2B. The target host
enters the state RPCR and transfers a readyres message which is the information about
the intruder’s execution environment in the target. After recognizing the intruder’s
environment, HR enters a replication execution state of RPCM and transmits modules
and events for replication with rpcout message to HT. HT in the state of RPCM

executes commands from the host HR. The Self-Replication mechanism is set up in
the host HT and starts inspecting the host and the specified intruder. And chasing an
intruder continues. HT sends termreq message to inform HR of completion of the
replication process. Then HR enters a replication completion mode RPCD and puts HT

into the state RPCD by transmitting the termres message. Since the replication process
is hidden from an intruder and the intruder’s execution environment is maintained in
the target host, the intruder cannot recognize the process. By using two self-protection
methods, track erasing and camouflaging (explained in section 5.1), it protects the
Self-Replication mechanism. Timing diagrams of Fig. 2A and 2B show the temporal
relation among replication states of HR, input to HR and output from HR.

Fig. 2. (A) Replication Protocol and Timing Diagram in case there is Self-Replication
mechanism in the target host (B) Replication Protocol and Timing Diagram in case there is no
known Self-Replication mechanism in the target host

Real-Time Intruder Tracing through Self-Replication 7

4 Security Domain Extension for Real-Time Intruder Tracing

In this section, we show that the security domain expands dynamically by the Self-
Replication mechanism. If SS is a security scheme based on the Self-Replication
mechanism, a security domain DS controlled by SS is defined by the function
dom(SS). We consider only M that decides attributes of dom(SS)(see Section 2.2).

Given two sets of monitoring information 1HM and 2HM which are gathered in
hosts H1 and H2, the merge of these two sets is partial information of M, denoted by

1HM � 2HM . If we assume that login id of the user A is same in every host in the
trusted domain, MA, a set of monitoring information about the activities of a user A in

only two consecutive hosts is AM = 1H
AM � 2H

AM where 1H
AM is a set of monitoring

information about user A in host H1. AM is 1H
AM � 2H

AM =

pHHHkHHH m,...,m,m,m,...,m,m
222111 2121 = ,...,m,m 21 m k+p if and only if there

exist two sequences kH,...,.H,H 111 21 and pH,...,H,H 222 21 of the sequence 1, 2,

… , k+p s.t. 1H
AM ={ kHHH m,...,m,m

111 21 } and 2H
AM ={ pHHH m,...,m,m

222 21 }(see

Section 2.2). The Self-Replication mechanism can recognize the changes of user’s
identity and monitor all behaviors of him/her while the user travels the trusted
network. Therefore, if the user A passes through hosts H1, H2, … , Hn (n�2)

sequentially and produces logs such as 1H
AM , 2H

AM , … , nH
AM in each host, the

resulting set of monitoring information about user A can be extended to

AM = 1H
AM � 2H

AM � … � nH
AM . If an intruder begins to attack the trusted domain

by penetrating the host which has a security scheme with the Self-Replication
mechanism SS uniquely in the trusted domain, the result of security management by
the SS is equal to that by installing and executing the scheme in every host on the
intrusive path in the trusted domain. The specific user’s sequence of behaviors in
every host on the intrusive path is equal to the union of monitoring information sets
each of which is gathered about a user in each host on the path by the Self-Replication
mechanism.
 Fig. 3 illustrates the security domain extension using the Self-Replication
mechanism in a part of the trusted domain. Initially, there is only one host HX with the
SS in the trusted domain. We assume that an intruder passes through the host HX first
to break into the trusted domain from outside and continues to attack HY via HX and
then HW via HY. Early security domain DS controlled by SS is dom(SS), denoted as A
in the Fig. 3. When an intruder succeeds to attack via path2, the SS in host HX

replicates itself to HY. Let
YrHSS be the replicated security scheme in HY, DS is

expanded to dom(SS) � dom(
YrHSS) (denoted as B). The DS is enlarged to dom(SS)

� dom(
YrHSS) � dom(

WrHSS) (denoted as C) by the attack via path 3.

