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Complex Instruction and Software Library Mapping
for Embedded Software Using Symbolic Algebra

Armita Peymandoust, Tajana Simunic, and Giovanni De Miclieliow, IEEE

Abstract—With growing demand for embedded multimedia sary to meet time-to-market requirements. Unfortunately, cur-
applications, time to market of embedded software has become rent available compilers and software optimization tools cannot
a crucial issue. As a result, embedded software designers oftenmeet all designers’ needs. Typically, software engineers start

use libraries that have been preoptimized for a given processor _ . . .
to achieve higher code quality. Unfortunately, current software with algorithmic level C code, often developed by standards

design methodology often leaves high-level arithmetic optimiza- 9roups, and manually optimize it to execute on the given hard-
tions and the use of complex library elements up to the designer’'s ware platform such that power and performance constraints are
ingenuity. In this paper, we present a tool flow and a method- satisfied. Needless to say, this conversion is a time-consuming

ology, SymSoft, that automates the use of complex processorgnq often error-prone task, which introduces undesired delay in
instructions and preoptimized software library routines using
the overall development process.

symbolic algebraic techniques. We use SymSoft to optimize a set o ) s .
of examples for the SmartBadgelV (Maguireet al, 1998) portable Preoptimized software libraries and complex processor in-
embedded system running the Linux embedded operating system. structions are often available for embedded system design, but
The results of these optimizations show that by using SymSoft we most compilers are unable to use these complex assembly in-
can map the critical basic blocks of the benchmark examples 10 gyr,ctions and preoptimized library elements efficiently while

the StrongARM SA-1110 instruction set much more efficiently L
than the commercial StrongARM compiler. SymSoft is also used compiling C code for embedded processors. Therefore, software

to map critical code sections to commercially available software €ngineers need to design key routines in assembly [1] or manu-
libraries with complex mathematical elements such agxpor the ally map a code section to a preoptimized library element. Ex-

inverse discrete cosine transfor_rmutine. Our measurements on  gmples of complex instructions available range from the simple

SmartBadgelV show that even higher performance improvements multiply-accumulate (MAC) to a library of more complex in-

and energy savings are achieved by using these library elements. - L
For example, the final optimized MP3 audio decoder runs four structions, such as those developed by Tensilica tools [6]. There

times faster than real-time playback while consuming four times are several preoptimized software libraries commercially avail-
less energy. Since the decoder executes faster than real-timeable. Intel recently released a library targeted at multimedia de-
playback, additional energy savings are now possible by using velopers for StrongARM SA-1110 embedded processor [14],
processor frequency and voltage scaling. and Tl has a similar library for TI'54x DSP [15]. Embedded
Index Terms—Automated software library mapping, embedded operating systems typically provide a choice from a number of
systems, performance optimization, power minimization, software  mathematical and other libraries [16], [17]. When a set of preop-
optimization, symbolic algebra. timized libraries is available, the designer has to choose the ele-
ments that perform best for a given section of code. For example,
I. INTRODUCTION consider a section of code that calls thgfunction. The library

HE PRINCIPAL requirement in system-level design Oysed in mapping consists of four differdag) implementations:
T embedded multimedia appliances is to reduce cost a(rj] uble, float, fixed point using simple bit manipulation algo-
time to market. In embedded system design environment, the rn%_rlner[r%(fr]{t:t?c?nﬂr)\(ae:;)gz?fte;J;:]T%fc?J)r/;gmIa;r?c))(rprsgr?coen-ali?jcgn-
grees of freedom in software design are often much higher thart . Y, pe !

the freedom available in hardware design. As a result, the Y tradeoff. A designer would need to estimate which of the

: . ur implementations would work best, test the hypothesis, and
mary requirement for embedded system-level design method- . : : ;
: . . iterate until the best result is found. Designers are faced with an
ology is to effectively facilitate code performance and ener :
: L . . en more complex problem when attempting to map a software
consumption optimization. Automating as many steps in the dé-

sign of software from algorithmic-level specification is neces|[nplementation ofDCT (inverse discrete cosine transfoyai-
9 9 P ready present in MPEG Layer Il (MP3) standards code into an

embedded software library. There are many ways to implement
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using symbolic techniques. We apply a set of techniqué&mally, symbolic algebra is used to map the polynomial repre-
previously used in algorithmic-level hardware synthesis [28entations of the critical basic blocks to the instruction set and
[29] and combine them with energy profiling, floating-point tdibrary elements available automatically such that performance
fixed-point data conversion, and polynomial approximation tand power consumption are optimized.
achieve a new embedded software optimization methodologyThe paper is organized as follows. Section Il discusses
The combination of these tools and standard compiler optimizgrevious work in software optimization for energy and per-
tion techniques allow novel automatic code transformations. formance. Section 1l describes the software and hardware
Example As a motivating examplelet us look at the fol- platform and the measurement setup we are using in our
lowing code segment: experiments. Section IV presents the SymSoft flow, and gives
an overview of each of its steps and components. The results
of SymSoft optimizations on several software examples for the
y =y +cos(ix*x). SmartBadgelV system are presented in Section V. SymSoft
ers the execution time and energy consumption of these

for i=1..3

Using standard loop unrolling, the given code is transformé‘&w

into the following: examples by using a preoptimized software library available
for StrongARM and the StrongARM instruction set. Finally,
¥ = cos(x) + cos(2 * x) + cos(3 * x). Section VI summarizes the contributions of this work.
Now, assume that for a given applicatiens(x) can be approx- II. RELATED WORK

imated into a Taylor series with three terms without noticeable i , .
degradation on the output. Many multimedia applications tol- P€Signers have used software performance and size optimiza-
erate computational inaccuracy well, as long as the resulting Bpn methodologies and tools for many years. Generally, com-

fects (e.g., audio, video degradation) are limited. Therefy)re,p”ers are used to translate a high-level specification into opti-
can be approximated as a polynomial mized machine code for a target processor. Several researchers

have worked on optimizing compilers in last few years [7]. Pro-

y=1- LEQ N il_4 Tl }221_2 N i24w4 totype research compilers have shown impressive results [8].

