On Unary Fragments of *MTL* and *TPTL* over Timed Words.

Khushraj Madnani, S.N. Krishna, Paritosh. K. Pandya

ICTAC, 2014 Bucharest, Romania

September 19, 2014

• MTL and TPTL is extensively studied in the literature.

- MTL and TPTL is extensively studied in the literature.
- These Logics are extension of LTL that allow timing constraints to be specified along with the temporal ordering.

- MTL and TPTL is extensively studied in the literature.
- These Logics are extension of LTL that allow timing constraints to be specified along with the temporal ordering.
- They exhibit considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.

- MTL and TPTL is extensively studied in the literature.
- These Logics are extension of *LTL* that allow timing constraints to be specified along with the temporal ordering.
- They exhibit considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.
- In general satisfiability checking of full *MTL* and *TPTL* is undecidable.

- MTL and TPTL is extensively studied in the literature.
- These Logics are extension of *LTL* that allow timing constraints to be specified along with the temporal ordering.
- They exhibit considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.
- In general satisfiability checking of full *MTL* and *TPTL* is undecidable.
- Unlike *LTL*, they are more expressive with *past* operators.

- MTL and TPTL is extensively studied in the literature.
- These Logics are extension of LTL that allow timing constraints to be specified along with the temporal ordering.
- They exhibit considerable diversity in expressiveness and decidability properties based on restriction on modalities and type of timing constraints.
- In general satisfiability checking of full MTL and TPTL is undecidable.
- Unlike *LTL*, they are more expressive with *past* operators.
- Thus it becomes interesting to study satisfiability checking and expressiveness for different fragments of these logics.

Presentation Flow

- Preliminaries
- Satisfiability Checking
 - $MTL[\lozenge_I, \lozenge_I]$
 - $2 TPTL[\lozenge_I]$
 - MTL[◊₁]
- Expressiveness
- Conclusion
- Future Work

• Timed word are the models over which *MTL* Formula is being evaluated.

- Timed word are the models over which MTL Formula is being evaluated.
- A Finite Timed Word is defined as finite sequence of symbols along with their corresponding timestamp.

- Timed word are the models over which MTL Formula is being evaluated.
- A Finite Timed Word is defined as finite sequence of symbols along with their corresponding timestamp.
- For example $\rho = ((\sigma_1, t_1), (\sigma_2, t_2), (\sigma_3, t_3), \dots, (\sigma_n, t_n))$ where $\sigma_i \in \Sigma$ (set of alphabets) $t_i \in R$ is a time-stamp, $t_i \in R$ is a finite and $t_i \in R$ is called domain of $t_i \in R$.

- Timed word are the models over which MTL Formula is being evaluated.
- A Finite Timed Word is defined as finite sequence of symbols along with their corresponding timestamp.
- For example $\rho = ((\sigma_1, t_1), (\sigma_2, t_2), (\sigma_3, t_3), \dots, (\sigma_n, t_n))$ where $\sigma_i \in \Sigma$ (set of alphabets) $t_i \in R$ is a time-stamp, $t_i \in R$ is a time-stamp, $t_i \in R$ is called domain of $t_i \in R$.
- A strictly monotonic timed word is a timed word where timestamps are strictly increasing that is $i_1 > i_2$ implies $t_{i_1} > t_{i_2}$. In general, $i_1 > i_2$ implies $t_{i_1} \ge t_{i_2}$