8 H. Jang and S. Kim

Fig. 3. Security Domain Extension for Real-Time intruder Tracing

5 Implementation

The real-time intruder tracing system, HUNTER, aims at keeping track of an intruder
and, if possible, revealing the intruder’s original source address and identity. Since
this system is developed on the basis of the Self-Replication Mechanism, it is possible
to enlarge the traceable domain following the intruder’s shifting path even though a
security scheme for identification is not installed in advance in all hosts within the
trusted domain, unlike existing intruder tracing systems.

Fig. 4. System Architecture

Real-Time Intruder Tracing through Self-Replication 9

5.1 HUNTER: Real-Time Intruder Tracing System

The HUNTER is composed of a single master system and several agent systems. This
is initialized by installing a master system in the host which is the unique entrance to
the trusted domain (for example, routers). Initially, there is a master system only in
the trusted domain. If an intruder moves into another host via master system in the
trusted domain, agent system is automatically placed into the target host through the
self-replication process. As the self-replication process goes on following the
intruder’s movement path, the number of agent systems increase dynamically. This
system is implemented in the GNU C/C++ 2.7.x.x for core modules and Java 2 SDK
for the user interface on Linux 2.4.6 and Solaris 2.8. It uses MySQL 3.22.x as DBMS
to store the monitoring information and JCE (Java Cryptography Enhancement) 1.2.x
package for authentication and encryption between systems.

Fig. 4 describes the architecture of HUNTER. The master system and agent
systems share a Monitoring Engine and a Shadowing Engine. The Monitoring Engine
consists of a Collector and an Analyzer. The Collector of master system gathers
activities of all users who logged in the master system. The agent system observes the
user who is thought to be an intruder by any intrusion detection module. The Analyzer
of master and agent systems examines each collected activity and produces the
formalized object FO. Certain critical FOs are always transmitted to the master
system in real-time; others are processed locally by the agent system and only
summary reports are sent to the master system. A Shadowing Engine replicates the
security scheme following intruder’s migration. The master system manages the
predefined rules to trace an intruder. The Intruder Tracer of master system extracts the
useful pieces among FOs and constructs a connection chain which will be explained
in subsequent sections. The Agent Manager controls all the distributed agent systems
in the trusted domain.

The Shadowing Engine replicates the security scheme to the host on the intrusive
path and supports domain extension to trace an intrusion. Fig. 5 presents the structure
of the Shadowing Engine. The engine is composed of the replication module and the
self-protection module.

A FO Filter extracts useful pieces among data sent from the Monitoring Engine
and a FO Analyzer decides the point of time and the target host for replication. When
any FO related to the connection is detected, FO Analyzer determines the target host
and begins to transfer the security scheme. The Connection Manager attempts to
establish the TCP connection with the target host. The Self Replication Module
Manager checks the existence of the same security scheme in the target host. If there
is same security scheme, the Self Replication Module Manager verifies that the
installed scheme is the legal one through authentication and terminates the replication
into the target host. Otherwise it lets the Remote Protocol Manager and the Remote
Shell Manager send the security scheme to be copied and commands for installation,
compiling and running of the duplicated modules to the target host. If above process
is successful, the security scheme is set up in the target host. Since the security
scheme is replicated using the pseudo terminal as a medium object, it is necessary to
maintain an intruder’s environment so that the intruder cannot recognize the

10 H. Jang and S. Kim

Fig. 5. Replication Engine

replication. The Environment Communicator and Execution Environment Adaptor
support this maintenance. Replication protocol in the Self-Replication mechanism
works as explained in section 3. Self-protection in the Self-Replication mechanism is
to protect the monitoring activity itself. This plays an important role in earning some
time to observe an intruder. The Self-Protection Manager in Fig. 5 attempts both to
erase shadowing tracks and to blend into the normal Unix/Linux environment using
camouflage. The Self-Replication mechanism carries out a number of functions to
cover its trail. It erases its argument list after processing the arguments, so that the
process status command would not reveal how it is invoked. It also deletes the
executing binary, which would leave the data intact but unnamed, and only referenced
by the execution of the Self-Replication mechanism. It uses resource limit functions
to prevent a core dump. Thus, it prevents any bugs in the program from leaving
telltale traces behind. In addition to erasing the tracks, camouflage is used to hide the
shadowing. It is compiled under the name sh, the same name used by the Bourne
Shell, a command interpreter which is often used in shell scripts and automatic
commands. Even a diligent system manager would probably not notice a large
number of shells running for short periods of time. Like this, it shields itself by
replacing an original application program with a modified one. It sends the fake
program along with the modules for replication like the trojan horse program. It can
conceal processes using ps, top or pidof and hide files using find, ls or du.

