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ABSTRACT: In this paper we describe a general way of formalizing reasoning
behaviour. Such a behaviour may be described by all the patterns which are valid for
the behaviour. A pattern can be seen as a sequence of information states which
describe what has been derived at each time point. A transition from an information
state at a point in time to the state at the (or a) next time point is induced by one or
mor e inference steps. We choose to model the information states by partial models
and the patterns either by linear time or branching time temporal models. Using
temporal logic one can define theories and look at all models of that theory. For a
number of examples of reasoning behaviour we have been able to define temporal
theories such that its (minimal) models correspond to the valid patterns of the
behaviour. These theories prescribe that the inference steps which are possible, are
"executed" in the temporal model. The examples indicate that partial temporal logic
is a powerful means of describing and formalizing complex reasoning patterns, as the
dynamic aspects of reasoning systems are integrated into the static ones in a dear
fashion.

KEYWORDS: temporal logic, nonmonotonic reasoning, dynamics of reasoning.

1 Introduction

In practical reasoningusually there are different patternsof reasoningbehaviour
possible, each leading to a distinct set of conclusions. In logic arsedto express
semanticdn termsof modelsthat representlescriptionsof (conclusionsabout) the
world and in terms of semantantailmentrelationsbasedon a specific classof this
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type of models. In the (sound) classical case each reasoning pattern leads to
conclusionghat aretrue in all of thesemodels:eachline of reasonindits to each

model. However, for the non-classical case the picture is quite differergx&ample,

in default reasoningconclusionsets can be describedby (Reiter) extensions.In
commonexampleghis leadsto a variety of mutually contradictoryextensions.It
depends on the chosen line of reasoning which one of these extensions fits the pattern
of reasoning.

The general idea underlying our approach is thadréicularreasoningpatterncan
be formalized by a sequenceinformation states Mg, My, ...... . Hereany M,
is a description of the (partial) knowledge that has been dedudedtiip momentin
time t. An inferencestepis viewedasa transition M; -> My, of the current
information state M, to the nextinformation state M. In the currentpaperwe
formalize the information states M; by partial models(althoughother choicesare
possible).A particularreasoningpatternis formalizedby a sequence(My); ¢ 1 Of

subsequent partial models labelled by elements of a flow of timesucha sequence

is interpretedas a partial temporalmodel. A transition relating a next information
state to the current orean be formalizedby temporalformulaethe partial temporal
model hasto satisfy. So, inferencerules will be translatedinto temporalrules to
obtain a temporal theory describing the reasoning behaviour. Each possible gfattern
the reasoning process can be describedrpdel of this theory (in temporalpartial
logic).

Using our techniquesthe semanticsof reasoningcan be viewed as a set of
(intended) partial temporal models. The branching characterof these reasoning
processegan be describedby branchingtime partial temporalmodels. One (strict)
line of reasoningcorresponddo a linear time model: a branchin the tree of all
possibilities. In one branching time modabrethan oneline of reasoninglandthe
resulting conclusion sets) can be represented(even when they are mutually
contradictory).

In this paper we will presenttemporal axiomatizationsof three types of
reasoningreasoningoasedon a classicalproof system,defaultreasoningand meta-
level reasoning.We show that it is possibleto define formal semanticswhere
(temporal) aspects of the process of reasoaimithe resulting conclusionsare both
integrated in an explicit manner.

In Section2 we introducetemporalpartial logic. In Section3 it is pointed out
that under some conditions a temporal theory has a unique (gpmorphism)final
branchingtime modelthat coversall possiblelines of reasoning.The semanticsof
such a temporal theory can be defined on the basis of this uimalenodel: a form
of final model semantics.

In Section4 we show how proof rules in a classical proof system can be
representeddy temporalrules. Thus a temporaltheory is provided that has a final
model where all possible classical proofs are represented as branches. InSeetion
show how default reasoning can be formalized in temporal plgel. In Section6
we treat the reasoning of a meta-level architecieshow how alsoin this casea
temporal axiomatization of the reasoning can be obtained.



The approach as worked out here cawibered as a generalizatiorof the manner
in which modal and temporal semanticscan be given to intuitionistic logic (see
[GAB 82], [KRI 65]). One of the differencesis that we use partial (information)
states;anotherone is that we apply the approachto a wider class of reasoning
systems.

In practical reasoning systems for complex tasks ofythe analysedn [TW 93]
often the dynamicsof the reasoningis subjectof reasoningitself (using strategic
knowledge to control the reasoning). Thereforetifieroverall semanticof this type
of reasoningsystemit is hardto make a distinction betweenstatic aspectsand
dynamicaspects.In particular,it is impossibleto provide independenteclarative
semanticsfor such systemswithout taking into account the dynamics of the
reasoning. For the overall reasoning system a formal semantical desdeptieted
that systematicallyintegrateshoth views. The lack of such (overall) semanticsfor
complexreasoningsystems(with meta-levelreasoningcapabilities)was one of the
major openproblemsthat were identified during the ECAI-92 workshopon Formal
Specification Methods for Complex Reasoning Systems where 8 fepaaification
languages for reasoning systems for complex tasks where anahdeomparedsee
[HLM et al. 93], p. 280 ). The approachintroducedin the current papercan be
consideredhs a first stepto provide semanticof formal specificationlanguagesof
this type.

2 Temporal Partial Logic

In this sectionwe introduce our temporal partial logic, basedon branchingtime
structuresOur approachs in line with whatin [FG 92] is called temporalizinga
given logic; in our casethe given logic is partial logic with the Strong Kleene
semanticsWe shall startby defining the time structures,then we will define the
models basedon them and finally we will define temporal formulae and their
interpretation.