2 24 2 24 Most optimizing compilers target high-performance and/or gen-
11— 132:172 n i34x4_ eral-purpose computers. Relatively little effort has been ded-
2 24 icated to create powerful optimizing compilers for embedded
This polynomial can be further simplified using tepancrou- PrOCessors. Seyeral researchers are studying automatic cod_e re-
tine in symbolic algebra targeting techniques for embedded processors [9], [10] using

graph-covering methods. Graph covering methods have limited
y=3—T7s%+ @x4 knowledge of algebra. Using algorithms from symbolic algebra,
127 as explained in this paper, enables simultaneous code generation

Assuming that the embedded processor used to execute this cJibalgebraic manipulations. Currgntl):, most embedded proces-
has a multiply accumulate (MAC) instruction, another symbolfO"S (0 DSPs) are programmed directly by expert programmers
routine called the Horner transform can be used on and code optimization is mostly based on human intuition and
skills. In addition, due to recent growth in market demand for
49 ,\ portable devices, optimization of software for power consump-
y=34+-7+—z"|x". L L .
12 tion is gaining importance. As a result, one of the primary re-

quirements for system-level design methodology of embedded

The new equation can be mapped to one multiply instruction aggices is to effectively support code performance and energy
two MACs. Obviously, this mapping is much more eﬁ'c'e”tthaeonsumption optimization.

three calls to the cosine library function. Unfortunately, to our ggyeral optimization techniques for lowering energy
knowledge, there is no available software optimization too'”‘%nsumption have been presented in the past. Numerous
performs this simple optimization automatically. Thus, itWO“'%ethodologieS for optimizing memory accesses have been
be up to designers to manually implement such optimizationgaroduced that combine automated and manual software
B optimizations [11]. Tiwariet al. [12], [13] used instruc-
This paper presents a tool-flow, called SymSoft, that perforngg-jevel energy models to develop compiler-driven energy
algebraic manipulations such as the one shown in Exampl@gtimizations at assembly level such as instruction reordering,
simultaneous with automatic complex instruction and librapaduction of memory operands, operand swapping in the Booth
mapping. First, a characterization function is derived for the Prawltiplier, efficient usage of memory banks, and a series of
optimized library elements and complex assembly instructionsiocessor specific optimizations. Several other optimizations
Then, the performance and energy critical code sections (CGSth as energy efficient register labeling during the compile
are identified using the energy profiler. If necessary, a tool suphase [19], procedure inlining and loop unrolling [20], as
as Fridge [4] can be used to help transform floating-point dat#ll as instruction scheduling [21], have also been suggested.
types into fixed-point. Next, complex nonlinear arithmetic fundn addition, various compiler optimizations have been ap-
tions in critical blocks are approximated as polynomials sugtied concurrently and the resulting energy consumption was
that the final output is within the acceptable tolerance limitevaluated via simulation [22]. All of these techniques focus
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SA-1111 Pre-Optimized Library
Algorithmic-level elements and Complex
jE C Code instructions
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Fig. 1. SmartBadgelV architecture. Decomposition
on automated instruction-level optimizations driven by th Optimizad C Cods
compiler. Unfortunately, current available compilers hav / with Library Calls /
limited capabilities. Specifically, they are incapable of handlin_ and Inline Assembly

arithmetic optimizations such as shown Example 1.

In the previous work [34], MP3 audio decoder software avai
able from the standards body [3] was manually optimized for the
SmartBadge embedded system [2]. This work required the di@the directory structure on the server and are accessed via the
signer to firstimplement a fixed-point library and then to replac¥ireless link on the SmartBadgelV.
all floating-point operations with fixed point. Then, the designer All of the measurements were performed using the National
needed to fully understand the details of the SmartBadge’s dastruments Data Acquisition (DAQ) measurement system
sign, so that the critical arithmetic operations can be manuatpich is capable of 1.25 Msamples/s. We found a sampling
optimized with inline assembly code. The manual optimizaticiPeed of 1 kHz to be sufficient. In our setup, we used one PC to
process lasted several days. This experience is similar to the tifjgasure system, processor, and WLAN currents via the DAQ
ical industrial settings, where the software needs to be porﬂ'@éerface, and the other PC to act as a remote file server for the
and optimized to the newer versions of hardware. SmartBadgelV. The execution time of the code was measured

Our proposed methodology and tool flow uses profiling t8Y accessing StrongARM SA-1110 on-board timer.
identify the code sections that would benefit most from alge-
braic optimizations, and then automatically performs the opti- IV. SYMSOFT METHODOLOGY AND TOOL FLOW
mizations using symbolic techniques. Such symbolic techniquegge,ly, the software designer would write an algorithmic-
have been previously used in algorithmic level synthesis of dg{ge| description of the software and have a compiler-like tool
intensive circuits [28], [29], [35]. SymSoft uses the same principiimize it for the given hardware platform. However, optimum
ples previously used for high-level component mapping of hargl yiementation of calculation-intensive routines for the par-
ware and applies them to the software optimization problef.jar hardware design is not possible with traditional com-
The outcome of our mapping algorithm is software that rungjer optimizations alone. Commonly, the designer does most

faster and consumes less energy on the SmartBadgelV [2] fsych optimizations by hand. Automating even a portion of
bedded system while compared with the output of the comme;s process can save much design time.

f_ig. 2. SymSoft tool flow.

cial StrongARM compiler. Here, we present a methodology and a tool flow, SymSoft,
which facilitates embedded system software optimization with
[Il. EXPERIMENTAL SETUP automating library and complex instruction mapping for a given

