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Abstract—With growing demand for embedded multimedia
applications, time to market of embedded software has become
a crucial issue. As a result, embedded software designers often
use libraries that have been preoptimized for a given processor
to achieve higher code quality. Unfortunately, current software
design methodology often leaves high-level arithmetic optimiza-
tions and the use of complex library elements up to the designer’s
ingenuity. In this paper, we present a tool flow and a method-
ology, SymSoft, that automates the use of complex processor
instructions and preoptimized software library routines using
symbolic algebraic techniques. We use SymSoft to optimize a set
of examples for the SmartBadgeIV (Maguireet al., 1998) portable
embedded system running the Linux embedded operating system.
The results of these optimizations show that by using SymSoft we
can map the critical basic blocks of the benchmark examples to
the StrongARM SA-1110 instruction set much more efficiently
than the commercial StrongARM compiler. SymSoft is also used
to map critical code sections to commercially available software
libraries with complex mathematical elements such asexp or the
inverse discrete cosine transformroutine. Our measurements on
SmartBadgeIV show that even higher performance improvements
and energy savings are achieved by using these library elements.
For example, the final optimized MP3 audio decoder runs four
times faster than real-time playback while consuming four times
less energy. Since the decoder executes faster than real-time
playback, additional energy savings are now possible by using
processor frequency and voltage scaling.

Index Terms—Automated software library mapping, embedded
systems, performance optimization, power minimization, software
optimization, symbolic algebra.

I. INTRODUCTION

T HE PRINCIPAL requirement in system-level design of
embedded multimedia appliances is to reduce cost and

time to market. In embedded system design environment, the de-
grees of freedom in software design are often much higher than
the freedom available in hardware design. As a result, the pri-
mary requirement for embedded system-level design method-
ology is to effectively facilitate code performance and energy
consumption optimization. Automating as many steps in the de-
sign of software from algorithmic-level specification is neces-
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sary to meet time-to-market requirements. Unfortunately, cur-
rent available compilers and software optimization tools cannot
meet all designers’ needs. Typically, software engineers start
with algorithmic level C code, often developed by standards
groups, and manually optimize it to execute on the given hard-
ware platform such that power and performance constraints are
satisfied. Needless to say, this conversion is a time-consuming
and often error-prone task, which introduces undesired delay in
the overall development process.

Preoptimized software libraries and complex processor in-
structions are often available for embedded system design, but
most compilers are unable to use these complex assembly in-
structions and preoptimized library elements efficiently while
compiling C code for embedded processors. Therefore, software
engineers need to design key routines in assembly [1] or manu-
ally map a code section to a preoptimized library element. Ex-
amples of complex instructions available range from the simple
multiply-accumulate (MAC) to a library of more complex in-
structions, such as those developed by Tensilica tools [6]. There
are several preoptimized software libraries commercially avail-
able. Intel recently released a library targeted at multimedia de-
velopers for StrongARM SA-1110 embedded processor [14],
and TI has a similar library for TI’54x DSP [15]. Embedded
operating systems typically provide a choice from a number of
mathematical and other libraries [16], [17]. When a set of preop-
timized libraries is available, the designer has to choose the ele-
ments that perform best for a given section of code. For example,
consider a section of code that calls thelog function. The library
used in mapping consists of four differentlog implementations:
double, float, fixed point using simple bit manipulation algo-
rithm [18], and fixed point using polynomial expansion. Each
implementation has a different accuracy, performance, and en-
ergy tradeoff. A designer would need to estimate which of the
four implementations would work best, test the hypothesis, and
iterate until the best result is found. Designers are faced with an
even more complex problem when attempting to map a software
implementation ofIDCT (inverse discrete cosine transform) al-
ready present in MPEG Layer III (MP3) standards code into an
embedded software library. There are many ways to implement
IDCT on a given processor, and it may be difficult for a designer
to determine which library element is most appropriate.

Our objective is to improve the quality of compiled code for
embedded systems and facilitate the software design process.
In this paper, we propose a new methodology based on sym-
bolic manipulation of polynomials and energy profiling which
reduces manual intervention. Our methodology automates
the process of identifying the code sections that benefit from
complex library mapping, and then performs the mapping
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using symbolic techniques. We apply a set of techniques
previously used in algorithmic-level hardware synthesis [28],
[29] and combine them with energy profiling, floating-point to
fixed-point data conversion, and polynomial approximation to
achieve a new embedded software optimization methodology.
The combination of these tools and standard compiler optimiza-
tion techniques allow novel automatic code transformations.

Example: As a motivating example, let us look at the fol-
lowing code segment:

Using standard loop unrolling, the given code is transformed
into the following:

Now, assume that for a given application, can be approx-
imated into a Taylor series with three terms without noticeable
degradation on the output. Many multimedia applications tol-
erate computational inaccuracy well, as long as the resulting ef-
fects (e.g., audio, video degradation) are limited. Therefore,
can be approximated as a polynomial

This polynomial can be further simplified using theexpandrou-
tine in symbolic algebra

Assuming that the embedded processor used to execute this code
has a multiply accumulate (MAC) instruction, another symbolic
routine called the Horner transform can be used on

The new equation can be mapped to one multiply instruction and
two MACs. Obviously, this mapping is much more efficient than
three calls to the cosine library function. Unfortunately, to our
knowledge, there is no available software optimization tool that
performs this simple optimization automatically. Thus, it would
be up to designers to manually implement such optimizations.