5.2 Intruder Tracing by the HUNTER

This system assigns trace-id(TID) to a new user who is decided to be the intruder by
any intrusion detection module and maintains a connection chain about TID. The
connection chain chases the intruder’s movement. The connection includes all sorts of
connections which can occur through the pseudo terminal.

Real-Time Intruder Tracing through Self-Replication 11

Fig. 6. (A) Rules for generating TID (B) Rules for constructing the Connection Chain

The master system monitors all users’ activities on the host which the master
system runs. The agent system just watches the users thought to be intruders by the
master system. The targets of monitoring include attempts to connect, file access
operation, process execution operation and etc. Monitoring activity records a log from
which the formalized object FO is generated. FO is composed of the log collected at
each agent system or the master system, the ID of the host that made the log and the
Type field. In case of change log, Type may have such values as session_start for user
session creation event, account_change for account change, attack_activity for
intrusive behavior event and etc. A useful data abstracted from FO contains a
connection object and a user object. Concerning Unix and Linux, the three ways to
create a new connection are for a user to login from a terminal, console, or off-LAN
source, to login locally or remotely from an existing user object legitimately, and to
gain other user’s privilege by illegal method such as a buffer overflow attack. These
connections make new user objects and connection objects. The master system
receives those objects from agent systems. It constructs a connection chain from
connection objects and tries to associate the user object with an existing TID or allow
the user object a new TID. We consider a user object uoi � UO (i � 0) to be the 4-
tuple <TID, UserID, HostID, Time> where UO is a set of user objects in the trusted
domain. After TID generating rule is applied to the user object, value for TID is
assigned.

TID and a connection chain play important parts in tracing an intruder. TID
provides a unique identifier for the user who continues to attack across several hosts.
Whenever a new connection object is created, new user object is formed and
applicable TID is assigned to the user object. Finding an applicable TID consists of
several steps. If a user changes identity on a host, the new user object is assigned the
same TID as the previous one. If a user establishes a new connection with another
host, the new user object gets the same TID as that of the source user object. The new
user object is assigned the same TID as the previous identity in the case where the
intruder obtains the superuser privilege in the remote host using vulnerabilities of the
remote server. Since the user who logins from a terminal, console, or off-LAN source
does not have the previous identity, new TID is assigned to the user object. Fig. 6A
describes a rule with which connection objects and user objects are generated from
FO and TID is assigned. Each TID maintains its own single connection chain to keep
track of the intruder. Whenever a user with same TID sets a new connection, the

12 H. Jang and S. Kim

generated connection object is appended to the established connection chain. New
connection chain is created if new TID is allocated for the user object. A single
connection chain cci � CC (i � 0) is the information which is maintained for the user
whose TID is i. The connection chain is a sequence of more than one connection
object. The rule for constructing the connection chain is shown in the Fig. 6B. The
connection chain makes it possible to trace an intruder and disclose the source of
attack and the intruder’s identity.

5.3 Implementation Example

Fig. 7 presents the web-based user interface of HUNTER. Each of the upper frames of
two big windows displays the connection chain for a specific TID. The two right
bottom windows show the information of each connection object in the connection
chain and intruder’s activities in real time. The bottom frame of the left big window
presents information about the source host and the user who begins the connection
chain.