Definition 2.1 (Flow of Time)

A flow of time is a pair (T, <) where T is a set of time points and is a binary
relation overT, called themmediate successor relation. We want to consideforward
branching structures(T, <) viewed as a graph has be a forest, thatis a disjoint
union of trees.Furthermorethe transitive (but not reflexive) closure « of < is
introduced.

Definition 2.2 (Partial Temporal Model)
a) A (propositional)partial temporal model M of signature £ is a triple
(M, T, <), where (T, <) is a flow of time andM is a mapping

M:Tx A(Z) » {0, 1, u}
If a is an atom, and is a time point inT, and M(t, a) = 1, then we sayhatin
this model M at time point t the atom a is true. Similarly we saythat at time
point t the atom a is false, respectivelyundefined, if M(t, a) = 0, respectively



M(t, a) = u. We will sometimedeaveout the flow of time and denotea patrtial
temporal model bym only.
b) If M is a partial temporalmodel,thenfor any fixed time point t the partial
model M, : At(Z) » {0, 1, u} (the snapshot at time point t) is defined by

My a |[=» M, a)
We sometimes will use the notatidv;); 1 Where eachM, is a partial modelas
an equivalent description of a partial temporal madel
Theordering of truth valuesis defined byu< O, u< L, u< u,0< 0,1 < 1. We
call the modelN arefinement of the modelM, denoted byM < N, if for all atoms
a it holds: M(a) £ N(a). A partial temporal modelM is calledconservative if for
all time points s and t with s «t it holds Ms< M.
¢) Therefinementrelation < betweenpartial temporalmodelsbasedon the same
flow of time is defined byM < N if for all time pointst andatoms a it holds
M(t, a) £ N(t, a).

Becauseour partial temporalmodelsbasedon forests have a more differentiated
structure towards the future than towards the past, we agherf@lowing temporal
operatorsln the standardnannerwe build temporalformulae.In thesedefinitions,
(M, t) "o means that in the model at time pointt the formula o is true,
(M, t) E-a thatitis falseand (M, t) £ Yo thatit is undefined.Furthermore
(M, t) ¥ "o denotes that(M, t) E* a is not the case.

Definition 2.3 (Interpretation of Temporal Formulae)
Let a (temporal) formulan, a partial temporal mode¥, and a time point e T be

given, then:
a) (M, t) £*Pa - Ose T [s«te&e M, s)E*a]
M, t) E* Ca - M, 1) EY a
M, t) E*IXa - Ose T [t<se (M,s)F*al]
M, t) E* IFa - OseT [te«esea (M,s)F*a]
M, t) E* VFa - for all branches including t there

exists an s in that branch such that
[tese (M, s)Etal]
b) The temporal operatorsare defined in a two-valued manner, so for every
Oe {3aF, VF, P, C,3AX}:
(M, t) E -Oa = (M, t) ¥ *Oa
¢) The connectivesare evaluatedaccordingto the strongKleenesemanticsand the
atoms according to Definition 2.2.
d) For a partial temporal mode¥, by M £t o wemean (M, t) £t a for all
teT andbyMETK wemean M £t ¢ for all ¢ e K, where K is asetof
formulae possibly containing any of the defined operators. We wilttety M is a
model of the theoryK.
e) A partial temporal modeM of a theoryK is called aninimal model of K if
for every modelC of K with C <M it holds C = M.



If in a model M the formulaP(T) is trueattime point t then t musthavea
predecessor, and thereforeP(T) will be true exactly inthe time points which are
minimal with respect to<.

From now on the word (temporal)formula will be usedto denotea formula
possibly containingany of the new operatorsunlessstatedotherwise.lf a formula
contains no operatorsig called objective. We call a subformulaguarded if it is in
the scopeof an operator.A purely temporal formulais onein which all objective
subformulae are guarded.

Whatis most interestingabouta reasoningprocessjs of courseits set of final
conclusions. Talkingboutfinal conclusionswe will assumehat the reasonings
conservative, which means thaincea factis establishedit will remaintruein the
future of the reasoning process. In that case a fact is a final conclusigmonfegsf
it is establishedht somepoint in time in the branchrepresentinghe process.So
besides reasoning paths also the conclusions they resué definedin a branching
time model in the following manner:

Definition 2.4 (Limit Models of a Conservative Model)
Let M be a partial temporalmodel. Then M is conservative if M; < Mg

whenever t « s. Thelimit model of a branch B of M basedon flow of time
(T, <), denoted bylimg M, is the partial model with for all atomg:

@ limgME*p - Ote T': M, t) E* p
(i) limgME-p - Ote T': M, t) - p

Notice that p is undefined inlimg M if and only if p is undefined inB; for all
te T'.
3 Final Models

In this section M and M' denotepartial temporalmodelsbasedon the flows of
time (T, <) and (T, <) respectively.

Definition 3.1 (Homomorphism)
A mapping f: T -> T is called ahomomorphismof M to M' if

0] s<t = f(s) < f(t)
(i) M(s) = M'(f(s))
(iii) If s is a minimal element off then f(s) is minimal element ofT

Definition 3.2 (Persistency under Homomorphisms)
Let f: M->M be a homomorphism. The formula is calledforward persistent
(under f) if for all time pointst in T:

MbDHETae = M) FT o

The following proposition is an immediate consequence of [ET 94a].



Proposition 3.3

Let a be anyformulacontainingat mostthe operatorsC and P andp any
objective formula. Thethe formulae &« and a — 3IX(P) areforward persistent
under any homomorphism.

Definition 3.4 (Final Model)

The modelF of a temporal theoryTh is calleda final model of Th if for each
model M of Th there is a unique homomorphisi: M -> F. Themodel F is
called afinal minimal model of Th if F is a minimal model offh andfor each
minimal model M of Th there is a unique homomorphisin M -> F.

The following result showsthe existenceof final models for a certain class of
theories (see [ET 94a)).