We used SymSoft to optimize a set of examples on tlggnbedded processor. Fig. 2 shows the SymSoft flow. The map-
SmartBadgelV [2]. SmartBadgelV, as shown in Fig. 1, iging methodology consists of three main steps: library charac-
an embedded system powered by batteries through a dci®fé&zation, target code identification, and mapping.
converter. It consists of a StrongARM SA-1110 processor The first step is to characterize the library elements. The
with a StrongARM SA-1111 companion chip, audio coDE¢haracterization not only includes performance and energy
with microphone and speakers, Lucent’s WLAN card, sensof@nsumption of the complex element for a given hardware
and three types of memory: SRAM, SDRAM, and FLASHarchitecture, but also the expected input and output format,
SmartBadgelV currently runs eCos [16] and an embedd@gcuracy, and a polynomial representation.
version of the Linux operating system [17]. In this work, we The next step identifies the target code for optimization.
use the Linux operating system since the software libraly this step, an initial check is performed to see whether data
available to us is implemented for Linux. SmartBadgelV’§epresentation used in the algorithmic-level C code matches
Linux has the main parts of the operating system, includingtiae target hardware. Most embedded processors support only
small file system, residing in the SRAM. The larger file systerfixed-point computation, but many multimedia algorithms
is remotely mounted from the server via the WLAN card. Intilize floating-point operations. The profiler, described in
our experiments, the program files and their input data resi@ection 1V-B2, detects if data representation is an issue within
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TABLE | TABLE I
SAMPLE OF IPP LIBRARY ELEMENTS CHARACTERIZED COMPLEX LIBRARY ELEMENTS

Library Elements Description Library Element Execution time Input Type
Exp Exponentiation float SubBandSyn 0.95 64 bit float
Ln Natural logarithm fixed SubBandSyn 0.01 32 bit fixed
DotProd Vector dot (inner) product IPP SubBandSyn 0.002 32 bit fixed
Mean Vector arithmetic mean float IMDCT 0.39 64 bit float
FIR Finite impulse response filter fixed IMDCT 0.014 32 bit fixed
IR Infinite impulse response filter IPP IMDCT 0.0002 32 bit fixed
Conv Convolution

WinHamming Hamming window

Each element is labeled with the type of inputs and outputs,

FFT Fast Fourier transforms
HuffmanDecode Decodes Huffman symbols performance, accuracy, energy consumption, and finally its
SubBandSynthesis Stage two of hybrid synthesis filter bank po |yn omial re prese ntation.

The format of library element inputs and outputs is deter-
mined from the library include files or documentation available
with the library element. Techniques discussed in Section IV-B3
several seconds. Then, if needed, floating-point operatiogn be used to extract the polynomial representations from the
are replaced with fixed-point operations with the help of gource code if the code is available. Otherwise, either the distrib-
floating-point to fixed-point converting tool [4], [5]. The pro-ytor needs to provide the equivalent polynomial representation
filer also reports the performance and energy critical functiogs it might be obtained from the documentation. The important
of the code. The polynomial representations of the arithmetigrt of library characterization is the determination of accuracy,
sections of the critical routines are calculated with the h6|p Bérformance' and energy Consumption_ This information is used
traditional compiler techniques such as loop unrolling. Wheg guide the selection process when more than one library ele-
necessary, polynomial approximation techniques are us@gknt has the same functionality. Most embedded systems have
Accuracy is checked at the end of the target code identiﬁcatigﬁeraﬁng system timers that can be used for ﬁne-granu]arity
step to make sure that the code still meets the specificatiopgrformance measurements on hardware. However, often there
as some rounding occurs both during the data representaﬁ'@lﬁot an easy way to measure processor and memory-power
conversion and during the polynomial formulation. consumption. Alternatively, a cycle-accurate energy-consump-

Finally, the target code represented by polynomials is autgon simulator [24] easily provides energy and performance esti-
matically mapped into the library elements and complex prenates of library elements. Note that the library characterization
cessor instructions. Our key contribution in SymSoft is a ne¥tep is yet to be automated.
method to map CCS into preoptimized software library ele- Examples of two characterized complex library elements,
ments and complex assembly instructions using symbolic pogubBand Synthesis and IMDCT, are shown in Table Il. The
nomial manipulation. The mapping process selects the sofrary has three different versions of each library element: the
tion that offers best performance with sufficient accuracy. Singgen-source floating-point version from the MP3 standards
our methodology is compliant with other software optimizatiofiprary [3], the fixed-point in-house preoptimized routine, and
teChniqueS, additional benefits are gained by Combining it WIH'I version from Intel’'s IPP |ibrary for StrongARM SA-1110
traditional complier optimization algorithms, such as constapgtocessor [14]. For each library element, we have measured
and variable propagation, dead code elimination, and l0op Ug performance on the SmartBadgelV hardware. All entries in
rolling. The following sections describe each part of the Synraple 11 are represented using polynomials. Since polynomials
Soft flow in detail. for complex library elements can be quite large, we show only
a critical portion of IMDCT polynomial in (1) which shows
how n/2 windowed sampleg), are transformed into. z;

The target library consists of preoptimized software librariesamples. Note that this is just a first order polynomial, since
and complex arithmetic instructions available for the targebs((w/2n)(2i + 1 + (n/2))(2k + 1)) can be calculated in
processor. Complex arithmetic instructions vary from thadvance for ali, k&, andn
simple MAC to more complex instructions, such as those
developed by Tensilica tools [6]. Preoptimized software
libraries include traditional embedded system libraries, such i
as the IEEE floating-point mathematical library for Linux
operating system [17], commercial libraries available for the
particular processor, such as Intel's integrated performarfBe Target Code Identification
primitives (IPP) [14], and a set of in-house preoptimized The input to the target code identification step is the algo-
routines. Table | shows a sample of elements of the IPP librarighmic-level C code of the embedded software. The output of
Library characterization is done on element-by-element badisis step is a set of polynomial representations of the CCS that

IMDCT Inverse modified discrete cosine transform

A. Library Characterization

(n/2)-1
T/ n
z_% Y COS <% (21—}—1—1—5) (2k—|—1)>. Q)

k=
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Algorithmic-level Source Cod
o Source Code Software Profile

for ( i=0; i<30; i++)

