

QuME: A Mechanism to Support Expertise Finding In
Online Help-seeking Communities

Jun Zhang
School of Information

University of Michigan
junzh@umich.edu

Mark S. Ackerman
Dept. of EECS and

School of Information
University of Michigan

ackerm@umich.edu

Lada Adamic
School of Information

University of Michigan
ladamic@umich.edu

Kevin Kyung Nam
School of Information

University of Michigan
ksnam@umich.edu

ABSTRACT
Help-seeking communities have been playing an
increasingly critical role in the way people seek and share
information. However, traditional help-seeking
mechanisms of these online communities have some
limitations. In this paper, we describe an expertise-finding
mechanism that attempts to alleviate the limitations caused
by not knowing users’ expertise levels. As a result of using
social network data from the online community, this
mechanism can automatically infer expertise level. This
allows, for example, a question list to be personalized to the
user's expertise level as well as to keyword similarity. We
believe this expertise location mechanism will facilitate the
development of next generation help-seeking communities.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

General terms: Design, Human Factors, Algorithms
Keywords: Expertise Finding, Expertise Location, CSCW,
Social Networks

INTRODUCTION
Help-seeking communities have been playing an
increasingly critical role in the way people seek and share
information online. For example,

• Yahoo Answers has 30 million plus answers and gains
2500+ new questions every hour.

Innumerable additional sites exist, from online stock
trading discussions to medical advice communities. In
these communities, people help strangers voluntarily for
various motivations, e.g. altruism, incentives to support
one’s community, reputation-enhancement, expected
reciprocity, and direct learning.

Unfortunately, these help-seeking communities are often
primitive technically; we would like to find mechanisms to
augment their functionality and social life. Research is
proceeding to make use of the available information in
online communities to design new systems and algorithms.
For instance, ContactFinder [4] used text and addresses of

messages on bulletin boards to find the right person to
answer specific questions.

Systems like ContactFinder are called expertise finders [7].
Expertise finders are CSCW systems that help locate
people with specific information or expertise, for example,
to help answer questions in online communities. They are
an important class of recommender systems, but they suffer
from a general problem: Current expertise finders cannot
infer expertise levels very well. Traditionally, expertise
finders have relied on the standard information similarity
measures (such as term vector comparisons). Being able to
add the level of expertise would be a major step forward for
expertise finders, and would likely open up a range of new
application possibilities.

In this paper, we report on a new technique for inferring
expertise levels. We first analyze expertise-finding
problems in one help seeking community, the Java Forum
[2]. Then, we describe how adding expertise level could
alleviate these problems. We then describe our algorithm
for inferring expertise level for the forum participants as
well as the QuME system and interface as a prototype
system that uses this algorithm.

EXPERTISE FINDER PROBLEMS IN AN ONLINE HELP-
SEEKING COMMUNITY
The Java Forum
The Java Developer Forum is an online community where
people come to ask questions about Java. There is a large
diversity of users, ranging from beginners learning Java to
the top Java experts. There are approximately 17,900 users.

The interface for the Java Forum is basically a standard
web-forum. If a user posts a question, it is listed in the
forum along with the thousand other questions waiting for a
potential helper to see and answer it. The questions are
generally ordered by the latest updates in the question
threads.

Consistent with studies of other forums, we found that on
the Java Forum:

• More than 55% of users usually only ask questions,
while there are about 25% of users who are core users
who regularly ask and answer questions.

• Many questions are answered by few advanced users
while a majority of users only answer a few.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

111

• Top repliers answer questions for everyone. However,
less expert users tend to answer questions of others
with a lower expertise level.

These findings made us wonder whether the Java Forum's
current form is the best way for a community to work, or
whether we could build new mechanisms and interfaces to
improve the current functionality. In particular:

• Could we motivate those users who have not answered
questions to answer a few?

• Could we help expert users make better use of their
time?

