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Motivation

MTL and TPTL is extensively studied in the literature.

These Logics are extension of LTL that allow timing
constraints to be specified along with the temporal ordering.

They exhibit considerable diversity in expressiveness and
decidability properties based on restriction on modalities and
type of timing constraints.

In general satisfiability checking of full MTL and TPTL is
undecidable.

Unlike LTL, they are more expressive with past operators.

Thus it becomes interesting to study satisfiability checking
and expressiveness for different fragments of these logics.
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Preliminaries: Timed Word

Timed word are the models over which MTL Formula is being
evaluated.

A Finite Timed Word is defined as finite sequence of symbols
along with their corresponding timestamp.

For example ρ = ((σ1, t1), (σ2, t2), (σ3, t3), . . . , (σn, tn)) where
σi ∈ Σ(set of alphabets) ,ti ∈ R is a time-stamp, n is finite
and {1, . . . , n} is called domain of ρ .

A strictly monotonic timed word is a timed word where
timestamps are strictly increasing that is i1 > i2 implies
ti1 > ti2 .In general,i1 > i2 implies ti1 ≥ ti2
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Metric Temporal Logic

MTL Syntax

φ ::= x | φ ∧ φ | φ ∨ φ | ¬ φ | φ SI φ | φ UI φ | Oφ | Ōφ

where I is interval of the form 〈x , y〉, x ∈ N ∪ {0},
y , x ∈ N ∪ {0,∞} and 〈...〉 ∈ {[...], (...), [...), (...]}
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Metric Temporal Logic

MTL Semantics

ρ, i |= Oφ ⇐⇒ ∃ρ, i + 1 |= φ

ρ, i |= Ōφ ⇐⇒ ∃ρ, i − 1 |= φ

ρ, i |= φ1 UIφ2 ⇐⇒ ∃j ≥ i ρ, j |=
φ2 and τj − τi ∈ I and ∀ i ≤ k < j ρ, k |= φ1

ρ, i |= φ1 SIφ2 ⇐⇒ ∃j ≤ i ρ, j |=
φ2 and τi − τj ∈ I and ∀ i ≥ k > j ρ, k |= φ1
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MTL contd.

Strict Operators

ρ, i |= φ1 UIφ2 ⇐⇒ ∃j > i ρ, j |=
φ2 and τj − τi ∈ I and ∀ i < k < j ρ, k |= φ1

It has been proved that strict versions of Until and Since are
strictly more expressive than weak versions.

Unary Operators

♦Iφ = > UIφ; �Iφ = ¬♦I (¬φ); ♦−Iφ = > SI φ

Strict versions of these operators can be defined similarly.

Subclasses:

By restricting set of allowed intervals. e.g.MITL.

By restricting set of operators. e.g. MTL[ UI ].
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Timed Propositional Temporal Logic

TPTL Syntax

φ ::=
x | φ ∧ φ | φ ∨ φ | ¬ φ | φ S φ | φ U φ | Oφ | Ōφ| y .ϕ | y ∈ I

where y is a clock (freeze) variable. Note, all the strict and unary
operators can be defined similarly as before.
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Timed Propositional Temporal Logic

Note that the truth of the formula is defined at a point i in a
timed word ρ with valuation of the freeze variables ν. Thus
the model is ρ, i , ν.

All the unary and strict modal operators can be defined
similarly.

Following is the model of the formula
x .♦(φ1 ∧ ♦(φ2 ∧ ♦(φ3 ∧ x ∈ I )))
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Deterministic Two Counter Machine

A Two counter machine can be defined as 4 tuple
M = (P,C ,D, I ), where

P is a program counter whose value is bounded
value(P) ∈ 0, 1, . . . , n where n ∈ N.
C ,D takes value from Z .
I is a finite set of instructions I = {I0, I1, . . . , In}.In being the
halt instruction.

Instructions are of 3 types:

DEC (X )
INC (X )
IF X == 0 then JMP(Y ) else continue

Value of Program counter and both the counters, C and D,
< i , c , d > defines the state of the machine

Whether a unique run of a DTCM is halting or not is
undecidable.
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Insertion Error Channel Machines with Emptiness Testing

Channel Machines with Insertion Errors - ICMET .