• MTL Syntax

MTL Syntax

```
\phi ::= x \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \mathsf{S}_{I} \phi \mid \phi \mathsf{U}_{I} \phi \mid \mathsf{O}\phi \mid \bar{\mathsf{O}}\phi where I is interval of the form \langle x, y \rangle, x \in \mathcal{N} \cup \{0\}, y, x \in \mathcal{N} \cup \{0, \infty\} and \langle ... \rangle \in \{[...], (...), [...), (...]\}
```

$$\rho, i \models \mathsf{O}\phi \iff \exists \rho, i+1 \models \phi$$

$$\rho, i \models \mathsf{O}\phi \iff \exists \rho, i+1 \models \phi$$
$$\rho, i \models \bar{\mathsf{O}}\phi \iff \exists \rho, i-1 \models \phi$$

$$\rho, i \models O\phi \iff \exists \rho, i+1 \models \phi$$

$$\rho, i \models \bar{O}\phi \iff \exists \rho, i-1 \models \phi$$

$$\rho, i \models \phi_1 \cup_I \phi_2 \iff \exists j \geq i \ \rho, j \models$$

$$\phi_2 \text{ and } \tau_j - \tau_i \in I \text{ and } \forall \ i \leq k < j \ \rho, k \models \phi_1$$

$$\downarrow^{\phi_1} \phi_1 \phi_1 \phi_1 \phi_1 \phi_1 \phi_2$$

$$\uparrow^{\tau_i} \tau_j - \tau_i \in I \phi_1$$

$$\rho, i \models O\phi \iff \exists \rho, i+1 \models \phi$$

$$\rho, i \models \bar{O}\phi \iff \exists \rho, i-1 \models \phi$$

$$\rho, i \models \phi_1 \cup_I \phi_2 \iff \exists j \geq i \ \rho, j \models \phi_2 \ \text{and} \ \tau_j - \tau_i \in I \ \text{and} \ \forall \ i \leq k < j \ \rho, k \models \phi_1$$

$$\downarrow^{\phi_1} \quad \phi_1 \quad \phi_1 \quad \phi_1 \quad \phi_1 \quad \phi_2$$

$$\downarrow^{\tau_i} \quad \tau_j - \tau_i \in I \quad \tau_j$$

$$\rho, i \models \phi_1 \cup_I \phi_2 \iff \exists j \leq i \ \rho, j \models \phi_2 \ \text{and} \ \tau_i - \tau_j \in I \ \text{and} \ \forall \ i \geq k > j \ \rho, k \models \phi_1$$

$$\downarrow^{\phi_2} \quad \phi_1 \quad \phi_1 \quad \phi_1 \quad \phi_1 \quad \phi_1$$

$$\downarrow^{\phi_2} \quad \phi_1 \quad \phi_1 \quad \phi_1 \quad \phi_1 \quad \phi_1$$

$$\downarrow^{\tau_i} \quad \tau_i - \tau_j \in I \quad \tau_i$$

Strict Operators

Strict Operators

• It has been proved that strict versions of Until and Since are strictly more expressive than weak versions.

Strict Operators

- It has been proved that strict versions of Until and Since are strictly more expressive than weak versions.
- Unary Operators

$$\Diamond_{I}\phi = \top \ \mathsf{U}_{I}\phi; \ \Box_{I}\phi = \neg \Diamond_{I}(\neg \phi); \ \Diamond_{I}\phi = \top \ \mathsf{S}_{I} \ \phi$$

Strict versions of these operators can be defined similarly.

Strict Operators

- It has been proved that strict versions of Until and Since are strictly more expressive than weak versions.
- Unary Operators

$$\lozenge_I \phi = \top \ \mathsf{U}_I \phi; \ \Box_I \phi = \neg \lozenge_I (\neg \phi); \ \lozenge_I \phi = \top \ \mathsf{S}_I \ \phi$$

Strict versions of these operators can be defined similarly.

Subclasses:

Strict Operators

- It has been proved that strict versions of Until and Since are strictly more expressive than weak versions.
- Unary Operators

$$\lozenge_I \phi = \top \cup_I \phi; \square_I \phi = \neg \lozenge_I (\neg \phi); \lozenge_I \phi = \top S_I \phi$$

Strict versions of these operators can be defined similarly.

- Subclasses:
- By restricting set of allowed intervals. e.g. MITL.