This paper presents a tool-flow, called SymSoft, that performs
algebraic manipulations such as the one shown in Example 1
simultaneous with automatic complex instruction and library
mapping. First, a characterization function is derived for the pre-
optimized library elements and complex assembly instructions.
Then, the performance and energy critical code sections (CCS)
are identified using the energy profiler. If necessary, a tool such
as Fridge [4] can be used to help transform floating-point data
types into fixed-point. Next, complex nonlinear arithmetic func-
tions in critical blocks are approximated as polynomials such
that the final output is within the acceptable tolerance limits.

Finally, symbolic algebra is used to map the polynomial repre-
sentations of the critical basic blocks to the instruction set and
library elements available automatically such that performance
and power consumption are optimized.

The paper is organized as follows. Section II discusses
previous work in software optimization for energy and per-
formance. Section III describes the software and hardware
platform and the measurement setup we are using in our
experiments. Section IV presents the SymSoft flow, and gives
an overview of each of its steps and components. The results
of SymSoft optimizations on several software examples for the
SmartBadgeIV system are presented in Section V. SymSoft
lowers the execution time and energy consumption of these
examples by using a preoptimized software library available
for StrongARM and the StrongARM instruction set. Finally,
Section VI summarizes the contributions of this work.

II. RELATED WORK

Designers have used software performance and size optimiza-
tion methodologies and tools for many years. Generally, com-
pilers are used to translate a high-level specification into opti-
mized machine code for a target processor. Several researchers
have worked on optimizing compilers in last few years [7]. Pro-
totype research compilers have shown impressive results [8].
Most optimizing compilers target high-performance and/or gen-
eral-purpose computers. Relatively little effort has been ded-
icated to create powerful optimizing compilers for embedded
processors. Several researchers are studying automatic code re-
targeting techniques for embedded processors [9], [10] using
graph-covering methods. Graph covering methods have limited
knowledge of algebra. Using algorithms from symbolic algebra,
as explained in this paper, enables simultaneous code generation
and algebraic manipulations. Currently, most embedded proces-
sors (or DSPs) are programmed directly by expert programmers
and code optimization is mostly based on human intuition and
skills. In addition, due to recent growth in market demand for
portable devices, optimization of software for power consump-
tion is gaining importance. As a result, one of the primary re-
quirements for system-level design methodology of embedded
devices is to effectively support code performance and energy
consumption optimization.

Several optimization techniques for lowering energy
consumption have been presented in the past. Numerous
methodologies for optimizing memory accesses have been
introduced that combine automated and manual software
optimizations [11]. Tiwari et al. [12], [13] used instruc-
tion-level energy models to develop compiler-driven energy
optimizations at assembly level such as instruction reordering,
reduction of memory operands, operand swapping in the Booth
multiplier, efficient usage of memory banks, and a series of
processor specific optimizations. Several other optimizations
such as energy efficient register labeling during the compile
phase [19], procedure inlining and loop unrolling [20], as
well as instruction scheduling [21], have also been suggested.
In addition, various compiler optimizations have been ap-
plied concurrently and the resulting energy consumption was
evaluated via simulation [22]. All of these techniques focus
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Fig. 1. SmartBadgeIV architecture.

on automated instruction-level optimizations driven by the
compiler. Unfortunately, current available compilers have
limited capabilities. Specifically, they are incapable of handling
arithmetic optimizations such as shown Example 1.

In the previous work [34], MP3 audio decoder software avail-
able from the standards body [3] was manually optimized for the
SmartBadge embedded system [2]. This work required the de-
signer to first implement a fixed-point library and then to replace
all floating-point operations with fixed point. Then, the designer
needed to fully understand the details of the SmartBadge’s de-
sign, so that the critical arithmetic operations can be manually
optimized with inline assembly code. The manual optimization
process lasted several days. This experience is similar to the typ-
ical industrial settings, where the software needs to be ported
and optimized to the newer versions of hardware.

Our proposed methodology and tool flow uses profiling to
identify the code sections that would benefit most from alge-
braic optimizations, and then automatically performs the opti-
mizations using symbolic techniques. Such symbolic techniques
have been previously used in algorithmic level synthesis of data
intensive circuits [28], [29], [35]. SymSoft uses the same princi-
ples previously used for high-level component mapping of hard-
ware and applies them to the software optimization problem.
The outcome of our mapping algorithm is software that runs
faster and consumes less energy on the SmartBadgeIV [2] em-
bedded system while compared with the output of the commer-
cial StrongARM compiler.