‘ x[i]=y[i] +2*x[i+1]; 2
2[i] = x[i]; st 10%
yli] = x[i] + z[i]; init 2%

Data Representation loating-poin

Conversion Problem? LD R21, #30:
l ADD R21, R23,R27; ' f
V+ No ARM Instruction-level Simulator
Processor Core Model Profiler
Energy Profiling T
—% L1 Cache
Energy
By Consumption

Polynomial Cyele Type, Mata *\ddrc«

Formulation Proce

Processor & L1 Cache Energy Model el
Current DC-DC
Sl Toa b R Converter
yele Typ Abaa ‘Address Energy
ey Model
A Interconnect Energy Model Im::{?n:: o
ccuracy :
Yes Problem o Joata
Cycle Type b : Address
L2 Cache Memory
. . ’ Energy Model | ‘ Energy Model } Memory Ouneal
Polynomial Representations of
Critical Code Segments I L2 Cache Current
Fig. 3. Target code identification. Fig. 4. Profiler architecture.

would benefit most from mapping to complex instruction and 2) Energy Profiling: Code optimization requires extensive
preoptimized library elements. Target code identification cofrogram execution analysis to identify performance and energy-
sists of three stages as shown in Fig. 3. First, the profiler chegk#iical bottlenecks and to provide feedback on the impact of
to see whether floating point operations are on the critical pattede transformations. Profiling is typically used to relate per-
If needed the floating-point operations are transformed informance to the source code for CPU and L1 cache [23]. En-
fixed-point operations by data representation conversion. Negtgy profiler enables easy identification of energy-critical pro-
the energy and performance critical procedures are identifi@@dures. It also facilitates analysis of code transformations’ im-
This step can be done either with simulation using the energgct on the processor energy consumption, the memory hier-
profiler [24], or by profiling directly on the hardware. Finally,archy, and the system busses.
when the power and performance critical procedures are idenThe profiler exploits a cycle-accurate energy consumption
tified, they are formulated as polynomials suitable for mappirgimulator [24] to relate the embedded system energy consump-
into library elements. In the next sections, we will take a closépn and performance to the source code. Thus, it can be used for
look at each stage of the target code identification step. analysis (i.e., to find energy-critical sections of the code), and
1) Data Representation ConversiorBignal processing for validation (i.e., to assess the impact of each code optimiza-
algorithms are generally developed using ANSI-C with IEEHON).
floating-point data types. However, these algorithms are oftenThe profiler architecture [24] is shown in Fig. 4. Source code
implemented in embedded systems using fixed-point data typesompiled using a compiler for a target processor. The output
in order to meet the power, cost, and performance requiremermifsthe compiler is the executable represented as assembly code
In this stage, it is checked whether floating-point operations amad a map of locations of each procedure in the executable. The
capturing most of the execution time and power consumptiqnofiler of the cycle-accurate simulator periodically samples the
of the algorithmic-level C code. In that case, floating-poirgimulation results (by user defined sampling interval) and maps
operations are considered critical and they must be convertedhe energy and performance to the function executed using in-
fixed-point operations. Converting a floating-point algorithnfiormation gathered at the compile time. Sampling is used to im-
to a fixed-point algorithm is a time consuming and error-prongrove profiling speed while maintaining accuracy. Once the sim-
task. Facilitating and semiautomating this conversion hatation is complete, the energy consumption and execution time
been the target of many research projects [4], [5]. Such to@keach function are displayed.
use interpolative analysis or analytic techniques to convertWith the profiler, SymSoft can obtain energy consumption
floating-point operations into appropriate fixed-point opemreakdown by procedures in the source code and, thus, can
ations while reducing the manual work and the number qlickly identify the sections of the source code whose opti-
simulations required. In our tool flow, we opt to use a toahization can provide the largest execution time and energy
like Fridge (also known as CoCentric fixed-point designer) teavings. In addition, with the cycle-accurate simulator that is at
automate this stage of optimization. the heart of the profiler, SymSoft can get detailed information
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about performance and energy consumption of smaller si@ection IV-A. As opposed to tree covering based algorithms, in
sections of code. The identified CCS are then passed as inpuis algorithm, mapping is performed simultaneously with alge-
to polynomial approximation and symbolic mapping toolbraic manipulations.
that can optimally map the code section into complex library Symbolic computer algebra is a set of algorithms capable of
elements and assembly instructions in few minutes. algebraic manipulation of expressions containing undetermined
3) Polynomial Formulation:Our goal is to automatically values (symbols), such as variaklén (x + 1) * (x — 1). Sev-
map the CCS selected by the profiler into preoptimized libragral commercial symbolic computer algebra softwares are avail-
elements or complex assembly instructions such that optimaile on the market; Maple [26] and Mathematica [27] are most
execution time and power consumption are achieved. Thadely used. The algebraic object to be symbolically manipu-
symbolic mapping algorithm, described in Section IV-Clated is a set of multivariate polynomials that represent a crit-
takes as input the polynomial representations of the CCS dndl basic block identified in the profiling step. Most interesting
the polynomial equivalence of complex arithmetic assembsymbolic polynomial manipulations are based on Grobner bases
instructions and preoptimized library elements. The polynomigd0]. Grébner bases also solve variable elimination in a set of
formulation step prepares the first set of inputs required Ipplynomials and ideal membership problems, which is the core
the symbolic mapping algorithm by calculating the polynosf the simplification modulo set of polynomials [30]. We use
mial representations of the CCS. The second set of inputsthe following set of symbolic techniques: factorization, expan-
calculated in the library characterization step as describedsion, Horner transform, multivariate polynomial substitution,
Section IV-A. and variable elimination. We have described the complex un-
The polynomial representation of a basic block can be dierlying theory in the contest of hardware design elsewhere
rectly extracted from the C code if the basic block calculat¢®9], [28], [35]. In this section, we show the power of sym-
a polynomial function. If the basic block performs a series dfolic algebra by means of few of the routines applied to simple
bit manipulations or Boolean functions, interpolation-baseskamples.
algorithms [31], [32] can be used to formulate the equivalent Example 2: Factor andexpandare inverse operations. Con-
polynomial representation. When the basic block implemerg&ler using Maple to factor and expand the following polyno-
a transcendental function, we use an approximation, suchnaigl:
the Taylor or Chebyshev series expansion, as its polynomial.
The chosen polynomial approximation has to be verified by
simulation to ensure that the software constraints, such as audio> P := expand(8);
quality, are satisfied. A good approximation can result in large P:=x"16+x"17 + x"2
performance and power improvements for multimedia applica- - factor(p);
tions, since these applications can tolerate a slight degradation A A Aqr
in the output. For example, to verify the accuracy of the MP3 X025 (M4 + x5 4 1),
decoder we have used the compliance test provided by the [
MPEG standard where the range of RMS error between theExample 3: Horner form of a polynomial is a nested normal
samples defines the compliance level [25]. If the approximatidarm with minimal number of multiplications and additions.
is not sufficient to satisfy the accuracy constraints, the quality 8hy polynomial can be rewritten in Horner, or nested, form.
approximation is changed and verified again through simulatiofin example of Horner form polynomial for multiple variables
The objective of this step is to formulate polynomials thas shown below:
cover as much of the source code as possible. Consecutively,
the likelihood of finding a more complex library element > S:= V' 2%x+y*x"2+4xxxy+x"242xx;
that matches at least a portion of the formulated polynomial > convert (S, 'horner’, [x,7y]);