Strict Operators

- It has been proved that strict versions of Until and Since are strictly more expressive than weak versions.
- Unary Operators

$$\lozenge_I \phi = \top \cup_I \phi; \square_I \phi = \neg \lozenge_I (\neg \phi); \lozenge_I \phi = \top S_I \phi$$

Strict versions of these operators can be defined similarly.

- Subclasses:
- By restricting set of allowed intervals. e.g. MITL.
- By restricting set of operators. e.g. $MTL[U_I]$.

Timed Propositional Temporal Logic

TPTL Syntax

$$\begin{array}{l} \phi ::= \\ x \mid \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \phi \mathsf{S} \phi \mid \phi \mathsf{U} \phi \mid \mathsf{O} \phi \mid \bar{\mathsf{O}} \phi \mid y.\varphi \mid y \in I \end{array}$$

where y is a clock (freeze) variable. Note, all the strict and unary operators can be defined similarly as before.

Timed Propositional Temporal Logic

- Note that the truth of the formula is defined at a point i in a timed word ρ with valuation of the freeze variables ν . Thus the model is ρ, i, ν .
- All the unary and strict modal operators can be defined similarly.
- Following is the model of the formula $x . \lozenge (\phi_1 \wedge \lozenge (\phi_2 \wedge \lozenge (\phi_3 \wedge x \in I)))$

- A Two counter machine can be defined as 4 tuple M = (P, C, D, I), where
 - P is a program counter whose value is bounded $value(P) \in 0, 1, ..., n$ where $n \in N$.
 - C, D takes value from Z.
 - I is a finite set of instructions $I = \{I_0, I_1, \dots, I_n\}.I_n$ being the halt instruction.

- A Two counter machine can be defined as 4 tuple M = (P, C, D, I), where
 - P is a program counter whose value is bounded $value(P) \in 0, 1, ..., n$ where $n \in N$.
 - C, D takes value from Z.
 - I is a finite set of instructions $I = \{I_0, I_1, \dots, I_n\}.I_n$ being the halt instruction.
- Instructions are of 3 types:

- A Two counter machine can be defined as 4 tuple M = (P, C, D, I), where
 - P is a program counter whose value is bounded $value(P) \in 0, 1, ..., n$ where $n \in N$.
 - C, D takes value from Z.
 - I is a finite set of instructions $I = \{I_0, I_1, \dots, I_n\}.I_n$ being the halt instruction.
- Instructions are of 3 types:
 - DEC(X)

- A Two counter machine can be defined as 4 tuple M = (P, C, D, I), where
 - P is a program counter whose value is bounded $value(P) \in 0, 1, ..., n$ where $n \in N$.
 - C, D takes value from Z.
 - I is a finite set of instructions $I = \{I_0, I_1, \dots, I_n\}.I_n$ being the halt instruction.
- Instructions are of 3 types:
 - DEC(X)
 - INC(X)

Deterministic Two Counter Machine

- A Two counter machine can be defined as 4 tuple M = (P, C, D, I), where
 - P is a program counter whose value is bounded $value(P) \in 0, 1, ..., n$ where $n \in N$.
 - C, D takes value from Z.
 - I is a finite set of instructions $I = \{I_0, I_1, \dots, I_n\}.I_n$ being the halt instruction.
- Instructions are of 3 types:
 - DEC(X)
 - INC(X)
 - IF X == 0 then JMP(Y) else continue

Deterministic Two Counter Machine

- A Two counter machine can be defined as 4 tuple M = (P, C, D, I), where
 - P is a program counter whose value is bounded $value(P) \in 0, 1, ..., n$ where $n \in N$.
 - C, D takes value from Z.
 - I is a finite set of instructions $I = \{I_0, I_1, \dots, I_n\}.I_n$ being the halt instruction.
- Instructions are of 3 types:
 - DEC(X)
 - INC(X)
 - IF X == 0 then JMP(Y) else continue
- Value of Program counter and both the counters, C and D, $\langle i, c, d \rangle$ defines the state of the machine