III. EXPERIMENTAL SETUP

We used SymSoft to optimize a set of examples on the
SmartBadgeIV [2]. SmartBadgeIV, as shown in Fig. 1, is
an embedded system powered by batteries through a dc–dc
converter. It consists of a StrongARM SA-1110 processor
with a StrongARM SA-1111 companion chip, audio CODEC
with microphone and speakers, Lucent’s WLAN card, sensors,
and three types of memory: SRAM, SDRAM, and FLASH.
SmartBadgeIV currently runs eCos [16] and an embedded
version of the Linux operating system [17]. In this work, we
use the Linux operating system since the software library
available to us is implemented for Linux. SmartBadgeIV’s
Linux has the main parts of the operating system, including a
small file system, residing in the SRAM. The larger file system
is remotely mounted from the server via the WLAN card. In
our experiments, the program files and their input data reside

Fig. 2. SymSoft tool flow.

in the directory structure on the server and are accessed via the
wireless link on the SmartBadgeIV.

All of the measurements were performed using the National
Instruments Data Acquisition (DAQ) measurement system
which is capable of 1.25 Msamples/s. We found a sampling
speed of 1 kHz to be sufficient. In our setup, we used one PC to
measure system, processor, and WLAN currents via the DAQ
interface, and the other PC to act as a remote file server for the
SmartBadgeIV. The execution time of the code was measured
by accessing StrongARM SA-1110 on-board timer.

IV. SYMSOFT METHODOLOGY AND TOOL FLOW

Ideally, the software designer would write an algorithmic-
level description of the software and have a compiler-like tool
optimize it for the given hardware platform. However, optimum
implementation of calculation-intensive routines for the par-
ticular hardware design is not possible with traditional com-
piler optimizations alone. Commonly, the designer does most
of such optimizations by hand. Automating even a portion of
this process can save much design time.

Here, we present a methodology and a tool flow, SymSoft,
which facilitates embedded system software optimization with
automating library and complex instruction mapping for a given
embedded processor. Fig. 2 shows the SymSoft flow. The map-
ping methodology consists of three main steps: library charac-
terization, target code identification, and mapping.

The first step is to characterize the library elements. The
characterization not only includes performance and energy
consumption of the complex element for a given hardware
architecture, but also the expected input and output format,
accuracy, and a polynomial representation.

The next step identifies the target code for optimization.
In this step, an initial check is performed to see whether data
representation used in the algorithmic-level C code matches
the target hardware. Most embedded processors support only
fixed-point computation, but many multimedia algorithms
utilize floating-point operations. The profiler, described in
Section IV-B2, detects if data representation is an issue within
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TABLE I
SAMPLE OF IPP LIBRARY ELEMENTS

several seconds. Then, if needed, floating-point operations
are replaced with fixed-point operations with the help of a
floating-point to fixed-point converting tool [4], [5]. The pro-
filer also reports the performance and energy critical functions
of the code. The polynomial representations of the arithmetic
sections of the critical routines are calculated with the help of
traditional compiler techniques such as loop unrolling. When
necessary, polynomial approximation techniques are used.
Accuracy is checked at the end of the target code identification
step to make sure that the code still meets the specifications,
as some rounding occurs both during the data representation
conversion and during the polynomial formulation.

Finally, the target code represented by polynomials is auto-
matically mapped into the library elements and complex pro-
cessor instructions. Our key contribution in SymSoft is a new
method to map CCS into preoptimized software library ele-
ments and complex assembly instructions using symbolic poly-
nomial manipulation. The mapping process selects the solu-
tion that offers best performance with sufficient accuracy. Since
our methodology is compliant with other software optimization
techniques, additional benefits are gained by combining it with
traditional complier optimization algorithms, such as constant
and variable propagation, dead code elimination, and loop un-
rolling. The following sections describe each part of the Sym-
Soft flow in detail.

A. Library Characterization

The target library consists of preoptimized software libraries
and complex arithmetic instructions available for the target
processor. Complex arithmetic instructions vary from the
simple MAC to more complex instructions, such as those
developed by Tensilica tools [6]. Preoptimized software
libraries include traditional embedded system libraries, such
as the IEEE floating-point mathematical library for Linux
operating system [17], commercial libraries available for the
particular processor, such as Intel’s integrated performance
primitives (IPP) [14], and a set of in-house preoptimized
routines. Table I shows a sample of elements of the IPP library.
Library characterization is done on element-by-element basis.

TABLE II
CHARACTERIZED COMPLEX LIBRARY ELEMENTS

Each element is labeled with the type of inputs and outputs,
performance, accuracy, energy consumption, and finally its
polynomial representation.

The format of library element inputs and outputs is deter-
mined from the library include files or documentation available
with the library element. Techniques discussed in Section IV-B3
can be used to extract the polynomial representations from the
source code if the code is available. Otherwise, either the distrib-
utor needs to provide the equivalent polynomial representation
or it might be obtained from the documentation. The important
part of library characterization is the determination of accuracy,
performance, and energy consumption. This information is used
to guide the selection process when more than one library ele-
ment has the same functionality. Most embedded systems have
operating system timers that can be used for fine-granularity
performance measurements on hardware. However, often there
is not an easy way to measure processor and memory-power
consumption. Alternatively, a cycle-accurate energy-consump-
tion simulator [24] easily provides energy and performance esti-
mates of library elements. Note that the library characterization
step is yet to be automated.