Fig. 7. User Interface (Host names are omitted for anonymity)

6 Performance Evaluations

We measured an intruder tracing rate which changes by the range of attack or
intrusive path about the extent or location of the initial security domain in this
experiment. An Intruder Tracing Rate Per Individual ITRPIi is a degree of tracing the
intrusive path of the user i who establishes new connections within the trusted domain
Dt. It is given by

Real-Time Intruder Tracing through Self-Replication 13

ITRPIi =
i

i

BI

ICC (1)

where BIi is the number of connection objects generated by the user i in the Dt and
ICCi is the number of connection objects in the connection chain maintained for the
user i uniquely by the HUNTER. ITRPIi has a value between 0 and 1. The value 1 of
ITRPIi means that we can keep track of the specific user i completely in the trusted
domain. ITR is the mean intruder tracing rate for all users who are inferred to be
intruders in the trusted domain. It is given by

n

ITRPI

ITR

n

i
i∑

= =1

(2)

where n is the number of distinctive intruders in the domain Dt.
The target network was a class C, composed of four subnets which included 48

hosts and based on the Ethernet. It was in a single trusted domain. In this experiment,
we confined network components to routers or gateways, PCs and workstations, the
operating system running on each host to Solaris 2.6, Red Hat Linux 6.1 or above, and
services to telnet, ftp, www and e-mail service. In order to lower a complexity, we
assumed that an SSH secure shell 3.0.0 remote root exploit vulnerability [12] was
implicit in every target and intermediary host of the attack in the trusted domain. We
also presumed that the only attack used SSH secure shell vulnerability and the success
rate of the attack was 100%.

6.1 Intruder Tracing Rate by the Initial Location of a Security Domain

We assessed the intruder tracing rate as the location of an initial security domain
changes. We assumed an initial security domain covering only one host and a specific
intrusive path within the trusted domain.

Fig. 8 shows conditions for this experiment. The path included 12 hosts which
were distributed in four subnets. There was only one host X with the master system in
the trusted domain. In case A, X was out of the intrusive path. In case B, X was the
fifth host on the intrusive path. In case C, the intruder attacked the host X first to
penetrate the trusted domain. For each case, we generated 50 different intrusive paths
which satisfied the above condition. 10 different users passed through different paths.

Fig. 9 shows the result of the experiment. The x-axis presents the degree of an
attack advance through the intrusive path. The ITR indicated by y-axis is 1 if every
connection caused by intruders is noticed within the trusted domain. In case A, the
attacks have been advanced out of the security domain. That’s why the ITR is 0. In
case B, not all intrusion paths could be traced. It was possible to trace the path from
the point of time when the intruder has gone through the master system. In case C,
when the intruder has passed through the host X first to penetrate the trusted

14 H. Jang and S. Kim

Fig. 8. Conditions for the Experiment

domain, the security domain could be extended to cover the total intrusive path within
the trusted domain, making it possible to trace the intruder. This experimental result
shows that the effect of the Self-Replication mechanism can be maximized if the
master system is in the host which is a unique entrance to the trusted domain.

Fig. 9. Intruder Tracing Rate by the Attack Advance Rate

6.2 Intruder Tracing Rate by the Attack Range

As the attack range became wider within the trusted domain, we tested the intruder
tracing rate on the condition listed in Table 1. We regarded the entire trusted domain
as 100%. For the experiment, the attack range varied from 0% to 100% irrelevant to
the intrusive path. However, the first penetrated host in the trusted domain was fixed
and any security scheme was placed in that host in each case.

Real-Time Intruder Tracing through Self-Replication 15

Table 1. Conditions for Evaluation

 Condition

Case

The number of system with
security solution on the
intrusive path in advance

Installed Security Solutions

A 1(2.08%) HUNTER without Self-Replication
B 12(25%) HUNTER without Self-Replication
C 48(100%) HUNTER without Self-Replication
D 1(2.08%) HUNTER

In case of D in Table 1, we installed HUNTER into the only one host in the trusted
domain. In other cases, HUNTER without the Self-Replication mechanism which
cannot broaden the security domain was set up in more than one host.