Deterministic Two Counter Machine

- A Two counter machine can be defined as 4 tuple M = (P, C, D, I), where
 - P is a program counter whose value is bounded $value(P) \in 0, 1, ..., n$ where $n \in N$.
 - C, D takes value from Z.
 - I is a finite set of instructions $I = \{I_0, I_1, \dots, I_n\}.I_n$ being the halt instruction
- Instructions are of 3 types:
 - DEC(X)
 - INC(X)
 - IF X == 0 then JMP(Y) else continue
- Value of Program counter and both the counters, C and D, $\langle i, c, d \rangle$ defines the state of the machine
- Whether a unique run of a DTCM is halting or not is undecidable.

5-Tuple {*S*,

5-Tuple {*S*, *C*

5-Tuple {*S*, *C*, *M*

5-Tuple $\{S, C, M, T, s_0\}$

5-Tuple $\{S, C, M, T, s_0\}$ Sample run C_1 ?a

5-Tuple $\{S, C, M, T, s_0\}$ Sample run C_1 ?a

5-Tuple $\{S, C, M, T, s_0\}$ Sample run $C_1!a$

5-Tuple $\{S, C, M, T, s_0\}$ Sample run $C_1!a$

5-Tuple $\{S, C, M, T, s_0\}$ Sample run $C_1 = \emptyset$

5-Tuple $\{S, C, M, T, s_0\}$ Sample run $C_1 = \emptyset$

Channel Machines with Insertion Errors - ICMET.

Channel Machines with Insertion Errors - ICMET. Example Run.

Channel Machines with Insertion Errors - ICMET. Example Run.

Channel Machines with Insertion Errors - ICMET. Example Run.

To verify whether a state is reachable from the initial state in ICMET is decidable with Non Primitive Recursive complexity.

Description:

• 2 Player - (Spoiler and Duplicator), played on pair of words for *n* rounds.

- 2 Player (Spoiler and Duplicator), played on pair of words for *n* rounds.
- Configuration in a game is defined as pair of points (i_0, i_1) where $i_0 \in dom(\rho_0)$ and $i_1 \in dom(\rho_1)$

- 2 Player (Spoiler and Duplicator), played on pair of words for *n* rounds.
- Configuration in a game is defined as pair of points (i_0, i_1) where $i_0 \in dom(\rho_0)$ and $i_1 \in dom(\rho_1)$
- 0-round. Spoiler chooses to be at one of the words, say, ρ_0 . Duplicator has to be at ρ_1 . The starting configuration is (1,1). If $(\rho_0,1) \neq (\rho_1,1)$ Spoiler wins the zero round game. Else Continue.

- 2 Player (Spoiler and Duplicator), played on pair of words for *n* rounds.
- Configuration in a game is defined as pair of points (i_0, i_1) where $i_0 \in dom(\rho_0)$ and $i_1 \in dom(\rho_1)$
- 0-round. Spoiler chooses to be at one of the words, say, ρ_0 . Duplicator has to be at ρ_1 . The starting configuration is (1,1). If $(\rho_0,1) \neq (\rho_1,1)$ Spoiler wins the zero round game. Else Continue.
- Until Move is played in 2 parts:

 \Diamond_I — part:

$$\Diamond_I$$
 – part

$$\Diamond_I$$
 — part

$$\Diamond_I$$
 — part

U – part

• Game equivalence: $(\rho_0, i_0) \approx_k (\rho_1, i_1)$ iff for every k-round $MTL[U_I, S_I]$ EF-game over the words ρ_0, ρ_1 starting from the configuration (i_0, i_1) , the Duplicator always has a winning strategy.