Examples of two characterized complex library elements,
SubBand Synthesis and IMDCT, are shown in Table II. The
library has three different versions of each library element: the
open-source floating-point version from the MP3 standards
library [3], the fixed-point in-house preoptimized routine, and
a version from Intel’s IPP library for StrongARM SA-1110
processor [14]. For each library element, we have measured
its performance on the SmartBadgeIV hardware. All entries in
Table II are represented using polynomials. Since polynomials
for complex library elements can be quite large, we show only
a critical portion of IMDCT polynomial in (1) which shows
how windowed samples are transformed into
samples. Note that this is just a first order polynomial, since

can be calculated in
advance for all , , and

(1)

B. Target Code Identification

The input to the target code identification step is the algo-
rithmic-level C code of the embedded software. The output of
this step is a set of polynomial representations of the CCS that
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Fig. 3. Target code identification.

would benefit most from mapping to complex instruction and
preoptimized library elements. Target code identification con-
sists of three stages as shown in Fig. 3. First, the profiler checks
to see whether floating point operations are on the critical path.
If needed the floating-point operations are transformed into
fixed-point operations by data representation conversion. Next,
the energy and performance critical procedures are identified.
This step can be done either with simulation using the energy
profiler [24], or by profiling directly on the hardware. Finally,
when the power and performance critical procedures are iden-
tified, they are formulated as polynomials suitable for mapping
into library elements. In the next sections, we will take a closer
look at each stage of the target code identification step.

1) Data Representation Conversion:Signal processing
algorithms are generally developed using ANSI-C with IEEE
floating-point data types. However, these algorithms are often
implemented in embedded systems using fixed-point data types
in order to meet the power, cost, and performance requirements.
In this stage, it is checked whether floating-point operations are
capturing most of the execution time and power consumption
of the algorithmic-level C code. In that case, floating-point
operations are considered critical and they must be converted to
fixed-point operations. Converting a floating-point algorithm
to a fixed-point algorithm is a time consuming and error-prone
task. Facilitating and semiautomating this conversion has
been the target of many research projects [4], [5]. Such tools
use interpolative analysis or analytic techniques to convert
floating-point operations into appropriate fixed-point oper-
ations while reducing the manual work and the number of
simulations required. In our tool flow, we opt to use a tool
like Fridge (also known as CoCentric fixed-point designer) to
automate this stage of optimization.

Fig. 4. Profiler architecture.

2) Energy Profiling: Code optimization requires extensive
program execution analysis to identify performance and energy-
critical bottlenecks and to provide feedback on the impact of
code transformations. Profiling is typically used to relate per-
formance to the source code for CPU and L1 cache [23]. En-
ergy profiler enables easy identification of energy-critical pro-
cedures. It also facilitates analysis of code transformations’ im-
pact on the processor energy consumption, the memory hier-
archy, and the system busses.

The profiler exploits a cycle-accurate energy consumption
simulator [24] to relate the embedded system energy consump-
tion and performance to the source code. Thus, it can be used for
analysis (i.e., to find energy-critical sections of the code), and
for validation (i.e., to assess the impact of each code optimiza-
tion).

The profiler architecture [24] is shown in Fig. 4. Source code
is compiled using a compiler for a target processor. The output
of the compiler is the executable represented as assembly code
and a map of locations of each procedure in the executable. The
profiler of the cycle-accurate simulator periodically samples the
simulation results (by user defined sampling interval) and maps
the energy and performance to the function executed using in-
formation gathered at the compile time. Sampling is used to im-
prove profiling speed while maintaining accuracy. Once the sim-
ulation is complete, the energy consumption and execution time
of each function are displayed.

With the profiler, SymSoft can obtain energy consumption
breakdown by procedures in the source code and, thus, can
quickly identify the sections of the source code whose opti-
mization can provide the largest execution time and energy
savings. In addition, with the cycle-accurate simulator that is at
the heart of the profiler, SymSoft can get detailed information



PEYMANDOUSTet al.: COMPLEX INSTRUCTION AND SOFTWARE LIBRARY MAPPING 969

about performance and energy consumption of smaller sub-
sections of code. The identified CCS are then passed as inputs
to polynomial approximation and symbolic mapping tools
that can optimally map the code section into complex library
elements and assembly instructions in few minutes.

3) Polynomial Formulation:Our goal is to automatically
map the CCS selected by the profiler into preoptimized library
elements or complex assembly instructions such that optimum
execution time and power consumption are achieved. The
symbolic mapping algorithm, described in Section IV-C,
takes as input the polynomial representations of the CCS and
the polynomial equivalence of complex arithmetic assembly
instructions and preoptimized library elements. The polynomial
formulation step prepares the first set of inputs required by
the symbolic mapping algorithm by calculating the polyno-
mial representations of the CCS. The second set of inputs is
calculated in the library characterization step as described in
Section IV-A.

The polynomial representation of a basic block can be di-
rectly extracted from the C code if the basic block calculates
a polynomial function. If the basic block performs a series of
bit manipulations or Boolean functions, interpolation-based
algorithms [31], [32] can be used to formulate the equivalent
polynomial representation. When the basic block implements
a transcendental function, we use an approximation, such as
the Taylor or Chebyshev series expansion, as its polynomial.
The chosen polynomial approximation has to be verified by
simulation to ensure that the software constraints, such as audio
quality, are satisfied. A good approximation can result in large
performance and power improvements for multimedia applica-
tions, since these applications can tolerate a slight degradation
in the output. For example, to verify the accuracy of the MP3
decoder we have used the compliance test provided by the
MPEG standard where the range of RMS error between the
samples defines the compliance level [25]. If the approximation
is not sufficient to satisfy the accuracy constraints, the quality of
approximation is changed and verified again through simulation.