These questions motivated us to look further at the details
of question asking and answering activities in the Forum,
which in turn revealed two problems that could be
improved.

The Response Time Gap
First, we found a significant difference regarding the first
response time between high expertise users’ questions and
low expertise users’ question. High expertise users’
questions have a statistically significant longer waiting time
to get a first answer. The average waiting time of a high
expertise user to get a reply for a question is about 9 hours
(s = 191 min.), compared with 40 minutes (s = 23 min.) for
a low expertise user.

The result can be explained intuitively: High expertise
users ask harder questions than low expertise users. The
higher one’s expertise is, the less chance that others will be
capable enough to answer one’s questions.

While the low availability of high expertise users in the
forum is the main reason for this situation, the current
interface makes the problem worse. The high expertise
users’ questions are often lost in the flood of newbie
questions. If we follow Lakhani et al.'s [5] findings in their
study of the Apache Support Forum, "direct learning" is a
primary reason for users to provide answers. However, the
cost of a question and answer match-up falls upon the
potential helper, since helpers accomplish the match-up
task by reading or scanning questions posted in the forum.
The current interface does not support the "question-
helper" match-up tasks well. Thus, one possible
improvement is to bring these questions to the attention of
the more capable users.

The Expertise Gap
As mentioned, high expertise users tend to answer
questions for everyone. However, an expertise gap problem
can happen when experts try to share their expertise with
novices [1]: An expert’s instructions to novices may be too
difficult for novices to grasp. A range of research shows
that novices perform better on a target task when instructed
by those with less expertise (e.g. [1]).

This problem can be seen in a Java Forum exchange. A
user asked how to read a file that included both ASCII and
binary data. The first response was from a top expert:

“Read it all as bytes. If you have an array of bytes that represent
ASCII text then there's an obvious String constructor that makes
them into a String.”

The expert assumed that the asker knew Java well and just
provided a general solution. However, the asker did not
know the techniques mentioned and asked for clarification,
which another user answered at a different level:

 “... [use] the method readFully(byte[] b) …As for reading from a
file and buffering, the tutorial (in java.sun.com) goes into that.”

This answer is likely to be easier for a novice to follow.

Both of the above problems, the time-to-response for
questions posed by high-expertise users and the expertise
gap between asker and replier, could be addressed by
properly matching the expertise level of asker and helper.
While expertise level is in general difficult to determine in
an automated way based purely on textual content, we are
able to automatically infer expertise by constructing a
community asker-helper network based on historical
posting-replying data. Note that this readily accessible
network data is distinct from acquaintanceship network
data more commonly used to map social networks of
individuals, which in this case may be neither available nor
relevant to expertise evaluation. We describe our algorithm
in the next section.

EXPERTISE RANK BASED MATCHING ENGINE
Asker-Helper Network and Expertise Ranks
The asker-helper network is a network constructed using
posting/replying threads in a community by viewing each
participating user as a node, and linking the ID of an asker
to a replier’s ID, as shown in Figure 1.

Figure 1: Constructing the asker-helper network

After the network is constructed, various algorithms can be
used to calculate users’ relative ranks in the network. Since
a user replying to another user’s question usually indicates
that the replier has superior expertise on the subject than
does the asker, a higher network rank thus indicates a
higher expertise level. We call these ranks Expertise Ranks
(ER). Our expertise ranking algorithms include: Indegree
(how many people one helps), a Z_score measuring the
proportion of people one has helped vs. received help from,
an adaptation of Google’s PageRank algorithm using the
network of people helped [5], and an adaptation of the
HITS algorithm for identifying authoritative sources [3].
(These are detailed in [8].) Since these ranking algorithms
perform differently in different communities, one can
decide which algorithm to use within our system based on
the analysis of the community's network characteristics.

In the Java Forum’s case, we found the Z_score provided a
satisfactory result and was simple to calculate:

!