- Game equivalence: $(\rho_0, i_0) \approx_k (\rho_1, i_1)$ iff for every k-round $MTL[U_I, S_I]$ EF-game over the words ρ_0, ρ_1 starting from the configuration (i_0, i_1) , the Duplicator always has a winning strategy.
- Formula equivalence: $(\rho_0, i_0) \equiv_k (\rho_1, i_1)$ iff for every $MTL[U_I, S_I]$ formula ϕ of modal depth $\leq k$, $\rho_0, i_0 \models \phi \iff \rho_1, i_1 \models \phi$

- Game equivalence: $(\rho_0, i_0) \approx_k (\rho_1, i_1)$ iff for every k-round $MTL[U_I, S_I]$ EF-game over the words ρ_0, ρ_1 starting from the configuration (i_0, i_1) , the Duplicator always has a winning strategy.
- Formula equivalence: $(\rho_0, i_0) \equiv_k (\rho_1, i_1)$ iff for every $MTL[U_I, S_I]$ formula ϕ of modal depth $\leq k$, $\rho_0, i_0 \models \phi \iff \rho_1, i_1 \models \phi$
- **EF Theorem of** *MTL*: Game equivalence ≡ Formula equivalence.

EF Theorem as Tool

As tool for comparing expressiveness.

EF Theorem as Tool

As tool for comparing expressiveness.

• Choose a formula φ in logic L_1 and a number n.

EF Theorem as Tool

As tool for comparing expressiveness.

- Choose a formula φ in logic L_1 and a number n.
- Let spoiler choose a pair of words ρ_0, ρ_1 such that $\rho_0 \models \varphi$ and $\rho_1 \models \neg \varphi$.

EF Theorem as Tool

As tool for comparing expressiveness.

- Choose a formula φ in logic L_1 and a number n.
- Let spoiler choose a pair of words ρ_0, ρ_1 such that $\rho_0 \models \varphi$ and $\rho_1 \models \neg \varphi$.
- Play n round L_2 EF Game. If the duplicator wins then L_2 doesn't have an equivalent formula φ .

• Satisfiability problem for $MTL[U_I, S_I]$ is undecidable. [Alur et al.]

- Satisfiability problem for MTL[U_I, S_I] is undecidable. [Alur et al.]
- Satisfiability Checking for MITL is decidable with EXPSPACE complexity. [Alur et al.]

- Satisfiability problem for MTL[U_I, S_I] is undecidable. [Alur et al.]
- Satisfiability Checking for MITL is decidable with EXPSPACE complexity. [Alur et al.]
- Satisfiability Checking for MTL[U_I] is decidable.[Ouaknine et al.]

- Satisfiability problem for MTL[U_I, S_I] is undecidable. [Alur et al.]
- Satisfiability Checking for MITL is decidable with EXPSPACE complexity. [Alur et al.]
- Satisfiability Checking for MTL[U_I] is decidable.[Ouaknine et al.]
- TPTL is strictly more expressive than MTL.[Bouyer et al.]

- Satisfiability problem for MTL[U_I, S_I] is undecidable. [Alur et al.]
- Satisfiability Checking for MITL is decidable with EXPSPACE complexity. [Alur et al.]
- Satisfiability Checking for MTL[U_I] is decidable.[Ouaknine et al.]
- TPTL is strictly more expressive than MTL.[Bouyer et al.]
- Satisfiability Cheking for $MITL[\Diamond_b, \Diamond_b]$ is NEXPTIME-complete. [Pandya et al.]

- Satisfiability problem for MTL[U_I, S_I] is undecidable. [Alur et al.]
- Satisfiability Checking for MITL is decidable with EXPSPACE complexity. [Alur et al.]
- Satisfiability Checking for MTL[U_I] is decidable.[Ouaknine et al.]
- TPTL is strictly more expressive than MTL.[Bouyer et al.]
- Satisfiability Cheking for $MITL[\diamondsuit_b, \diamondsuit_b]$ is NEXPTIME-complete. [Pandya et al.]
- For $MITL[\lozenge_{\infty}, \lozenge_{\infty}]$ is NP-complete.[Pandya et al.]