The objective of this step is to formulate polynomials that
cover as much of the source code as possible. Consecutively,
the likelihood of finding a more complex library element
that matches at least a portion of the formulated polynomial
increases. This objective can be accomplished by using
code-transformation techniques such as loop unrolling and
constant and variable propagation to form larger basic blocks.

C. Symbolic Mapping Algorithm

The symbolic mapping algorithm requires two sets of in-
puts: a set of polynomials representing the CCS and another
set of polynomials representing the preoptimized library ele-
ments and complex instructions. The former has been gener-
ated in the target code identification step and the latter is the
output of the library characterization step. The goal of the sym-
bolic mapping algorithm is to decompose the polynomial rep-
resentations of the CCS into the polynomial representations of
the target library such that execution time and power consump-
tion are minimized. The power consumption and execution time
of each library element are provided to the mapping algorithm
as constants by the library characterization step as described in

Section IV-A. As opposed to tree covering based algorithms, in
our algorithm, mapping is performed simultaneously with alge-
braic manipulations.

Symbolic computer algebra is a set of algorithms capable of
algebraic manipulation of expressions containing undetermined
values (symbols), such as variablein . Sev-
eral commercial symbolic computer algebra softwares are avail-
able on the market; Maple [26] and Mathematica [27] are most
widely used. The algebraic object to be symbolically manipu-
lated is a set of multivariate polynomials that represent a crit-
ical basic block identified in the profiling step. Most interesting
symbolic polynomial manipulations are based on Gröbner bases
[30]. Gröbner bases also solve variable elimination in a set of
polynomials and ideal membership problems, which is the core
of the simplification modulo set of polynomials [30]. We use
the following set of symbolic techniques: factorization, expan-
sion, Horner transform, multivariate polynomial substitution,
and variable elimination. We have described the complex un-
derlying theory in the contest of hardware design elsewhere
[29], [28], [35]. In this section, we show the power of sym-
bolic algebra by means of few of the routines applied to simple
examples.

Example 2: Factor andexpandare inverse operations. Con-
sider using Maple to factor and expand the following polyno-
mial:

Example 3: Horner form of a polynomial is a nested normal
form with minimal number of multiplications and additions.
Any polynomial can be rewritten in Horner, or nested, form.
An example of Horner form polynomial for multiple variables
is shown below:

Example 4: Simplify implements substitution and variable
elimination for multivariate polynomials

The core of the library-mapping algorithm is the simplifica-
tion modulo set of polynomials (simplify) routine. The poly-
nomial representations of critical code blocks are simplified
modulo a subset of polynomials representing the library ele-
ments called the side relation set. Choosing the side relation
set is a nontrivial and important task, especially since different
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Fig. 5. Overview of the library mapping algorithm.

side relation sets results in different solutions. In previous work
[28], an algorithm was introduced to select the side relation set
such that the hardware implementation of a (portion of) data
path with a given component library has minimal critical path
delay. In this paper, we use the algorithm to optimize execu-
tion time of the CCS of software by mapping to preoptimized
library elements and complex assembly instructions. Since eval-
uating all subsets of the library is exponentially expensive, the
library-mapping algorithm uses the branch-and-bound method
with execution time and energy consumption as bounding func-
tions to prune the search space. All previously described sym-
bolic manipulations exceptsimplify are used as guidelines in
formulating different side relation sets to speed up the mapping
algorithm.

Fig. 5 gives an overview of the mapping algorithm. Inputs
to the algorithm are the polynomial representations of the CCS
and the polynomial representations of the target library ele-
ments. Initially, tree-height reduction, factorization, expansion,
and Horner-based transform are applied to the polynomial
representation of the CCS resulting in several different poly-
nomials representing the same code segment. Each of the
different polynomial representations is used to select a side
relation from the target library. These guidelines are used
to increase the speed of finding the desirable mapping. The
polynomial representation of the CCS is simplified modulo the
selected side relation sets in parallel. If the result ofsimplify
matches a library element then the CCS is mapped. Otherwise,
we need to continue to add to the side relation set until the
CCS is fully mapped to our library. The iterative part of the
algorithm, denoted in Fig. 5 asmain loop, is implemented using
branch-and-bound algorithms.