Theorem 3.5

If a final (minimal) model of a temporal theoryh exists, thenit is unique(up to
isomorphism).If all formulaein Th are forward persistentunder surjective
homomorphisms then there exists a (unique) final médglof Th.

4 Temporal Axiomatization of a Classical Proof System

In this section we willapply our approachto a relatively simple type of reasoning:
based on a classical proof system. Wik show how proof rules can be represented
by temporal formulae. As an example, consider modus ponens:

Here A and B are meta-variables ranging over the set of formulae,farél B is
a term structurebuilt from them using the logical connective —» . We want the
partial temporalmodelsto reflectthe proof processsuchthat a partial model at a
certain point in time reflects what has been derived up tanloatent. The temporal
interpretation of such a proof rule we have in mind is then the following.

if for any formulae A and B
in the current information state both A and A - B have been derived
then in a next information state B has been derived

This interpretationof modusponensis formalized by the following temporal
axiom scheme (for all formulag and B):
C(A) A C(A > B) — 3X(B).
However, the truth of the formulag@ and A — B in a current state alreadiyplies
the truth of B in the samestate,dueto the compositionaltruth definition in the
Strong KleenesemanticsAs we want to describethe stepsof reasoningby time



steps this is undesirable. A solution for thigdsextendthe notion of partial model
to the notion of valuation of all formulae, mmannersimilar to [BM 92], also see
[SAN 85]. For each formulap of the original language weefinea new atom at,
and then we take the propositional language indbgethesenew atomsas our new
language. So ifFORM(X) denoteghe setof formulaebasedon the signature £,
then we define a new signature X' basedon the set of atoms At(X') =
{atg |9 € FORM(ZX) }. Sowe havea naturalbijection ¢ -> at, between
FORM(ZX) and At(X'). Notice thatAt(X) is embedded inAt(X") by At(X) s p
-> at, € At(Z).

After this change of language has been accomplished, we can describe any instance
of the proof rule modus ponens by a temporal formula as follows:

C(aty) A C(aty 5, ) — IX(aty)

This allows usto give a temporalaxiomatizationof a proof system.In addition
we need a temporal translation of the initial axioms: the theory from which
conclusions are to be drawn. Suppadseis any set of formulaef signatureX . Let
at(K) be the set of atoms corresponding to the formulaé.ilVe require thathese
atoms are true at each momentiafe. Thereforefor any suchformulae ¢ we can
simply add the formulaec(atey) to our temporal theory.

After these preparations we are ready to formalize the translation of therylesof
into temporal formulae:

Definition 4.1

a) By Forterm we denotethe set of term structuresbuilt up from (meta-)
variables,rangingover FORM(Z), by use of the logical connectives.A proof
system PS is a setof proof rules of type (A;, ....., Ay) / B wherethe

Ai,B e Forterm. Letaproofrule PR: (A4, ... ,Ay) / B begivenen let
MV pr be the set afmeta-variables occurring in A, ..., Ac and B. A mapping
6. MVpr -> FORM(Z) is calleda meta-variable assignment . Any meta-variable
assignments can be extended in a canonical manner to a substitution mapping
o*. Forterm ->FORM(X)
suchthat o* substitutesformulaefor the meta-variable®f MV pg in any term
structure of Forterm.
Thetemporal trandlation of a proof rulePR of the form (A1, ...., Ay)/ B is
the setTpg Of instances of temporal formulae defined by:
{ C(atg+pnq) A ...A C(atg+p,) = IX(atg+p) | 6 meta-variable
assignment for PR }
Thetemporal translation Tpg of PS is defined by: Tps = Upre ps Tpr-
b) Let K be any set of objective formulae of signatbr& he temporal trandation
Tk of K is defined by:Tx ={C(aty) |® € K }.
¢) We have to makeurethat oncea fact hasbeenestablishedit remainsknown at
all later points (conservativity); this can be axiomatized by the temporal theory
C'= {P(a— C(a | ae At(X)}



The overall translation of proof rules and theory is defined by:
ThPS,K = TpsU TK uC’

Some proofsystemsmay consistof both proof rules andaxioms;thesemay be
incorporated by adding them to the thedty

The first observation about this temporal thedtyss  is that there exigpartial
temporalmodelsof it. Such a model could be constructedincrementally,starting
with aroot, addingits successopartial modelsin the next step,and any time the
model has been constructed up until a certain lewvel can constructthe next level
by adding successor partial models to those at the current level. This is possible since
the formulae ofThpg « prescribe existence of successors, obeying cestajerties.
It is easyto seethat thesepropertiesare never contradictorysince only truth of
certainatomsis prescribedTaking such a model and changingthe truth value of
atomswhich are not prescribedo be trueby Thpsk to undefined,points out a
mannerto establishthe existenceof minimal models of Thpg k. We have the

following theorem.

Theorem 4.2

Let PS be anyproof systemand K any setof objectiveformulaeof signaturex
andlet Thpsk bethetemporaltheory Tpsu T U C'. Let M be a minimal

partial temporal model offhpg k. For any formulag of signatureX it holds
Kkpse & MET=P(T)— 3F(aty)

Note that for a minimal partial temporal model Tfips x the partial models aime

points which are minimal, are the same (atoms correspondfognollacof K are
true, other atoms are undefined). In this way a semantics is defined whibk seen
as a generalizatiorof the mannerin which modal and temporal semanticscan be
given to intuitionistic logic (see [GAB 82], [KRI 65]Apart from the use of partial
models, our approach can be used for any proof system.

Proposition 4.3
The temporal theoryThps x has a final modeFpsg k.