• Satisfiability Checking for $MTL[\lozenge_I, \lozenge_I]$ is undecidable.

- Satisfiability Checking for $MTL[\lozenge_I, \lozenge_I]$ is undecidable.
- For $MTL[\lozenge_I]$ is non primitive recursive.

- Satisfiability Checking for $MTL[\lozenge_I, \lozenge_I]$ is undecidable.
- For $MTL[\lozenge_I]$ is non primitive recursive.
- For 2 clock TPTL[F] is undecidable.

- Satisfiability Checking for $MTL[\lozenge_I, \lozenge_I]$ is undecidable.
- For $MTL[\lozenge_I]$ is non primitive recursive.
- For 2 clock TPTL[F] is undecidable.
- Expressiveness Picture of Unary MTL.

Presentation Flow

- Preliminaries
- Satisfiability Checking
 - $MTL[\lozenge_I, \lozenge_I]$
 - $2 TPTL[\lozenge_I]$
 - MTL[◊₁]
- Expressiveness
- Conclusion
- Future Work

Segment of Timed Word Showing Encoding of Increment Operation

Figure: Run showing increment d

Segment of Timed Word Showing Encoding of Increment Operation

Figure: Run showing increment d

Segment of Timed Word Showing Encoding of Increment Operation

Figure: Run showing increment d

$MTL[\lozenge_I, \diamondsuit_I]$ Satisfiability

$MTL[\lozenge_I, \diamondsuit_I]$ Satisfiability

• We will discuss formula for only increment operation.

$MTL[\lozenge_I, \diamondsuit_I]$ Satisfiability

- We will discuss formula for only increment operation.
- $\phi^{inc_c} = \Box[b_i \Rightarrow (COPY_C \land \Diamond_{[5,5]}(b_{i+1}) \land INC_D)]$

$MTL[\diamondsuit_I, \diamondsuit_I]$ Satisfiability

- We will discuss formula for only increment operation.
- $\phi^{inc_c} = \Box[b_i \Rightarrow (COPY_C \land \Diamond_{[5,5]}(b_{i+1}) \land INC_D)]$
- COPY_C:

$$COPY_C = \square_{[1,2]}((a \Rightarrow \lozenge_{[5,5]}a)) \wedge \square_{[6,7]}((a \Rightarrow \lozenge_{[5,5]}a)).$$

$MTL[\diamondsuit_I, \diamondsuit_I]$ Satisfiability

- We will discuss formula for only increment operation.
- $\phi^{inc_c} = \Box[b_i \Rightarrow (COPY_C \land \Diamond_{[5.5]}(b_{i+1}) \land INC_D)]$
- COPY_C:

$$COPY_C = \square_{[1,2]}((a \Rightarrow \lozenge_{[5,5]}a)) \wedge \square_{[6,7]}((a \Rightarrow \lozenge_{[5,5]}a)).$$

INC_D:

$$\begin{array}{l} \mathit{INC}_D = \square_{[3,4]}(a \Rightarrow \lozenge_{[5,5]}a) \wedge \square_{[8,9]}(((a \wedge \lozenge_{(0,1)}(a)) \Rightarrow \\ \lozenge_{[5,5]}(a)) \wedge (a \wedge \neg \lozenge_{[0,1]}(a)) \Rightarrow \neg \lozenge_{[5,6)}a). \end{array}$$

Presentation Flow

- Preliminaries
- Satisfiability Checking
 - $MTL[\diamondsuit_I, \diamondsuit_I]$
 - $2 TPTL[\lozenge_I]$
 - MTL[◊₁]
- Expressiveness
- Conclusion
- Future Work

In the previous logic past was helping in ensuring the precise copying of all the non-last a's. Here we try to specify similar restriction using two clocks.

$$COPY_1 = \Box x.[(a \land \Diamond(a \land x \in (0,1))) \Rightarrow \Diamond(a \land x \in [5,5])].$$

$$COPY_2 = \Box x.[(a \land \Diamond(a \land x \in (0,1))) \Rightarrow (\Diamond y.(a \land x \in (0,1)) \land \neg \Diamond(a \land x \in (5,\infty) \land y \in (0,5)))].$$

This is the most important constraint in the encoding which results in undecidability.