Table III shows the pseudocode of the library-mapping algo-
rithm. Inputs to this algorithm are the polynomial representation
of the critical-code sections and the polynomial representations

TABLE III
PSEUDOCODE OF THELIBRARY MAPPING ALGORITHM

of the library elements (). The bounding function is defined as
the best execution time forCCSseen so far. The lower bound
computed at each decision branch is the execution time of the
library elements in the side relation set in view of data depen-
dencies. If this lower bound is greater than the best execution
time seen so far, the corresponding decision branch is pruned.
Decision tree (decision_tree) implements the branch-and-bound
algorithm. The algorithm starts by initializing the root ofdeci-
sion_treeto the polynomial representation ofCCSand calcu-
lating an initial bound. The bounding variable is initialized to
the execution time of calculating theCCSpolynomial solely
with add and multiply instructions, the lexicographical map-
ping (LexMap). Nodes are added to this tree in breadth-first
manner. These nodes store the polynomial result ofsimplifyof
their parent node and the chosen side relation set. When a sim-
plification result corresponds to a polynomial representation of
a library element, a possible solution is found and the corre-
sponding tree node is marked accordingly. If the execution time
of the solution is less than previously encountered solutions, we
set the bounding variable to the current value. In case the simpli-
fication result stored in a tree node does not correspond to any
library elements, we apply the same steps to the new tree node
until either a solution is found or the corresponding branch is
pruned. SinceCCS is a polynomial and add and multiply in-
structions are always available in our library, we are guaranteed
to have a solution. However, our mapping algorithm searches
for a solution that best exploits the given software library.
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The branch-and-bound algorithm in Table III is applicable
to most practical problems and its runtime is a matter of
minutes. But, as for all branch-and-bound algorithms, the
worst-case complexity remains exponential. The speed of this
algorithm depends on the initial polynomial and the initial
side relation set. Here, we use a set of library independent
symbolic manipulations on the originalCCS polynomial to
help with the selection of initial side relation element. These
manipulations improve the execution time without hampering
the quality of the solution. First, we apply tree-height reduction,
factorization, expansion, and Horner-based transform to CCS
in the AllManipulationsfunction. As a result, we have several
different polynomials (exp_tree) representing the same code
section. Each of these representations can result in the desirable
implementation based on the available library elements.

To select the initial member of side relation sets, we start with
the primary inputs and cover the expression tree with the library
elements. We choose all library elements that cover the primary
inputs and a portion of the expression tree as initial elements of
the different side relation sets used to simplify the root of thede-
cision_tree. If the result of simplify is not a library element, we
add more elements to the side relation set without further guid-
ance from the expression tree and decompose the result. Note
that in selecting the side relations from the library, all different
permutations of the variables with the same data-type are con-
sidered. This algorithm is implemented in C with calls to Maple
V for the symbolic manipulations.

Example 5: In order to demonstrate the power of ourlibrary
mappingalgorithm, consider a basic block implementing

(2)

which is approximated using Pade approximation to the poly-
nomials shown in (3) in the previous step of the SymSoft flow
as described in Section IV-B3

(3)

The simplification modulo set of polynomials routine can be
used to map the numerator and denominator of (3) to the avail-
able instruction set. Let be the numerator of (3) with, ,
and the constants of the polynomial. In addition, we define
siderels as a subset of the available instructions with renamed
variables. We have

Note that the first element of the side relation set ( ) cor-
responds to the square or multiply instruction and the other two
elements of the set ( ) and the result of
simplify ( ) correspond to the MAC instruction. The side

relation set can be any subset of the available instruction set with
proper renaming of the variables. Different side relation sets re-
sult in finding other possible solutions for the specification. The
above implies

Therefore, the numerator of (3) can be mapped to one square
and three MAC’s instructions. Assuming R1, R2, R3, R4, and
R5 hold 1, , , , and , respectively, the resulting assembly
code is

In the MP3 decoder program, the basic block evaluating (2)
uses floating-point and takes 2124 cycles to run on the Stron-
gARM SA-1110 processor. The approximation represented in
(3) calculates using floating-point and using fixed-point
arithmetic and nested MACs as suggested by the symbolic opti-
mization. This approximation executes in 901 cycles. Thus, we
have achieved an improvement of 57% for this simple example.
The fixed-point version with no symbolic optimization executes
in 1367 cycles. Thus, approximately 50% of the improvement
achieved is due to use of fixed-point arithmetic and 50% is due
to smarter use of processor instructions.

V. RESULTS

We have tested the effectiveness of SymSoft using the ex-
perimental embedded system SmartBadgeIV and a wide range
of code examples used in communication, digital signal pro-
cessing, and streaming media. The SmartBadgeIV system and
our experimental setup for hardware execution time and energy
consumption measurement were described in Section III.

The first six software examples are obtained from a DSP soft-
ware benchmark suite [33]. The first two examples are software
programs that perform common digital signal processing com-
putations; discrete convolution and dot (inner) product. Convo-
lution is the linear operator can compute the output of a linear
time-invariant system in response to an input sequence given the
system impulse response sequence. The dot (inner) product of
two vectors is the summation of the products of the two input
sequences; i.e., .

The next four examples are different digital filters used in
digital signal processing and communication applications. The
first filter is a finite impulse response (FIR) filter. The next
two filters are biquad infinite impulse response (IIR) filters.
A single IIR filter of arbitrary order is often decomposed into
equivalent cascades of second-order IIR sections known as bi-
quads. Although the biquad cascade is analytically identical to
the single filter of higher order, the biquad filter realization is
more stable and less sensitive to quantization errors. The last
filter is a least-mean-square (LMS) FIR adaptive filter. The LMS
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TABLE IV
RESULTS OFSYMSOFT OPTIMIZATION ON A SET OF EXAMPLES

filter is a time-varying linear system for which the filter coeffi-
cients are adjusted at each time step to minimize the error be-
tween the actual output and a given desired output.