If we have a proofeq, ... , ¢, of which (only) thefirst k formulaeareaxioms
from K, thena proof traceis a sequence(M;)i-g n.x Of partial modelssuch that
Lit(M ) = {aty; | j =1, .. ,k+i }. In sucha tracethe partial model M; reflects

exactly the formulae which have been derived up untilithetep of theproof. It is
easyto seethat, although such a proof traceitself is in generalnot a model of
Thps k it can always be embeddéed the final model Fpg k. Note that for a branch
B of thefinal modelthe limit model limg Fpgk corresponddo the set of all
conclusions drawn in that reasoning pattern; ithia subsetof the deductiveclosure
of K underPS (since we allow non-exhaustive reasoning patterns).



5 Temporal Theories of Default Reasoning

In this section we will show that default reasonpajternsbasedon normal defaults
canbe capturedby temporaltheories.The main point is how to interpreta default
reasoning step

if o« anditisconsistent to assume B
then B can be assumed

in a temporal manner. Wgill view the underlyingdefault (o : B)/p asa (meta-
level) proof rule statingthat if the formula o hasalreadybeenestablishedn the
past,andthereis a possiblefuture reasoningpathwhere the formula p remains
consistentthen B canbe assumedo hold in the currenttime point. As partial
models can only be used to describe literals, instéaatbitrary formulae,we restrict
our defaultrulesto oneswhich arebased on literals, which meansthat o and B
haveto be literals. As in the previoussection,this is not an important hindrance,
sincefor an arbitraryformula a we canadda newatom at, to our signature,
adding the formulao < at,, to our (non-defaultknowledgein W. The translation
of the rule (a : B)/B in temporal partial logic will be:

Pa A VF~ B - Cﬁ
Here = VF—= B is true at a point in time if not for all future patkise negationof
B becomesdrue at somepoint in that branch,which is equivalentto: thereis a
branch,starting at the presenttime point, on which B is always either true or
undefined.To ensurethat formulaewhich aretrue at a certain point in time, will
remaintruein all of its future points (oncea fact hasbeenestablishedjt remains
established), we will adtbr eachliteral L arule P(L) -» C(L). Furthermorejf
we have an additional (non-default)theory W it can be shown (see [ET 93],
[ET 94b]) that there exists a temporaltheory which ensuresthat all conclusions
which can be drawn using the theony and the default conclusions at a certaime
point, are true in the partial modai that time point. The completetranslationof a
normal default theory is as follows:

Definition 5.1 (Temporal Interpretation of a
Normal Default Theory)
Let A =( W, D) be a normal default theory of signatute Define

C = {PL)»> CL)|L e Lit(X)}u {OF(T) }
D' = {Po A VF-B - CB|(:B)/Be D}
w = {C(L)|Llteralb WE L} U

{ C(con(F))—> C(L) | L literal, F # & a finite set of
literals with Fu WE L}

Thetemporal interpretation of A is the temporal theory
Thy=C'u D'U W



Minimal temporal models of Th, describethe possible reasoning paths when
reasoning with defaults from. It turns out that thereis a nice connectionbetween
the branches of suchrainimal temporalmodel and Reiter extensionof the default
theory. We will first give a definition of a Reiter extensionof a default theory,
equivalent to Reiter’s original definition (in [REI 80]):

Definition 5.2 (Reiter Extension)
Let A = (W, D) be a default theory of signatutk and letE be a consistent set

[ee]
of sentences for=. Then E is a Reiterextensionof A if E = L_JO E; where
1=

Eog=Th(W), and for all i = 0
Eis1= ThHEjU {B|(a:B)/BP e D,ae E; and = B¢ E})

If E is a Reiter extension, then B we will denote the subsetd E asdefined

in this definition. The following theoremshowsthat in the caseof linear models
thereis a clearcorrespondencbetweenextensionsf a defaulttheory A and the
minimal linear time models of themporaltheory Th, (alsosee[ET 94b]). For a

linear modelwe canalwaysassumehatit is basedon the flow of time ( N, <')
with s<'t iff t=s+ 1 For a consistent setf literals S by < S > we
denote the unique partial moded with Lit(M) = S.

Theorem 5.3

Let A =( w, D) be anormal default theory.
a) If M is a minimal linear time temporal model T4, then

Th(Lit(lim ,, M) U W) is a Reiter extensiore of A.

Moreover, E;= Th(Lit(M ;) u W) for all t e N.

b) If w is consistentand E a Reiterextensionof A, thenthe partial temporal
model M defined by M = (< Lit(E) >); ¢ N IS @minimal lineartime temporal
model of Th, with Lit(lim y M) = Lit(E) .

Thereis the following connectionbetweenthe branchesof (minimal) temporal
models of Th, and the linear (minimal) temporal models T 4:

Proposition 5.4
Let A be a normal default theory ard a temporal model offh,.

a) Every maximal branch of1 is a linear time model ofh,.
b) M is a minimal temporal model of, if andonly if everymaximal branchof
M is a (linear) minimal temporal model ah,.

What we would now hope is that for a default theory a final model wouldwkish
capturesall of the linear partial temporal models, and thus capturesall of the
extensiondn one model. This is howevernot in generalthe case,but thereis a
category oftheories(which includesall the theorieswith a finite numberof default



rules) for which such a finahodel alwaysexists. To identify this categorywe need
the following notion:

Definition 5.5 (Extension Complete)
Let A be a default theory.
a) We call a chain of sets of formulae

Sc S1e€ S ¢
approximated by a (Reiter) extension E of A upto depth n if foralli < n it
holds s = E; (where theg; are as in Definition 5.2). The chai(Sy), < N is called
approximated by a set of Reiter extension®R of A if for every ne N thereis an
extensionE e R such that(Sy)x ¢ N iS approximated byE up to depthn.

b) Wecall A (Reiter) extension complete if for any chain of setsof formulae
(Sok e N that is approximatedy a setof (Reiter)extensionsR of A, its union

Uk eN Sk Is a Reiterextension E with (wherethe E; areasin Definition 5.2)
E;=S; for all i.