• We will discuss formula for only increment operation.

- We will discuss formula for only increment operation.
- $\phi^{inc_c} = \Box[b_i \Rightarrow (COPY_C \land \Diamond(b_{i+1} \land x \in [5,5]) \land INC_D)]$

- We will discuss formula for only increment operation.
- $\phi^{inc_c} = \Box[b_i \Rightarrow (COPY_C \land \Diamond(b_{i+1} \land x \in [5,5]) \land INC_D)]$
- COPY_C:

$$COPY_C = \Box(x \in [1, 2] \Rightarrow y.(a \land \neg \Diamond(a \land y \in (0, 1)))) \Rightarrow \Diamond y.(a \land x \in [6, 7] \land \neg \Diamond(a \land y \in (0, 1))))$$

- We will discuss formula for only increment operation.
- $\phi^{inc_c} = \Box[b_i \Rightarrow (COPY_C \land \Diamond(b_{i+1} \land x \in [5,5]) \land INC_D)]$
- COPY_C:

$$COPY_C = \Box(x \in [1, 2] \Rightarrow y.(a \land \neg \Diamond(a \land y \in (0, 1))) \Rightarrow \Diamond y.(a \land x \in [6, 7] \land \neg \Diamond(a \land y \in (0, 1))))$$

• *INC*_D:

$$INC_D = \Box(x \in [3,4] \Rightarrow y.(a \land \neg \Diamond(a \land y \in (0,1))) \Rightarrow \Diamond y.(a \land x \in [8,9] \land \Diamond(a \land y \in (0,1)) \neg \Diamond(a \land \Diamond(a \land y \in (0,1)))))$$

Correctness Idea

Correctness Idea

Correctness Idea

Presentation Flow

- Preliminaries
- Satisfiability Checking
 - $MTL[\diamondsuit_I, \diamondsuit_I]$
 - $2 TPTL[\lozenge_I]$
 - MTL[◊₁]
- Expressiveness
- Conclusion
- Future Work

Encoding Configuration

Figure: Encoding Configuration

 We reduce the reachability problem of ICMET to the above problem.

- We reduce the reachability problem of ICMET to the above problem.
- The instructions of the form are Write(c!m) Read($c = \phi$) are easily expressible using $MTL[F_I]$ formula.

- We reduce the reachability problem of ICMET to the above problem.
- The instructions of the form are Write(c!m) Read($c = \phi$) are easily expressible using $MTL[F_I]$ formula.
- We discuss Read(c?m). The challenge is to assert that a particular point resembles head of the channel.

- We reduce the reachability problem of ICMET to the above problem.
- The instructions of the form are Write(c!m) Read($c = \phi$) are easily expressible using $MTL[F_I]$ formula.
- We discuss Read(c?m). The challenge is to assert that a particular point resembles head of the channel.
- For this we introduce a special symbol *b* which acts as a separator between head of the channel(first symbol in the unit integral interval) and the rest of the contents of channel.