Fig. 10 shows the result of experiment. In case of A, there was only one host with
security solution. As an intruder extended the attack range, the ITR dropped rapidly.
About 25% of hosts including the first attacked host in the trusted domain had the
security solution in the case of B. It shows that ITR of case B was better than that of
case A but the rate still went down as the attack has advanced along the intrusive path.
In case of C, we had to install the security solution into all hosts in the trusted domain
in advance. It was possible to respond to the intrusion in every host in cases of C and
D. However, Case D had considerable merits over case C with respect to the cost.
That’s because installing and executing the security solution were performed
automatically through the intrusive path in case D.

Fig. 10. The Intruder Tracing Rate by the attack range

7 Conclusions

Existing security management systems including intruder tracing systems fix their
security domain after being installed in some hosts by SSOs. Therefore, it is
impossible to respond to the attack properly as an intruder continues to attack across
several hosts.

16 H. Jang and S. Kim

For this reason, this paper proposed the Self-Replication Mechanism and
HUNTER which is a real-time intruder tracing system based on the mechanism. The
Self-Replication Mechanism applies to the case that an intruder uses the medium
object such as a pseudo terminal at least once during an attack on the trusted domain.
The Self-Replication mechanism is applicable to general security solutions. The
HUNTER traces an intruder and gathers information about him/her. If an intruder
attempts to access the source host while attacking the trusted domain, the SSO could
determine the origin of the attack. This system overcomes the restriction on the
security domain under certain assumptions. Since the proposed approach in this paper
traces the user who is assumed to be the intruder by any intrusion detection system, it
is necessary to consult any intrusion detection system. A proper response to the attack
is carried out during shadowing of the intruder.

References

1. S.S. Chen & L.T. Heberlein: Holding Intruders Accountable on the Internet. In Proceedings
of the IEEE Symposium on Security and Privacy, (1995) 39–49

2. G. Eschelbeck: Active Security-A proactive approach for computer security systems.
Journal of Network and Computer Applications, 23, (2000) 109–130

3. D. Schnackenberg, K. Djahandari & D. Sterne: Infrastructure for Intrusion Detection and
Response, Advanced Security Research Journal, 3, (2001) 17–26

4. H.T. Jung et al.: Caller Identification System in the Internet Environment, In Proceedings
of Usenix Security Symposium, (1993)

5. S. Snapp et al.: DIDS(Distributed Intrusion Detection System) – Motivation, Architecture,
and an early prototype. In Proceedings of National Computer Security Conference, (1991)
167–176

6. M.R. Cornwell: A Software Engineering Approach to Designing Trustworthy Software. In
Proceedings of the Symposium on Security and Privacy, (1989) 148–156

7. M. Bishop: A Model of Security Monitoring. In Proceedings of the Annual Computer
Security Applications Conference, (1989) 46–52

8. S. S. Chen: Distributed tracing of intruder, Thesis of master’s degree, Dept. of Computer
Science, U.C.Davis. (1997)

9. K. Yoda and H. Etoh: Finding a Connection Chain for Tracing Intruders. In Proceedings of
6th European Symposium on Research in Computer Security - ESORICS 2000 LNCS -
1985, Toulouse France (2000)

10. H. Jang & S. Kim: A Self-Extension Monitoring for Security Management. In Proceeding
of the 16th Annual Computer Security Applications Conference, (2000) 196–203

11. W.R. Stevens: Advanced Programming in the UNIX Environment, Addison-Wesley
Publishing Company, (1992) 631–658

12. SSH Secure Shell 3.0.0 Security Advisory 2001. Found at URL:
http://www.ciac.org/ciac/bulletins/l-121.shtml, CIAC, U.S. Department of Energy

	1 Introduction
	2 Preliminaries
	2.1 States, Events, and Logs
	2.2 A Trusted Domain and a Security Domain
	2.3 Real-Time Intruder Tracing

	3 Self-Replication
	4 Security Domain Extension for Real-Time Intruder Tracing
	5 Implementation
	5.1 HUNTER: Real-Time Intruder Tracing System
	5.2 Intruder Tracing by the HUNTER
	5.3 Implementation Example

	6 Performance Evaluations
	6.1 Intruder Tracing Rate by the Initial Location of a Security Domain
	6.2 Intruder Tracing Rate by the Attack Range

	7 Conclusions
	References