S:=x"2x (x"14+x 15+ 1);

increases. This objective can be accomplished by using 24+ (@A+y) sy+(y+1)+x)*x.
code-transformation techniques such as loop unrolling and
constant and variable propagation to form larger basic blocks. m

] . ] Example 4: Simplify implements substitution and variable
C. Symbolic Mapping Algorithm elimination for multivariate polynomials

The symbolic mapping algorithm requires two sets of in-
puts: a set of polynomials representing the CCS and another > Si=x+x"3%y"2 - 2xxxy"3;
set of polynomials representing the preoptimized library ele- > simplify (S, {p =x"2—2x7y}, [x,v,p]);
ments and complex instructions. The former has been gener- x4y 2% x *p.
ated in the target code identification step and the latter is the
output of the library characterization step. The goal of the sym- [ |
bolic mapping algorithm is to decompose the polynomial rep- The core of the library-mapping algorithm is the simplifica-
resentations of the CCS into the polynomial representationstimin modulo set of polynomialssimplify) routine. The poly-
the target library such that execution time and power consumpmial representations of critical code blocks are simplified
tion are minimized. The power consumption and execution tinmodulo a subset of polynomials representing the library ele-
of each library element are provided to the mapping algorithments called the side relation set. Choosing the side relation
as constants by the library characterization step as describedehis a nontrivial and important task, especially since different



970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

Polynomial Representation of Critical Code Segment TABLE Il
PSEUDOCODE OF THELIBRARY MAPPING ALGORITHM

THR Factor Expand Homer

function Decompose (exp_tree, boundVal, L) {
// initialize the decision tree
¥ [ v ¥ decision_tree <« tree (exp_tree)

Depth < 0
Bound < boundVal

Polynomial : . .
/ Representation of /;, Rsellefl sget for all # € decision_tree with depth == Depth do{
alation Sel (-
Library Elements |H if Depth —
,_rﬁ_‘z * choose s7 € L to preserve the exp_tree structure

Add to Side else for all sr € L {
Relation Set SR i result = simplify (n, sr);
}

. = AddChild (n, result) // make result a child of node n
Mapped?
if no more n € decision_tree with depth == Depth
Yes Depth < Depth + 1

}
/ L Scoh / return the best solution

end Decompose
Fig. 5. Overview of the library mapping algorithm. procedure main (CCS,L)
exp_tree [1 .. NoManipulations] = AllManipulations (CCS);

v

if result € L // solution is found
Bound = Min(cost of node result, Bound),

side relation sets results in different solutions. In previous work ~for i =1 to NoManipulations {
[28], an algorithm was introduced to select the side relation se ~ 2oundVallil=LexMap(exp_tree[il); .
such that the hardware implementation of a (portion of) date solution[i] = Decompose(exp_tree[i].boundVali]) }
path with a given component library has minimal critical path
delay. In this paper, we use the algorithm to optimize execu. end main
tion time of the CCS of software by mapping to preoptimized
library elements and complex assembly instructions. Since eval-
uating all subsets of the library is exponentially expensive, tloéthe library elements/f). The bounding function is defined as
library-mapping algorithm uses the branch-and-bound methtiee best execution time f&€CSseen so far. The lower bound
with execution time and energy consumption as bounding fureemputed at each decision branch is the execution time of the
tions to prune the search space. All previously described sylibrary elements in the side relation set in view of data depen-
bolic manipulations excemimplify are used as guidelines indencies. If this lower bound is greater than the best execution
formulating different side relation sets to speed up the mappitime seen so far, the corresponding decision branch is pruned.
algorithm. Decision treedecision_tregimplements the branch-and-bound
Fig. 5 gives an overview of the mapping algorithm. Inputalgorithm. The algorithm starts by initializing the roota#ci-
to the algorithm are the polynomial representations of the C@®n_treeto the polynomial representation @CSand calcu-
and the polynomial representations of the target library eliting an initial bound. The bounding variable is initialized to
ments. Initially, tree-height reduction, factorization, expansiothe execution time of calculating tHeCS polynomial solely
and Horner-based transform are applied to the polynomiaith add and multiply instructions, the lexicographical map-
representation of the CCS resulting in several different polping (LexMap. Nodes are added to this tree in breadth-first
nomials representing the same code segment. Each of mh@nner. These nodes store the polynomial resutiraplify of
different polynomial representations is used to select a sitleir parent node and the chosen side relation set. When a sim-
relation from the target library. These guidelines are usetification result corresponds to a polynomial representation of
to increase the speed of finding the desirable mapping. Tadibrary element, a possible solution is found and the corre-
polynomial representation of the CCS is simplified modulo theponding tree node is marked accordingly. If the execution time
selected side relation sets in parallel. If the resulsiofiplify of the solution is less than previously encountered solutions, we
matches a library element then the CCS is mapped. Otherwiset the bounding variable to the current value. In case the simpli-
we need to continue to add to the side relation set until tfieation result stored in a tree node does not correspond to any
CCSs is fully mapped to our library. The iterative part of thdibrary elements, we apply the same steps to the new tree node
algorithm, denoted in Fig. 5 asain loop is implemented using until either a solution is found or the corresponding branch is
branch-and-bound algorithms. pruned. SinceCCSis a polynomial and add and multiply in-
Table 11l shows the pseudocode of the library-mapping algstructions are always available in our library, we are guaranteed
rithm. Inputs to this algorithm are the polynomial representatida have a solution. However, our mapping algorithm searches
of the critical-code sections and the polynomial representatidias a solution that best exploits the given software library.