ER
Zscore

(U) =
n
in
(u) " n

out
(u)

n
in
(u) + n

out
(u)

Users

Topics
Threads

112

where

!

n
in
(u) ,

!

n
out
(u) correspond to the number of people

one helped and the number of people one was helped by.
Z_score will be important to the matching algorithm
described below. However, we anticipate that the other
measures may perform better in more densely connected
answer networks (such as those within companies).

Using these ranking algorithms, we can now construct
enhanced expertise profiles that not only include the
keywords extracted from users’ posts, as traditional
expertise finders do, but also a ranking score that indicates
a user’s relative expertise level in the community.

Question Matching Algorithm
The expertise profile can then be used in a matching engine
to process how questions are matched to a potential helper.
Here is the calculation that is at the heart of our question-
matching algorithm:

!

M(q,u) =" # kmatch(q,u) + $ # ediff (a,u)

+ % # recency(q) + (1&" &$ & %) # stat(q)

In this formula,

!

",#,$ are tunable parameters and

!

" + # + $ %1. q represents the question, u represents the
user, and a represents the asker.

!

kmatch(q,u) is the keyword matching score between the
question and the user’s profile. It is calculated using cosine
similarity between the two term vectors, a standard
technique used in information retrieval.

!

ediff (a,u) represents the expertise rank difference
between a user and the asker of the question. We define
ediff to give higher weight to an ER difference where the
replier is a bit more expert than the asker:

)2/(]))()([(
22

),(ERERaERuER
euaediff

!!" ##$$$
=

We used

!

ER
Zscore

 to calculate ER in the prototype described

below.
ER

! is the standard deviation of expertise ranks for

all users, and ! is a tunable parameter. For example, if we
set ! =0.5, it means that a user is most likely to help
another user who is half a standard deviation below them in
expertise.

!

recency(q) is calculated as

!

e
"# (now" timePosted) where

!

" is
tunable. The recency score will range from 0 for a very old
post to 1 for a current post.

!

stat(q) is calculated as

!

e
"# (Num Re plies) . Thus, questions

already being answered are ranked lower.

Above all, this formula gives us the flexibility to build a
completely tunable system. First, we can select the relative
importance of expertise level match, topic similarity,
recency, and status. Second, we can set the parameter to
decide how recent is recent, and how close the expertise
match needs to be.

In the implementation of the prototype below, we de-
emphasized the keyword matching factor because a high
expertise user can usually answer a large range of questions
even if his or her profile does not contain the particular
keywords from the question. And we wanted to emphasize

matching advanced questions with top experts. Thus, we
set

!

" = 0.1,# = 0.5,$ = 0.2. As well, based on our analysis
of the Java Forum, we wanted to match users to answer
questions from people who are 1/3 standard deviation
below them in expertise, thus we used ! =0.33. We set

!

" =0.7, so that the recency score of a question will drop by
about half every hour. And

!

" =1, so that questions with no
or few replies receive high scores.

PROTOTYPE INTERFACES FOR JAVA FORUM
QuME Engine
Figure 2 shows the system structure of the Question
Matching Engine (QuME), which implements the
techniques described above for a new forum prototype.

Figure 2: The system structure of QuME

The expertise rank based profiling and matching engines in
QuME bring many new design opportunities to personalize
the interface for online help-seeking communities. We built
several new interfaces for the Java Forum to demonstrate
these possibilities. These prototypes use real time data from
the Java Forum, allowing for easy comparison with the
original interface.

Personalized Java Forum Web Interface
Figure 3 shows two screenshots of an interface that is very
similar to the original Java Forum. However, in this new
interface, the order of the questions is customized for users
according to their expertise profiles. The screenshot in the
front is what a high expertise level user would see, and the
one in the back is what a low expertise level user would
see.

Note that the bar next to author’s name indicates her
Expertise Rank score. Questions are listed in a roughly
descending order according to the askers’ expertise ranks.
Thus, a user will first see the questions that are slightly

Figure 3: Screenshot of a personalized interface
re-ordering questions by goodness of match.