In [ET 94b] an example is given of a default theory which is not extersiomplete.
For the defaulttheorieswhich are extensioncomplete,we have the following (see
[ET 94b]):

Theorem 5.6

Let A be a normal default theory.

a) IfA is extensioncompletethenthereexistsa (unique)final minimal temporal
model FM, of Thy.

b) Suppose a final minimal temporal mode, of Th, exists.

Then therds a oneto one correspondencbetweenthe set LT(FM,) of maximal
branchesB of FM, and the seE(A) of all Reiter extension€ of A.

Here B and E correspond to each other if and onlyBf= (< Lit(E;) > N and

E = Th(Lit(lim g M) U W) .

6 Temporal Axiomatization of a Meta-level Architecture

In this section we apply our approach to a thirt of reasoningpatterns:generated
by a meta-level architecture reasoning system. Meta-level architectures fdvasibe
of quite powerful reasoningsystems:they have beenapplied for exampleto non-
monotonic reasoningand reasoningabout control (e.g., [BK 82], [CB 88],
[DAV 80], [GTG 93], [MN 88], [TT 91], [TT 92], [WEY 80]). A meta-level
architecture consists of two separate reasoning levels or compdadherdbject level
component and the meta-level component. @trenectiondetweenthe components
are defined by so called upward and downward reflections.

As an example, supposethe meta-level reasoningcomponent has (meta-)
knowledgeby which it canbe deducedn which statewhat goal is adequatdor the
reasoning of the object level component:



if the atom a is unknown, then the atom b is proposed as a goal

If we assume that after downward reflection indeed the proposetasiaéenchosen
(in the literature this is called the causalconnectionassumption;[MN 88]), this
meta-knowledge can be interpreted in a temporal manner:

if in the current state the atom a isunknown  (in the object level reasoning
component)
then in a next state the atom b isa goal (for the object level reasoning process)

Thus meta-level reasoning implies a shifttime, replacingthe goalsat the object-
level by new goals (the onesproposedby the meta-level).We will formalize these
notions in subsequent (sub)sections.

6.1 Formalizing the Object Level Component

In the sequelby + we will denoteany sound inferencerelation that is not
necessarily complete (e.g., ook naturaldeduction,chaining,full resolution,SLD
resolution, unit resolution, etc.). A partial model is complete if it does not assign the
truth value undefined to any atom. Roconsistentset of formulae K, of signature

I, by ISk(X) we denotethe set of partial models which have a complete
refinement (with respect ta) which isa modelof K. This setcanbe seenasthe

set of partial models which are "consistent" with

Definition 6.1 (Deductive Closure)
Let K be a consistent set of objective formulae of signalre
For M € ISk(X) we define the partial modealcc-(M) by

deF(M) E*L & Ku Lit(M) + L
for any literal L. This model is called thaeductive closure of M underK.
We call M deductively closed under K if M = dcg™(M).

Definition 6.2 (Conservation, Monotonicity, ldempotency)
Let K be a consistent set of objective formulae of signakire
The mappinga : ISk(X) = ISk (X) is called:
(i) conservative if M < a(M) for all M e 1S (%)
(i) monotonic if a(M) < a(N) for all M, N € ISk (X) with M <N
(iif) idempotent if a(a(M)) = a(M) for allM e 1Sk (X)

Proposition 6.3

Let K be a consistent set of objective formulae of signairéhen the mapping
dek™: ISk (E) = ISk (E) is conservative, monotonic and idempotent.
Moreover, for anyM € ISk (X) and any complete model of K with M < N it
holds dckF (M) < N.

In case of controlled non-exhaustive reasoning, mapgrejsvolved (dependingon
certain control settings)that in principle are not idempotent. However, we still



require thesenappings(called controlledinferencefunctions)to be conservativeand
monotonic. Now we can formalize the object level component as follows.

Definition 6.4 (Object Level Component)

The object-level reasoning component OC is defined by a tuple
OC = ((Z, OT, F ), {E, ot vor" )

with

L, a signature, called thabject-signature

oT a set of ground formulae expressed in termg,otheaobject theory

+ a classical inference relation (assumed sound but not necessarily complete)
. a signature, called thentrol signature and

Hot" D 1SoT(Eo) X IS(E) = 1So7(E0)

vor" D 1SoT(Eo) X IS(Ee) = IS(Z)

We call ugtt the(controlled) inference function for the object-level, ana o~ the
process state update function. For any N e IS(X.) the mapping

Mot 1 1SoT(Ee) = 1SoT(Eo)
is defined bypgtN(M) = pot™ (M, N). We assumehat for any N e IS(Z.) this
otV is conservativeand monotonicand satisfies uotN(M) < decor™(M)  for all
M e 1SoT(E,). When no confusion is expectade will leaveout the subscriptand
superscript ofugrt and vgrh and write shortlyp and v.

The control-informationstate N  specifiesat a high level of abstractionall

information relevantto the control of the (future) reasoningbehaviour;i.e., the
object-information statevi and the control-information stats togetherdetermine
in a deterministicmannerthe behaviourof the object-levelreasoningcomponent
during its next activation. The processstate update function expresseswhat the
process brings about with respéatthe descriptoran the control-informationstate.
Examples: an object-atom wagsknown, but becomesnown during the reasoning;
an object atom that was a goal has failed to be found.