return the best solution in solutions[i]
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The branch-and-bound algorithm in Table 1l is applicableslation set can be any subset of the available instruction set with
to most practical problems and its runtime is a matter g@roper renaming of the variables. Different side relation sets re-
minutes. But, as for all branch-and-bound algorithms, thailtin finding other possible solutions for the specification. The
worst-case complexity remains exponential. The speed of thisove implies
algorithm depends on the initial polynomial and the initial
side relation set. Here, we use a set of library independent dn =1+ ax 24+ bxxM4cxx6=14+zxw
symbolic manipulations on the origin&CS polynomial to =1+ (a+y=*x"2)xx"2
help.wnh Fhe s_electlon of initial qde r(_alat|0n_ element. Thgse =1+ (a+ (b4 c*x"2) +x2) x x2.
manipulations improve the execution time without hampering

the quality of the solution. First, we apply tree-height reduction, Therefore, the numerator of (3) can be mapped to one square
factorization, expansion, and Horner-based transform to CGQ&d three MAC's instructions. Assuming R1, R2, R3, R4, and

in the AllManipulationsfunction. As a result, we have severaRs hold 1,a, b, ¢, andx, respectively, the resulting assembly
different polynomials €xp_tre¢ representing the same codeggde is

section. Each of these representations can result in the desirable
implementation based on the available library elements. MULT R6, R5, RS

To select the initial member of side relation sets, we start with MAC R7, R3, R4, RG
the primary inputs and cover the expression tree with the library ’
elements. We choose all library elements that cover the primary
inputs and a portion of the expression tree as initial elements of MAC R7, RI, RS, R6.

the different side relation sets used to simplify the root oftke . )
cision_tree If the result of simplify is not a library element, we !N the MP3 decoder program, the basic block evaluating (2)

add more elements to the side relation set without further guft€S floating-point and takes 2124 cycles to run on the Stron-
ance from the expression tree and decompose the result. N¥M SA-1110 processor. The approximation represented in
that in selecting the side relations from the library, all differefi) calculatest using floating-point andi using fixed-point
permutations of the variables with the same data-type are c@fithmetic and nested MACs as suggested by the symbolic opti-

sidered. This algorithm is implemented in C with calls to Map@ization._This approximation executes in 90_1 cycles. Thus, we
V for the symbolic manipulations. have achieved an improvement of 57% for this simple example.

Example 5: In order to demonstrate the power of dibrary The fixed-point version with no symbolic optimization executes

mappingalgorithm, consider a basic block implementing ' 1367 cycles. Thus, approximately 50% of the improvement
achieved is due to use of fixed-point arithmetic and 50% is due

T N to smarter use of processor instructions. [ ]
d = cos 75 2p—|—1—|—§ 2m+1)]. 2

V. RESULTS

MAC RS, R2, R7, R6

which is approximated using Pade approximation to the poly- . .
nomials shown in (3) in the previous step of the SymSoft flow We have tested the effectiveness of SymSoft using the ex-
as described in Section [V-B3 perimental embedded system SmartBadgelV and a wide range

of code examples used in communication, digital signal pro-

T cessing, and streaming media. The SmartBadgelV system and
r=—|2p+14+—)(2m+1) : . A
79 2 our experimental setup for hardware execution time and energy
1 3665,2 7L .4 2923 6 consumption measurement were described in Section 1l
~ 77887 T 35960 78503047 o : :
d= [ 229 T 7 G- 3 The first six software examples are obtained from a DSP soft
T 77587 T 33607 T 352515007 ware benchmark suite [33]. The first two examples are software

grograms that perform common digital signal processing com-

used to map the numerator and denominator of (3) to the av; p_tations; discrete convolution and dot (inner) product. Convo-
able instruction set. Letn be the numerator of (3) with, b ution is the linear operator can compute the output of a linear

and c the constants of the polynomial. In addition, we definiMe-invariantsystem inresponse to an input sequence given the

siderels as a subset of the available instructions with renamsé@tem |mpu_lse response ;equence. The dot (inner) prO(_juct of
variables. We have two vectors is the summation of the products of the two input

sequences; i.ez, = Y, z[i] - y[i].

The next four examples are different digital filters used in
digital signal processing and communication applications. The
first filter is a finite impulse response (FIR) filter. The next
> simplify (dn, siderels, [x,w,y,2]); two filters are biquad infinite impulse response (IIR) filters.