Finally, the last example is a full MP3 audio decoder imple-
mentation that streams MP3 encoded files from a server to a
client (SmartBadgeIV).

Table IV summarizes the results of applying SymSoft tool
flow to the set of examples discussed above. In each case, we
start with the fixed-point implementation of the algorithm and
use profiling to select the critical-code sections. Optimizing a
CCS results in noticeable improvement on any given example.
Next, the CCS are automatically mapped to the instruction set
available on the StrongARM SA-1110 processor and Intel’s IPP
library for StrongARM SA-1110 processor [14]. Table IV shows
the execution time of each example before and after the opti-
mization with SymSoft. Note that the original execution time
column reports the execution time of the examples when all pos-
sible optimizations available with the ARM compiler are used.

The improvements demonstrated in Table IV indicate that,
by using SymSoft, we can obtain significant execution time
improvement for a range of applications over commercial com-
pilers. The amount of improvement achieved is dependent on
the number of critical blocks that are optimized and the library
implementations available for the given block. Examples in
Table IV show improvements in the range of 6% to 73% with
an average of 28% improvement.

In the next section, we will go through all the steps of the
SymSoft flow, using the MP3 decoder software as an example.

A. MP3 Optimization Results

We start with an algorithmic level description of the MP3
audio decoder obtained from the International Organization for
Standardization [3]. Our design goal is to accelerate the MP3
decoder and lower its energy consumption while keeping full
compliance with the MPEG standard. The first step in decoding
the MP3 stream is synchronizing the incoming bitstream and
the decoder. Huffman decoding of the SubBand coefficients is
performed before requantization. Stereo processing, if appli-
cable, occurs before the inverse mapping which consists of an
inverse modified discrete cosine transform (IMDCT) followed
by a polyphase synthesis filterbank. During the optimization
process, we used instructions available on the StrongARM
SA-1110 processor, a mathematical library available with the
Linux operating system [17], Intel’s IPP library for StrongARM

TABLE V
PROFILING THE ORIGINAL MP3 CODE

SA-1110 processor [14], and a library populated with in-house
preoptimized routines. The library elements ranged from
simple mathematical functions such as MAC to as complex
elements as IMDCT routine.

The SymSoft flow, as described in Section IV, consists of li-
brary characterization, target code identification, and the final li-
brary-mapping step. The library characterization step uses hard-
ware measurements for performance and simulations for energy
consumption [24]. The polynomial representation is obtained
either from the source code (Linux mathematical and in-house
libraries), or from documentation (IPP library).

The target code identification consists of three important
steps: data type conversion, code profiling, and formulating
polynomials to be mapped. The first step is to check if
floating-point data types are suitable for the given platform.
Since SmartBadgeIV’s processor, StrongARM SA-1110, can
only emulate the floating-point operations, there is a need for
data representation transformation. The code was converted to
use fixed-point arithmetic. It was verified through simulation
that 27-bit precision fixed-point data-types are sufficient to
meet the compliance test provided by MPEG standard [25].
Automating floating-point to fixed-point data type conversion
has been targeted by the tool Fridge [4]. Profiling the original
source code highlights the CCS. Table V shows the results
of profiling original MP3 decoder software we obtained from
the standards body. All profiling reported in Table V is using
hardware measurements. The results are shown for one frame
and represent only the most significant functions in terms of
their performance impact. Next, we formulate equivalent poly-
nomial representation of each of the critical functions shown in
Table V. We use polynomial approximations for the nonlinear
calculations in the critical basic blocks. Once more, we validate
that these approximations satisfy the MPEG compliance test
[25]. The output of the target code identification step is a set of
polynomials representing the critical sections of the code.

In the first phase of optimization, the polynomial represen-
tations of the critical-code sections of the first three function
shown in Table V are mapped into the StrongARM assembly
instructions by algorithm described in Section IV-C. It is im-
portant to note that StrongARM compiler was not capable of
using the MAC instruction effectively. However, our symbolic
algorithm was able to use this instruction efficiently. Automati-
cally generated inline assembly was inserted in the C code as the
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TABLE VI
COMPARISONBETWEEN SYMSOFT INSTRUCTIONMAPPING AND COMMERCIAL COMPILER

TABLE VII
MP3 PROFILE AFTER FIRST PHASE OFOPTIMIZATION

result of the decomposing algorithm. The results of optimizing
critical functions of the MP3 code by SymSoft are compared
with the original results from straightforward compilation in
Table VI. The numbers reported in Table VI are obtained using
the cycle accurate energy simulator described in Section IV-B2.
The first, third, and fifth rows in Table VI correspond to the first
three rows of Table V. The second, fourth, and sixth rows in
Table VI are functions related to the function in the previous
row. As we can see, 12%–70% improvement has been achieved
using the SymSoft methodology. Such improvement was pre-
viously possible only thorough manual optimization with inline
assembly. The automation introduced by SymSoft drastically re-
duces the embedded software optimization cycle.