6.2 Formalizing the Meta-level Component

In the meta-reasoningve distinguish two special types of (meta-)information:
a) information on relevantaspectsof the current (control-)stateof the object-level
reasoningprocess(possibly also including facts inherited from the past), and
b) information on proposals for control parameters that are meant to guiolgieoe
level reasoning process in the next activation. Therefore we adbatie the meta-
signaturetwo copiesof the control signatureof the object-level componentare
included as a subsignatureone that refers to the current state and another one
referring to the proposed trutlaluesfor the next stateof the object-levelreasoning
process. For example, doal(h) is an atom of the control signature, then theree
copies current_goal(h) and proposed_goal(h) in the set of atomsfor the
meta-signature. Two syntactic functions and p transforming a meta-atomto a
current variant and a proposed variant of it can simply be defined; e.g.,
c(goal(h)) = current_goal(h) p(goal(h)) = proposed_goal(h)



We assume that the reasoning of the meta-level itself has no sophisticated control:
for simplicity we assumehatit concerngaking deductiveclosureswith respectto
the inference relation used at the meta-level.

Definition 6.5 (Meta-level Architecture)
a) Themeta-level component MC related toX. is defined as a tuple
Mc = ((zmv MT! "m )’< Cv p))

with

I a signature, called threeta-signature related toX,;

MT a set of objective ground formulae of signaftife the meta-theory

Fma classical inference relation (assumed sound but not necessarily complete)
c, p D A(Zo) > At(Z,) injective mappings

It is assumed that every information stateMne IS(X,,) with M(a) = u for all
ae At(Z;y)\c(At(X.) is consistent withMT, i.e. M € ISyt (Zm)-
Theinference function of the meta-level pyt™m (or shortly p*)
But m: ISyt (Em) = 1Syt (Em)

is defined by pytmm (N) = doytFm(N).
b) A meta-level architecture is defined as a pair

MA = ( OC; MC )
with OC an object level component amdiC a related meta-level component.

c) For a meta-level architectun¢A theupward reflection function
o, IS(E) = IS(E,,) is defined forN e IS(E.) andb e At(X,) by

o, (N)(b) = N(a) if b=c(a) for someae At(X.)
u otherwise
The downward reflection function ay: IS(Z,) = IS(E,) is defined for
Ne ISE,) andae At(Z.) by
ag(N)(a) = 1 if N(p@) =1
0 otherwise

6.3 Formalizing the Overall Reasoning Behaviour

Four types of actions tak@aceas depictedin Fig. 1. For a formal description,see
the following definition.

For a meta-levelarchitecturewith propositionalsignaturesz, and X, we denote
the combinedsignature(basedon the disjoint union of their sets of atoms) by
I, 0 X,. We denote partiainodelsfor this combinedsignatureas a pair of partial

models M O N for £, and X£,,.
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Fig 1 Reasoning pattern in a meta-level architecture

Definition 6.6 (Semantics Based on Overall Traces)
a) Anoverall trace for the meta-levearchitecture MA is a linear partial temporal
model (MO Ny N Of signatureZ, O £, satisfying for eachte N:
M1 = B(My, og(Ny))
Neer = pH(oy (0 (Mg, 0g(Ny))))
b) The(intended) trace semantics of MA s the set of overall traces.

The following theorem (also see [TRE 94]) shows that for any meta-level architecture
MA with finite sets of atoms there exists a temporal theory such that a specific class
of its modelsare preciselythe overall tracesof MA. Forany ( M' , N' ) €
IS(Zo) X IS(Z,) let the temporaltheory T¢ v  n y be given that definesall
partial temporal models with initial staggM' , N' ), i.e. with (M{ O Ny);e N IS @

minimal model of T\ ny iff Mg=M" and Ng =N

Theorem 6.7 (Temporal Theory of a Meta-level Architecture)

Let MA be a meta-level architecture with finite sets of atoms.

Thereexistsa temporaltheory Thya (consistingof formulaeof the form A or
A — 3X(L) where L is some objectiviteraland A a formulaonly referringto
the past and current state) such that:

a) For any linear partial temporal modeh O Ny); . y Of signature £, O Z,, the

following are equivalent:
(i) (M{O Npie N is a minimal model of Thya U T¢m N )-
(i) (M{O Npien is an overall trace foMA with initial state { M' , N' ).

In other words: the intended semantids MA is describedby the linear modelsof
Thya that are minimal in the set of models with fixed initial state.

b) The theory Thya has a final modelFy, .



To get an idea how such a tempdfaory can be defined,the examplegiven in the
beginning of this section can be formalized by the rules

C(— known(a)) —  C(proposed_goal(b)) (meta-knowledge)

C(proposed_goal(b)) — 3IX(goal(b)) (downward reflection)
The final modelFy, contains alloverall tracesas linear submodelgbranches)put
in general it will contain other, lessseful branchesas well. Anothervariantcanbe
obtainedby using the temporaloperator v X insteadof 3IX in the formulae of
Thya ; thisleads to a tempordaheorywith the samelinear time modelsbut with a

more restricted final model.

7 Conclusions

Partial temporal models cdre usedto describethe behaviourof dynamicreasoning
processessuchasthoseperformedby reasoningagents.The linear models usually
describea particular reasoningpattern,and a set of such modelscan be usedto
describe all possible patternthesemodelsmay be describecby a temporaltheory.
Another way of describing possible behavidaiby a branchingtime processwhich
is branching at any time a pattern can continue in rtteae one way. Thesemodels
can also often be axiomatizedby a temporaltheory. In this fashionwe can use
branching time temporal partibdgic to obtain semanticdor a variety of reasoning
patterns including regular monotonic logics, default logic andlfopatternsa meta-
level architecturecan perform. In thesepatternsone can often identify object level
reasoning (by means of classical logic) and meta-l@adoningwhich complements
it. The inferences on the objdetvel canbe axiomatizedby a theorywhich restricts
the (current) partial modelsat eachtime point, whereasthe meta-levelinferences
(potentially introducing non-monotonicity)can be axiomatizedby a theory which
restricts the successpartial modelsat any point in time. The theory axiomatizing
object level inferenceconsists of formulae containing no operatorsbut the C
operator, whereasthe theory for meta-level inference will consist of formulae
containing at least one of the other operators.