1+zx*w. A single IIR filter of arbitrary order is often decomposed into
equivalent cascades of second-order IIR sections known as bi-
Note that the first element of the side relation set{x”"2) cor- quads. Although the biquad cascade is analytically identical to
responds to the square or multiply instruction and the other twhee single filter of higher order, the biquad filter realization is
elements of the sef (= b+ cxw, z = a+yx*w) and the result of more stable and less sensitive to quantization errors. The last
simplify (1+z*w) correspond to the MAC instruction. The siddfilter is a least-mean-square (LMS) FIR adaptive filter. The LMS

The simplification modulo set of polynomials routine can b

> dn:i=14+a%x"2+b*xx"4+cxx"6;
siderels ::{w:x/\27 y=b+cxw, z:a—l—y*w}
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TABLE IV TABLE V
RESULTS OFSYM SOFT OPTIMIZATION ON A SET OF EXAMPLES PROFILING THE ORIGINAL MP3 CoDE
" Execution time in microsecs Function name Execution time (s) %

Examples Original [SymSoft [improvement (%) III_dequantize_sample 1.1754 45.33
Convolution 667 627 6.01 SubBandSynthesis 0.9481 36.56
Dot product 358 267 25.42 Inv_mdctL 0.3872 14.93
FIR filter 2418 1170 51.61 III_hybrid 0.0670 2.58
IIR filter (4 biquads) 5079 4355 14.25 III_antialias 0.0131 0.51
IIR filter (1 biquad) 1396 1250 10.46 III_stereo 0.0010 0.04
Least Mean Square 1200 1000 16.67 III_hufman_decode 0.0007 0.03
MP3 decoder 5470000 1430000 73.86 I1_reorder 0.0005 0.02

Total for one frame 2.5931 100.00

filter is a time-varying linear system for which the filter coeffi-

cients are adjusted at each time step to minimize the error Ix-1110 processor [14], and a library populated with in-house
tween the actual output and a given desired output. preoptimized routines. The library elements ranged from
Finally, the last example is a full MP3 audio decoder implesimple mathematical functions such as MAC to as complex
mentation that streams MP3 encoded files from a server te@ments as IMDCT routine.
client (SmartBadgelV). The SymSoft flow, as described in Section IV, consists of li-
Table IV summarizes the results of applying SymSoft to®rary characterization, target code identification, and the final li-
flow to the set of examples discussed above. In each case,y¥gry-mapping step. The library characterization step uses hard-
start with the fixed-point implementation of the algorithm angare measurements for performance and simulations for energy
use profiling to select the critical-code sections. Optimizing @nsumption [24]. The polynomial representation is obtained
CCS results in noticeable improvement on any given exampigther from the source code (Linux mathematical and in-house
Next, the CCS are automatically mapped to the instruction $@raries), or from documentation (IPP library).
available on the StrongARM SA-1110 processor and Intel's IPPThe target code identification consists of three important
library for StrongARM SA-1110 processor [14]. Table IV showsteps: data type conversion, code profiling, and formulating
the execution time of each example before and after the ogdblynomials to be mapped. The first step is to check if
mization with SymSoft. Note that the original execution timﬂoating_point data types are suitable for the given platform.
column reports the execution time of the examples when all p@Since SmartBadgelV'’s processor, StrongARM SA-1110, can
sible optimizations available with the ARM compiler are usedonly emulate the floating-point operations, there is a need for
The improvements demonstrated in Table IV indicate thajata representation transformation. The code was converted to
by using SymSoft, we can obtain significant execution timgse fixed-point arithmetic. It was verified through simulation
improvement for a range of applications over commercial corthat 27-bit precision fixed-point data-types are sufficient to
pilers. The amount of improvement achieved is dependent gfeet the compliance test provided by MPEG standard [25].
the number of critical blocks that are optimized and the |ibl’a[g(utomating floating-point to fixed-point data type conversion
implementations available for the given block. Examples ias been targeted by the tool Fridge [4]. Profiling the original
Table IV show improvements in the range of 6% to 73% witBource code highlights the CCS. Table V shows the results
an average of 28% improvement. of profiling original MP3 decoder software we obtained from
In the next section, we will go through all the steps of thehe standards body. All profiling reported in Table V is using
SymSoft flow, using the MP3 decoder software as an examplgardware measurements. The results are shown for one frame
o and represent only the most significant functions in terms of
A. MP3 Optimization Results their performance impact. Next, we formulate equivalent poly-
We start with an algorithmic level description of the MP3iomial representation of each of the critical functions shown in
audio decoder obtained from the International Organization fdable V. We use polynomial approximations for the nonlinear
Standardization [3]. Our design goal is to accelerate the MR&lculations in the critical basic blocks. Once more, we validate
decoder and lower its energy consumption while keeping fulat these approximations satisfy the MPEG compliance test
compliance with the MPEG standard. The first step in decodifig5]. The output of the target code identification step is a set of
the MP3 stream is synchronizing the incoming bitstream apdlynomials representing the critical sections of the code.
the decoder. Huffman decoding of the SubBand coefficients isIn the first phase of optimization, the polynomial represen-
performed before requantization. Stereo processing, if apphtions of the critical-code sections of the first three function
cable, occurs before the inverse mapping which consists of silown in Table V are mapped into the StrongARM assembly
inverse modified discrete cosine transform (IMDCT) followeéhstructions by algorithm described in Section IV-C. It is im-
by a polyphase synthesis filterbank. During the optimizatigportant to note that StrongARM compiler was not capable of
process, we used instructions available on the StrongARMing the MAC instruction effectively. However, our symbolic
SA-1110 processor, a mathematical library available with tlagorithm was able to use this instruction efficiently. Automati-
Linux operating system [17], Intel’s IPP library for StrongARMcally generated inline assembly was inserted in the C code as the
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TABLE VI
COMPARISON BETWEEN SYM SOFT INSTRUCTION MAPPING AND COMMERCIAL COMPILER