Next, we profile the MP3 decoder that results from this phase
of optimization on the hardware and measure the execution time
of each function while decoding one frame of the MP3 stream.
The resulting performance profile is shown in Table VII. Al-
though the execution time per frame is drastically reduced (by
two orders of magnitude compared with Table V), we can see
that still almost 85% of the execution time is spent in the IMDCT
and SubBand synthesis functions.

In the second phase of optimization, the code is mapped to
Intel’s IPP library using the SymSoft methodology. Here, we
find two primitives that match the two critical procedures shown
in Table VII. The resulting performance profile is shown in
Table VIII. Our method automatically uses two of the IPP rou-
tines. While the new profile shows that SubBand synthesis still
takes roughly 35% of the execution time for each frame, we see
that MDCT is no longer a critical portion of the code. Notice

TABLE VIII
MP3 PROFILE AFTER SECOND PHASE OFOPTIMIZATION

that the execution of the IPP SubBand synthesis routine is one
order of magnitude faster than the previous version and the total
time for decoding one frame is reduced by a factor of five.

Table IX summarizes the performance and the energy results
of the overall optimization process we described in this sec-
tion. All measurements are performed on the SmartBadgeIV
while running at maximum processing speed and voltage. We
start from the original source code obtained from the standards
website that runs roughly two orders of magnitude slower than
real-time playback. The next two rows show the results of map-
ping only into Intel’s IPP library; more specifically, we are able
to automatically use IPP’s SubBand Synthesis and IMDCT in
the original code. However, the rest of the code remains intact
and still operates on floating-point data. StrongARM SA-1110
cannot perform floating-point operations natively. As a result,
the execution time of the code is still far from real-time play-
back.

The fourth row corresponds to the results of the first phase
of optimization using SymSoft methodology (without using
the Intel library). In this phase, the target libraries used in the
mapping step consist of the assembly instructions available on
the StrongARM and a set of in-house fixed-point routines. As
shown, we have achieved an improvement of two orders of
magnitude in both performance and energy for this mapping.
The improvement is because of effective use of the MAC
instruction available on StrongARM and conversion of most
floating-point operations to fixed point. Fixed-point accuracy
is verified through simulation.

Additional savings of a factor of four is obtained by further
optimizing the code and adding Intel’s IPP library to the target
libraries in the mapping step. The improvement of a factor of



974 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 8, AUGUST 2003

TABLE IX
EXECUTION TIME AND ENERGY OFDIFFERENTVERSIONS OF THEMP3 DECODER

four is solely due to automatic use of complex library elements
that have been preoptimized for the given processor. Full com-
pliance to the standard of each version of MP3 code is ensured
by checking the accuracy at each mapping step with MP3 com-
pliance test [25]. Note that even larger energy savings are pos-
sible by using processor frequency and voltage scaling, since the
final MP3 code optimized by SymSoft runs almost four times
faster than real-time playback.

The last row in the table, IPP MP3, represents fully hand-opti-
mized MP3 code for StrongARM available from Intel. The final
optimized version by SymSoft is a factor of 3.5–3.7worse
than the IPP MP3. The lower bound on execution time (IPP
MP3) is achieved by full manual optimization, which is an error-
prone and tedious task. Our methodology reduces the manual
intervention of software designers in the optimization process
and its results are still faster than real-time playback. Such im-
provements were previously only possible by skilled designers,
familiar with the hardware and software, hand optimizing the
code for a given embedded system platform.

As it can be observed from Table IX, the reported optimiza-
tion space for the MP3 decoder spans over three orders of mag-
nitude. The major contribution of this work is to provide a semi-
automated optimization flow that closely approaches the lower
bound of the optimization space within the limitations of poly-
nomial representation for code sections. Our approach is par-
ticularly suitable for data intensive algorithms such as DSP and
multimedia applications, since large portions of these software
codes can be easily represented by polynomials.

VI. CONCLUSION

The contribution of this paper is a tool flow, SymSoft, for
energy and performance optimization of algorithmic level soft-
ware code to execute on a given embedded processor. There are
three main steps in our methodology: library characterization,
target code identification, and library mapping. Library charac-
terization step finds a polynomial to represent the functionality
of each library element and associates a set of parameters such
as execution time, energy consumption, and input/output type
with each library element. In the target code optimization step,
our tool uses execution time and energy profiling to automati-
cally identify need of automated data representation conversion
and the critical sections of the code that would benefit most from
optimization. For transcendental arithmetic functions, approxi-

mation into a polynomial representation is needed in order to
enable symbolic algebra techniques. Finally, the library-map-
ping step uses symbolic computer algebra to automatically de-
compose the polynomial representations of the CCS into a set
of library elements available for the embedded processor.

We demonstrated application of our tool, SymSoft, to the
optimization of several examples on the SmartBadgeIV [2]
embedded system. Using SymSoft for source code optimization,
we have been able to increase performance and energy consump-
tion of these examples dramatically while satisfying the output
accuracy requirements. These improvements are achieved by
the use of preoptimized software library functions, conversion
of critical floating-point operations to fixed point, and reducing
the number of memory accesses and instructions executed in
CCS. The technique presented in this paper can be easily used in
conjunction with other compiler-optimization techniques [7].
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