In defaultlogic the classicalpropositional logic is used for the object level
inferencegaxiomatizedby the theory W'), whereasthe meta-levelinferencesare
performed by the default rules (axiomatized by the théwy The truth of formulae
in the theoryw' at acertainpoint dependonly on the partial model a that point,
whereas the theorp' restricts successor partial models.

In the exampleof the classicalproof system,the proof rules have beenlifted to
the meta-level so that "proving" a formula isexplicit temporalprocessNote that
the partiality in this case is not explicitly needed: in a minimal moddittie value
false will neveroccur. In the meta-levelarchitecturesome aspectsof the object
inferenceshave beenlifted to the meta-levelto allow for explicit control of the
reasoning process.

In a numberof casest is possibleto identify a final model,that is a "biggest"
branchingtime modelin which all possible patternsare incorporatedin the most
compact manner. Not only do we then have one structure which holds all information



about a reasoning process, also the points in a process where a choideeraade
are explicitly identified. Basedon this final model one can define a number of
entailmentrelations, dependingfor instanceon whether conclusionshave to be
establishedn all possible patterns,or if it is enoughif thereis at least one
possibility to establish the conclusion.

We feel that temporalpartial logic and othertemporalizedogics are a powerful
way of describing complex reasoning patterns as theypeaisedto modela variety
of reasoningpatternsin a clear fashion. This approachcontributesto a better
integration of dynamic aspects in logical systems, as, for instance, advocated in [BEN
91]. It canbe used as a basis for providing formal semanticsof (specification
languages for) complex reasoning systems, where otietrol of reasoningtself is
a subject of reasoning: one of the open problems formulatetl in § al. 93].
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Appendix A to Chapter 2

Flows of Time

Definition 2.1' (Flow of Time)

A flow of time (T, <) is a pairconsistingof a non emptyset T of time points,
and a binary relatiorck on T x T, calledthe immediate successor relation which
has to be:

() Antitransitive: for no a,b andc in T itholdsa<bh b<c anda<c
(i) A-cyclic: there isnon20 and ay, ...,a, in T with for 0 € i £ n - 1:
aj < a4, and a, <a. (This implies < is irreflexive and antisymmetrical).
Here for s, tin T the expressiors < tdenotes thatt is animmediate successor
of s, and thats is animmediate predecessor of t.

We also introduce the transitive (but not reflexive) closuref this binary relation:
«=<*" A flow of time is calledinear if « is a total ordering.

Note that with this definitionT together with« is a discrete time structure.
We will further limit our flows of time to be forests or trees:

Definition 2.2' (Tree and Forest)
a) The following properties are defined:
(i) Successor existence
Every time point has at least one successor:
for all se T there exists at e T such thas <t.

(i) Rooted
A flow of time is rooted with rootr if r is a (unique) smallest
element:
forallt itholdsr=t orr«t.

(iii) Left linear

For allt the set ofs with s «t is totally ordered by«
(iv) Well-founded



There are no infinite descending chains of elemegniss;_;

b) A flow of time is called #&ee ifitis rooted and left linear.
c) A flow of time is called dorest if it is well-founded, left linear.

Note that a forest is just a disjoint union of trees. We will assaiiffows of time
to be forests.

Definition 2.3' (Sub-ft and Branch)

a) A flow of time (T, <') is called asub-ft (sub-flow of time) of a flow of time
(T,<) ifTTOT and <'=<n T xT. Itis also called the sub-ft ofT, <)
defined by T', or therestriction of (T, <) to T'.

b) Abranch in a flow of time T is a sub-ftB =(T', <') of T such that:

() « (the transitive closure ok') is a total ordering o' x T'

(i) Every t e T' with a successor im also has a successor in:

forallse T',te T:s <t = thereis at e T' : s <t'

(i) Every element off that is in between elementsTfis itself inT':

forallse T',te T, ue T":s«t«u= te T

A branchis called maximal if everyt in T' with a predecessom T also hasa
predecessor inT': for allse T,te T' :s<t = thereis ars’'e T :s' <t.

Partial Temporal Models

By a signature £ for convenienceve meana sequenceof proposition symbols
(propositional atom names). What counts is theofettoms At(X) andthe setof
literals Lit(X) based on this signature.

Definition 2.4' (Partial Model)

Let £ be a signature.

a) Apartial model M for the signatureX is anassignmenbf a truth value from

{0, 1, u} to each of the atoms &, i.e. M: At(X)—» {0, 1, u}

We say an atoma istruein M if 1 is assigned to it, andlse if 0 is assigned;
else it is calledindefined (or unknown). In the sameway we sayaliteral = p is

truein M if M assigns0 to p andit isfalseif M assigns 1 to p.

Otherwise it isundefined.

By Lit(M) we denotethe setof literals (atomsor negationsof atoms)with truth
valuetrue in M.

b) The truth, falsity or undefinedness of any formulae [radial modelis evaluated
according to the Strong Kleene semantics (e.g., [BLA 86], [LAN 88]).

¢) Theordering of truth valuesis defined byu< O, u< 1, u€ u,0< 0, 1 € 1.

We call the modelN arefinement of the model M, denotecby M < N, if for all

atoms a it holds: M(a) £ N(a).

d) For a consistentset of literals S the unique partial model M  with

Lit(M) =S is denoted by< S >



Definition 2.5

The partial temporalmodel M' is sub-model of M if (T', <') is a sub-flow of
time of (T, <) with M(t) = M'(t) forall t in T'. Wealsocall M' the
restriction of M to T', denoted byM|T".

Also the othernotions definedin the abovesubsectiorfor flows of time inherit to
models.