Execution time (#cycles) Energy Consumption (mWhr)
Function original | optimized |%imp|Original | optimized | %imp
1II_dequantize_sample 650894 421976 | 35.2 0.940 0.747 | 20.5
PowThreeFourth 14135 5380 | 61.9 0.040 0.009 76.6
SubBandSynthesis 155204 70633 | 54.5 1.015 0.306 69.8
generateFilterS 5263831 4196853 | 20.3 3.630 3.319 8.6
Inv_mdctL 63583 31954 | 49.7 0.101 0.051 49.6
generateMDCTTable 1454550 957051 | 34.2 1.051 0.922 12.2
TABLE VII TABLE VIII
MP3 PROFILE AFTER FIRST PHASE OF OPTIMIZATION MP3 PROFILE AFTER SECOND PHASE OF OPTIMIZATION
Function name Execution time (s) | % Function name Execution time (s)| %
Inv_mdctL 0.0144 49.54 ippsSynthPQMF_MP3_32s16s 0.00176 35.242
SubBandSynthesis 0.0103 35.30 III_dequantize_sample 0.00124 24.79
III_dequantize_sample 0.0013 4.33 III_stereo 0.00082 16.46
III_stereo 0.0008 2.83 III_hufman_decode 0.00067 13.416
III_reorder 0.0007 228 IppsMDCTInv_MP3_32s 0.00047 9.4113
III_antialias 0.0006 2.15 III_get_scale_factors 3.4E-05 0.6808
II_bufman_decode 0.0007 2.48 Total time for one frame 0.00499 100.00
IIE_hybrid 0.0003 1.10
Total for one frame 0.0291 100.00

that the execution of the IPP SubBand synthesis routine is one
order of magnitude faster than the previous version and the total
result of the decomposing algorithm. The results of optimizirtgme for decoding one frame is reduced by a factor of five.
critical functions of the MP3 code by SymSoft are compared Table IX summarizes the performance and the energy results
with the original results from straightforward compilation irof the overall optimization process we described in this sec-
Table VI. The numbers reported in Table VI are obtained usirign. All measurements are performed on the SmartBadgelV
the cycle accurate energy simulator described in Section IV-B&hile running at maximum processing speed and voltage. We
The first, third, and fifth rows in Table VI correspond to the firsstart from the original source code obtained from the standards
three rows of Table V. The second, fourth, and sixth rows imebsite that runs roughly two orders of magnitude slower than
Table VI are functions related to the function in the previougal-time playback. The next two rows show the results of map-
row. As we can see, 12%-70% improvement has been achiepéty only into Intel’s IPP library; more specifically, we are able
using the SymSoft methodology. Such improvement was pte-automatically use IPP’s SubBand Synthesis and IMDCT in
viously possible only thorough manual optimization with inlinghe original code. However, the rest of the code remains intact
assembly. The automation introduced by SymSoft drastically @nad still operates on floating-point data. StrongARM SA-1110
duces the embedded software optimization cycle. cannot perform floating-point operations natively. As a result,
Next, we profile the MP3 decoder that results from this phasiee execution time of the code is still far from real-time play-
of optimization on the hardware and measure the execution titmack.
of each function while decoding one frame of the MP3 stream. The fourth row corresponds to the results of the first phase
The resulting performance profile is shown in Table VII. Al-of optimization using SymSoft methodology (without using
though the execution time per frame is drastically reduced (kye Intel library). In this phase, the target libraries used in the
two orders of magnitude compared with Table V), we can se&apping step consist of the assembly instructions available on
that still almost 85% of the execution time is spentin the IMDC1he StrongARM and a set of in-house fixed-point routines. As
and SubBand synthesis functions. shown, we have achieved an improvement of two orders of
In the second phase of optimization, the code is mappedrtagnitude in both performance and energy for this mapping.
Intel's IPP library using the SymSoft methodology. Here, w&he improvement is because of effective use of the MAC
find two primitives that match the two critical procedures showimstruction available on StrongARM and conversion of most
in Table VII. The resulting performance profile is shown irfloating-point operations to fixed point. Fixed-point accuracy
Table VIII. Our method automatically uses two of the IPP rous verified through simulation.
tines. While the new profile shows that SubBand synthesis still Additional savings of a factor of four is obtained by further
takes roughly 35% of the execution time for each frame, we septimizing the code and adding Intel's IPP library to the target
that MDCT is no longer a critical portion of the code. Noticdibraries in the mapping step. The improvement of a factor of



974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

TABLE IX
EXECUTION TIME AND ENERGY OF DIFFERENTVERSIONS OF THEMP3 DECODER
Code version E:;:::?;;n Imp;a ocx;‘e;l:lent Energy (mWhr) Iml.’;;‘;z‘:lem
Original 503.92 1.0 509.6 1.0
Original + IPP SubBand 301.43 1.7 292.5 1.7
Original + IPP SubBand & IMDCT 211.27 24 199.1 2.6
SymSoft first phase (FPh) optimization 5.47 92.1 4.47 114.2
FPh + IPP SubBand 3.33 1514 2.78 182.3
é{,‘;‘iﬁgﬁ;&mtﬁ; - 1.43 352.4 117 435.2
IPP MP3 (Best possible) 0.41 1240.8 0.31 1626

four is solely due to automatic use of complex library elementsation into a polynomial representation is needed in order to
that have been preoptimized for the given processor. Full coemnable symbolic algebra techniques. Finally, the library-map-
pliance to the standard of each version of MP3 code is ensupgdg step uses symbolic computer algebra to automatically de-
by checking the accuracy at each mapping step with MP3 conempose the polynomial representations of the CCS into a set
pliance test [25]. Note that even larger energy savings are po$iibrary elements available for the embedded processor.
sible by using processor frequency and voltage scaling, since th&/e demonstrated application of our tool, SymSoft, to the
final MP3 code optimized by SymSoft runs almost four timesptimization of several examples on the SmartBadgelV [2]
faster than real-time playback. embedded system. Using SymSoft for source code optimization,
The lastrow in the table, IPP MP3, represents fully hand-optite have been able to increase performance and energy consump-
mized MP3 code for StrongARM available from Intel. The fination of these examples dramatically while satisfying the output
optimized version by SymSoft is a factor of 3.5-8.Worse accuracy requirements. These improvements are achieved by
than the IPP MP3. The lower bound on execution time (IPfe use of preoptimized software library functions, conversion
MP3) is achieved by full manual optimization, which is an erromf critical floating-point operations to fixed point, and reducing
prone and tedious task. Our methodology reduces the manthe number of memory accesses and instructions executed in
intervention of software designers in the optimization proce€CS. The technique presented in this paper can be easily used in
and its results are still faster than real-time playback. Such imenjunction with other compiler-optimization techniques [7].
provements were previously only possible by skilled designers,
familiar with the hardware and software, hand optimizing the ACKNOWLEDGMENT
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