Segment of Timed Word showing Read(C_1 ?m)

Figure: Run showing C_1 ?m

Segment of Timed Word showing Read(C_1 ?m)

Figure: Run showing C_1 ?m

Segment of Timed Word showing Read(C_1 ?m)

Figure: Run showing C_1 ?m

b as separator

- b as separator
 - There is one and only one b in a particular channel:

$$\phi_{b_1} = \Box[S \Rightarrow (\bigwedge_{i=1}^k \Diamond_{(2i-1,2i)}(b))]$$

$$\phi_{b_2} = \Box(b \Rightarrow \neg \Diamond_{(0,1)}b)$$

- b as separator
 - There is one and only one b in a particular channel:

$$\phi_{b_1} = \Box[S \Rightarrow (\bigwedge_{i=1}^k \Diamond_{(2i-1,2i)}(b))]$$

$$\phi_{b_2} = \Box(b \Rightarrow \neg \Diamond_{(0,1)}b)$$

• There is one and only one *m* before *b* (if c non-empty):

$$\phi_{b_3} = \Box [\neg \{ M \land \Diamond_{(0,1)} (M \land \Diamond_{(0,1)} (b) \}]$$

$$\phi_{b_4} = \Box [S \Rightarrow \{ \bigwedge_{j=1}^k (\Diamond_{(2j-1,2j)} (M) \Rightarrow \Diamond_{(2j-1,2j)} (M \land \Diamond_{(0,1)} b)) \}]$$

• If transition is of the form $c_i = \emptyset$

$$\begin{array}{l} \phi_{c_i=\emptyset} = \mathcal{S} \wedge \square_{(2i-1,2i)}(\neg action) \wedge \\ \square_{(0,2k+2)}(\bigwedge_{m \in \mathcal{M}}(m \Rightarrow \lozenge_{[2k+2,2k+2]}(m)) \end{array}$$

• If transition is of the form $c_i = \emptyset$

$$\begin{array}{l} \phi_{c_i=\emptyset} = S \wedge \square_{(2i-1,2i)}(\neg action) \wedge \\ \square_{(0,2k+2)}(\bigwedge_{m \in \mathcal{M}}(m \Rightarrow \lozenge_{[2k+2,2k+2]}(m)) \end{array}$$

• If transition is of the form $c_i?m_x$ where $m_x \in M$

$$\phi_{c_{i}?m_{x}} = S \wedge \bigwedge_{j\neq i,j=1}^{k} \square_{[2j-1,2j]} \{ \bigwedge_{m\in M} m \Rightarrow \\ \lozenge_{[2k+2,2k+2]}(m) \} \wedge \lozenge_{(2i-1,2i)} \{ m_{x} \wedge \lozenge_{(0,1)}(b) \} \wedge \\ \square_{[2i-1,2i]} \{ \bigwedge_{m\in M} (m \wedge \neg \lozenge_{(0,1)}b) \Rightarrow \lozenge_{[2k+2,2k+2]}(m) \}$$

Presentation Flow

- Preliminaries
- Satisfiability Checking
 - $MTL[\lozenge_I, \lozenge_I]$
 - $2 TPTL[\lozenge_I]$
 - MTL[◊₁]
- Expressiveness
- Conclusion
- Future Work

Expressiveness

Theorem: $MTL[\lozenge_I, O]$ is incomparable to $MTL[U_I]$ $\varphi \equiv a Ub$

Presentation Flow

- Preliminaries
- Satisfiability Checking
 - $MTL[\lozenge_I, \lozenge_I]$
 - $2 TPTL[\lozenge_I]$
 - MTL[◊₁]
- Expressiveness
- Conclusion
- Future Work

Conclusion

- Not much is gained in terms of satisfiability checking by restricting to unary operators and non strict operators.
- Unlike binary, strict and non strict unary operators collide with strict monotonic restriction.

Conclusion

Figure: Expressiveness Hierarchy. Classes within Polygon have decidable satisfiability checking

Conclusion

Figure: Expressiveness Hierarchy with Strict Monotonicity. Classes within Polygon have decidable satisfiability checking

Future Work

- Explore membership checking algorithms for these fragments.
- There is not much known about decidable fragments of TPTL with more than one clocks other than positive fragment. It would be interesting to explore those fragments too.
- To check how these unary fragments behave with different semantic restriction.
- And to come up with more restrictions which gives us low complexity satisfiability checking.
- Explore satisfiability checking on infinite words too.

Thank You