Example Run.
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Insertion Error Channel Machines with Emptiness Testing

To verify whether a state is reachable from the initial state in
ICMET is decidable with Non Primitive Recursive complexity.
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EF Games

Description:

2 Player - (Spoiler and Duplicator ), played on pair of words
for n rounds.

Configuration in a game is defined as pair of points (i0, i1)
where i0 ∈ dom(ρ0) and i1 ∈ dom(ρ1)

0-round. Spoiler chooses to be at one of the words, say, ρ0.
Duplicator has to be at ρ1. The starting configuration is
(1, 1). If (ρ0, 1) 6= (ρ1, 1) Spoiler wins the zero round game.
Else Continue.

Until Move is played in 2 parts:
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EF Games - U Move

♦I − part:
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EF Games

Game equivalence: (ρ0, i0) ≈k (ρ1, i1) iff for every k-round
MTL[UI , SI ] EF-game over the words ρ0, ρ1 starting from the
configuration (i0, i1), the Duplicator always has a winning
strategy.

Formula equivalence: (ρ0, i0) ≡k (ρ1, i1) iff for every
MTL[UI , SI ] formula φ of modal depth ≤ k ,
ρ0, i0 |= φ ⇐⇒ ρ1, i1 |= φ

EF Theorem of MTL: Game equivalence ≡ Formula
equivalence.
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EF Theorem as Tool

As tool for comparing expressiveness.

Choose a formula ϕ in logic L1 and a number n.

Let spoiler choose a pair of words ρ0, ρ1 such that ρ0 |= ϕ and
ρ1 |= ¬ϕ.

Play n round L2 EF Game. If the duplicator wins then L2
doesn’t have an equivalent formula ϕ.
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Related Work

Satisfiability problem for MTL[ UI , SI ] is undecidable. [Alur
et al .]

Satisfiability Checking for MITL is decidable with EXPSPACE
complexity. [Alur et al .]

Satisfiability Checking for MTL[ UI ] is decidable.[Ouaknine
et al .]

TPTL is strictly more expressive than MTL.[Bouyer et al .]

Satisfiability Cheking for MITL[♦b,♦−b] is
NEXPTIME -complete. [Pandya et al .]

For MITL[♦∞,♦−∞] is NP-complete.[Pandya et al .]
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Our Result

Satisfiability Checking for MTL[♦I ,♦−I ] is undecidable.

For MTL[♦I ] is non primitive recursive.

For 2 clock TPTL[F ] is undecidable.

Expressiveness Picture of Unary MTL.
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Segment of Timed Word Showing Encoding of Increment
Operation

Figure: Run showing increment d
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Segment of Timed Word Showing Encoding of Increment
Operation

Figure: Run showing increment d
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MTL[♦I ,♦−I ] Satisfiability

We will discuss formula for only increment operation.

φincc = �[bi ⇒ (COPYC ∧ ♦[5,5](bi+1) ∧ INCD)]

COPYC :

COPYC = �[1,2]((a⇒ ♦[5,5]a)) ∧�[6,7]((a⇒
♦−[5,5]a)).

INCD :

INCD = �[3,4](a⇒ ♦[5,5]a)∧�[8,9](((a∧♦(0,1)(a))⇒
♦−[5,5](a)) ∧ (a ∧ ¬♦[0,1](a))⇒ ¬♦−[5,6)a).
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2− TPTL[♦I ] Satisfiability

1 In the previous logic past was helping in ensuring the precise
copying of all the non-last a’s. Here we try to specify similar
restriction using two clocks.

COPY1 = �x .[(a ∧ ♦(a ∧ x ∈ (0, 1)))⇒ ♦(a ∧ x ∈
[5, 5])].
COPY2 = �x .[(a∧♦(a∧x ∈ (0, 1)))⇒ (♦y .(a∧x ∈
(0, 1) ∧ ¬♦(a ∧ x ∈ (5,∞) ∧ y ∈ (0, 5))))].