Definition 2.6' (Temporal Operators and Their Semantics)
Let a formulaa, a partial temporalmodel M, andatime point t e T be given,
then:

a M, t) F*IFa - Ose T [te«sea (M,s)E*al]
M, t) - IFa = M, t) ¥ * 3IFa
b) (M, t) E* VFa - for all branches including t there

exists an s in that branch such that
[tese (M, s)Etal]

M, t) - VFa = M, t) ¥+ VFa
M t) E*VGa = VseT [t«s= (M,s) F*a]
M, t) F-VGa = M, 1) ¥+ VGa
d M, t) F*3IGa - there exists a branch including t such

that for all sin that branch
[t«s = (M,s)Eta]

(M, t) - 3Ga - M, t) #* 3G«

e M, t) E*Po = Ose T [s«ta& (M,s)Eta]
M, t) E - Pa - M, t) &+ Pa

) M, t) E*Ha = VseT [s«t= (M,s)E*a]
M, t) E"Ha = M, t) ' Ha

g M t)E*Ca - M) EY a
M, 1) E"Ca - (M, 1) ¥ * Co

h) (M, t) *3IXa - Ose T [t<s & (M,s)E*a]
M, t) E-IXat = M, t) B+ IXa

) (M, 1) E*VXa VseT [t<s = (M,s)F*a]
M, t) E-VXa - (M, 1) ¥* VXa

Definition 2.7' (Interpretation of Temporal Formulae)
Let £ be a signature, le¥ be a partial temporal model f&, andt e T atime

point.

a) For any propositional atom e At():
M HE*p = M(t, p) = 1
M, ) F7p < M(t, p) = O

b) For a formula of the fornEFa, V Fa, etcetera, see Definition 2.6'
¢) For any two temporal formulag and wv:
N MH)erteldye M t)eE*e and M, t) E*y
M, t) F-ely = MtH)E"@ O (Mt E"VY



Mt)E"@ or (Mt) ety
Mt)ErYe and (M, 1) E"y

(i) MHEre- vy
MOE"@- vy

I

8

@iy M tH)Erae e MtHE"@
Mt E—9 = MHE*e
d) For any temporal formulg
M, t) Yo = (M, t) e* ¢ does not hold
M, t) @ = (M, t) k- @ does not hold
M, t) FVeg - MtHerE*e and (M, t) ¥ @

e) For a partial temporal mode¥, by M =t @ wemean (M, t) =t @ for all
teT andbyMETK wemean M £+ ¢ forall ¢ e K, where K is asetof
formulae possibly containing any of the defined operators. We wilttety M is a
model of the theonK.

f) A partial temporal modeM of a theoryK is called aminimal modelof K if
for every modelC of K with C <M it holds C = M.

Appendix B Proofs

In this Appendix we give proofs of results in Section 4. Proofs of results in the other
sections can be found in [ET 93], [ET 94a], [ET 94b], [TRE 94].

Theorem 4.2
Let PS beany proof systemand K any setof formulaeof signatureX and let
Thpsk bethe temporaltheory Tpsu T U C'. Let M be a minimal partial

temporal model ofThpg . For any formulag of signatureX it holds
Kkpsp & MET=P(T) > 3F(aty)

Proof

"=" SupposeK Fps@ and suppose thatyq, ... , ¥,.1, ¥, With v, = @, isa
proof for ¢@. For a non-minimal element t in T it holds trivially that
(M, t) E* = P(T) > 3F(aty), solet r beaminimal elementin T. We shall
prove the following by induction:

Forevery 1 < i < n thereis atime point s reachablefrom r suchthat
atyi, .., aty; aretrue inM at time points.

i =1y, hasto be an element & and asM is a model of Tx, at, hasto be
true in M at time pointr.

i -> i + 1: supposethat s is a time point reachablefrom r and that
atyi, .., aty; aretrue inM at time points. If y;.; is anelementof K then

the same argument as above yields ttgt.; must be truen M at point s, so
assumehat wy;,; is the resultof applyinga proof rule PR to a subsetof the
formulae Vi, .., V¥ (say o, ..,0,). Then there is a rule
C(atg1) A ... A C(atgy) = IX(atyi+1) in Tps which hasto betruein M at



point s. As aty, .. , al x are true inM at point s, therehasto be a successor
t to s in which aty.; istrue.Therulesin C' ensurethat atyi, .., aty |

have to be true inM at pointt too.

Taking n for i we have that there must be a pointreachable fromr suchthat

aty, is true in M at point s. It follows that (M, s) E* = P(T) — 3F(aty).

"«=" Supposethereis a formula ¢ anda minimal element r such that

(M, r) £ *3F(aty) although K ¥ pg @. Takethe formulae ¢ at minimal depth,
i.e. if s is a point at minimal depth fawhich (M, s) k * atg, thenthereis no

formula o such that thereis a point t at smaller depththan s with
(M, 1) E " aty but K¥pga. As M is aminimal modelof Th, if at, were

undefinedin M at point s, aformulain Th would becomefalse. If this is a
formula from Ty then it has to be the formula(aty), but then ¢ is in K and

therefore K Fpg @. If it is a formula in C' then it must be the rule
P(aty) = C(aty) attime point's. This meansthat at, is truein a point at
smallerdepth,which was not the case.Thereforeit must be a rule of Tpg, say
C(atg1) A ... A C(atqy) = IX(aty) which will become false in a point with
t<s. But as atyq, .. , aty ¢ haveto betruein M atpoint t and t is at
smaller depth thars, we must havethat K Fpsay, .. , K Fpg oy. But thereis a
proof rule in PS which canbe appliedto a4, .. , o YVielding ¢, andtherefore
K F ps@. This shows that such a formula can not exist.

Proposition 4.3
The temporal theoryThps ¢ has a final modeFps .

Proof
Thetheory Thpgk consistsof formulae which are forward persistentunder any

homomorphism (Proposition 3.3) and therefore by Theorem 3.5 a final model exists.