 113

below his expertise level. These questions have a higher
probability of allowing the answerer to gain new
experience while still being capable of providing answers.
The expertise-level bar will also help users know whom
they are helping.

Completely re-ordering the questions for each user may be
too aggressive. Figure 4 shows a less aggressive interface
design using the QuME algorithm. In this interface, the
order of the questions is the same as the original Java
Forum. However, the questions with a matching score
above a threshold are highlighted. Thus, it can help helpers
quickly locate questions that they are capable of answering.

Figure 4: Screenshot of personalized interface

highlighting well matched questions.

There is one potential problem in the matching engine.
There are many new users joining a community every day.
Since they have no answering history in the forum, their
automatically calculated expertise ranking is the lowest
possible. However, a new user is not necessary a newbie in
the specific knowledge domain. To work around this
problem, the system prompts a new user to answer some
questions after they submit a question, as shown in Figure
5. These questions are picked according to their askers’
rankings in an ascending order. A user who does not
answer any of the questions is assigned to the lowest rank.

Figure 5: Screenshot showing suggested questions
to new users.

Personalized Question Feeder
Figure 6 shows another interface. With this interface,
instead of coming to the site, the users can subscribe to
receive customized questions.

Figure 6: The interface for users to subscribe to
personalized questions

New questions qualified by these criteria will be sent via
email or an RSS feed to the subscribed users inviting them
to come to the forum to provide help. If there are a lot of
new questions, the system can distribute questions to
different users according to their preferences.

Note that many online communities, including the Java
Forum, already provide an RSS feed so that a user can
subscribe to all messages in a forum. A problem is that
there are too many questions, leading to overloading users’
email boxes or RSS readers. Our new interface alleviates
this problem by only sending a limited number of filtered
questions that may be more interesting to potential help
providers, thus decreasing the overload issue and increasing
participation in the helping activities.

With these interfaces, one can allocate questions more
efficiently to various users in the community. An advanced
user’s question will have a higher probability of being
viewed by more advanced users, thus increasing its chances
to be answered faster. General users will receive questions
that they can answer, and this will encourage them to
answer more questions, thus improving their expertise
ranking. This will eventually benefit both themselves and
the community.

Our system has not yet been evaluated. As the next step, we
plan to invite Java Forum users to use our system. We will
evaluate both user satisfaction in using the new interfaces,
the closeness of the expertise match, and the distribution of
reply times for questions of varying difficulty.

ACKNOWLEDGMENTS
This work has been funded, in part, by the National Science
Foundation (IRI-9702904). We also wish to thank George
Furnas and Derek Henson for feedback and suggestions.

REFERENCES
1. Hinds, P., Patterson, M., and Pfeffer, J. Bothered by

Abstraction. Journal of Applied Psychology, 86 (6):
1232-1243

2. Java Forum, http://forum.java.sun.com

3. Kleinberg, J.M. Hubs, authorities, and communities.
ACM Computing Surveys, 31. U21-U23

4. Krulwich, B. and Burkey, C., ContactFinder agent:
answering bulletin board questions with referrals. In
Proceedings of AAAI’96, Portland, OR, 1996, 10-15

5. Lakhani, K. and von Hippel, E. How open source
software works: "free" user-to-user assistance. Research
Policy, 32 (6), 923-943

6. Page, L. PageRank: Bringing order to the web. Stanford
Digital Libraries Working Paper, 1997.

7. Terveen, L. and McDonald, D. W. Social matching: A
framework and research agenda. ACM Trans. Comput.-
Hum. Interact. 12, 3 (Sep. 2005), 401-434.

8. Zhang, J., Ackerman, M.S. and Adamic, L. Expertise
Networks in Online Communities: Structure and
Algorithms, In Proceedings of WWW2007, Banff,
Canada.

114