This is the most important constraint in the encoding which
results in undecidability.
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2− TPTL[♦I ] Satisfiability

We will discuss formula for only increment operation.

φincc = �[bi ⇒ (COPYC ∧ ♦(bi+1 ∧ x ∈ [5, 5]) ∧ INCD)]

COPYC :

COPYC = �(x ∈ [1, 2]⇒ y .(a ∧ ¬♦(a ∧ y ∈
(0, 1)))⇒ ♦y .(a ∧ x ∈ [6, 7] ∧ ¬♦(a ∧ y ∈ (0, 1))))

INCD :

INCD = �(x ∈ [3, 4]⇒ y .(a ∧ ¬♦(a ∧ y ∈
(0, 1)))⇒ ♦y .(a ∧ x ∈ [8, 9] ∧ ♦(a ∧ y ∈
(0, 1))¬♦(a ∧ ♦(a ∧ y ∈ (0, 1)))))
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Correctness Idea
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Encoding Configuration

Figure: Encoding Configuration
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Complexity of Satisfiability Checking of MTL[♦I ]

We reduce the reachability problem of ICMET to the above
problem.

The instructions of the form are Write(c!m) Read(c = φ) are
easily expressible using MTL[FI ] formula.

We discuss Read(c?m). The challenge is to assert that a
particular point resembles head of the channel.

For this we introduce a special symbol b which acts as a
separator between head of the channel(first symbol in the unit
integral interval) and the rest of the contents of channel.
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Segment of Timed Word showing Read(C1?m)

Figure: Run showing C1?m
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Segment of Timed Word showing Read(C1?m)

Figure: Run showing C1?m

Khushraj Madnani,S.N.Krishna, Paritosh.K.Pandya On Unary Fragments of MTL and TPTL over Timed Words.



Contd.

b as separator

There is one and only one b in a particular channel:

φb1 = �[S ⇒ (
∧k

i=1 ♦(2i−1,2i)(b))]

φb2 = �(b ⇒ ¬♦(0,1)b)

There is one and only one m before b (if c non-empty):

φb3 = �[¬{M ∧ ♦(0,1)(M ∧ ♦(0,1)(b)}]

φb4 = �[S ⇒ {
∧k

j=1(♦(2j−1,2j)(M)⇒
♦(2j−1,2j)(M ∧ ♦(0,1)b))}]
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If transition is of the form ci = ∅
φci=∅ = S ∧�(2i−1,2i)(¬action) ∧
�(0,2k+2)(

∧
m∈M(m⇒ ♦[2k+2,2k+2](m))

If transition is of the form ci?mx where mx ∈ M

φci?mx = S ∧
∧k

j 6=i ,j=1�[2j−1,2j]{
∧

m∈M m⇒
♦[2k+2,2k+2](m)} ∧ ♦(2i−1,2i){mx ∧ ♦(0,1)(b)} ∧
�[2i−1,2i ]{

∧
m∈M(m ∧ ¬♦(0,1)b)⇒ ♦[2k+2,2k+2](m)}
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Expressiveness

Theorem: MTL[♦I ,O] is incomparable to MTL[ UI ] ϕ ≡ a Ub

Figure: ρ0 ` ϕ

Figure: ρ1 0 ϕ
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Conclusion

Not much is gained in terms of satisfiability checking by
restricting to unary operators and non strict operators.

Unlike binary, strict and non strict unary operators collide with
strict monotonic restriction.
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Conclusion

Figure: Expressiveness Hierarchy. Classes within Polygon have decidable
satisfiability checking
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Conclusion

Figure: Expressiveness Hierarchy with Strict Monotonicity. Classes within
Polygon have decidable satisfiability checking
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Future Work

Explore membership checking algorithms for these fragments.

There is not much known about decidable fragments of TPTL
with more than one clocks other than positive fragment.It
would be interesting to explore those fragments too.

To check how these unary fragments behave with different
semantic restriction.

And to come up with more restrictions which gives us low
complexity satisfiability checking.

Explore satisfiability checking on infinite words too.
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Thank You
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