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Abstract—In this paper we have reported soliton solution of one
dimensional modified complex Ginzburg Landau equation. The
parametric region where such soliton solution is possible is also
identified.

1. INTRODUCTION

Investigations on nonlinear wave equations have been a fascinating
topic both for mathematicians and physicists because of their
numerous application potential in diverse areas [1–15, 29–33]. In
particular, the nonlinear Schrödinger equation (NLSE) and the
complex Ginzburg Landau equation (CGLE) and their modified
versions have drawn tremendous attention during last three decades [2–
8]. These equations describe a variety of physical phenomena in
plasmas, optical waveguides and fibers, Bose Einstein condensation,
phase transitions, bimolecule dynamics, open flow motions, spatially
extended nonequilibrium systems etc [1]. Large volume of analytical
investigations have been carried out to find the soliton solutions of
these equations which are localized waves that show particle like
behaviour i.e., their forms are preserved in space or in time or
both in space and time resulting in respectively spatial, temporal
or spatiotemporal solitons. Finding soliton solutions of nonlinear
wave equations representing various physical phenomena have been
the major thrust of theoretical research [2–10]. Nonlinear equations
representing Hamiltonian systems are not always integrable. Though
the standard NLSE is exactly integrable by the method of inverse
scattering transform (IST) yielding soliton solution in compact form,
higher order nonlinear Schrödinger equations (HONLSE) are in general
not integrable. The non Hamiltonian systems or the dissipative
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systems are more complicated as these systems are free to exchange
energy with external sources. Soliton solutions for such systems can
not be found out in a closed form. Therefore, both for nonintegrable
Hamiltonian systems and dissipative systems, various methods have
been developed to get approximate solutions. These include the
Painleve analysis, Hirota bilinear method, Ablowitz-Kaup-Newell-
Segur (AKNS) technique, Darboux-Backlund transform, collective
variable (CV) approach, Lagrangian variational method etc. [9–20].

Recently, based on variational iteration, a very simple yet effective
method was proposed by He [21] which has the capacity to solve a
large class of nonlinear problems. This method has been successfully
employed for the determination of limit cycles in self excited systems
modeled by van der Pol oscillator [22] and for finding the solitary
wave solution of the Zakharov equation [15]. The one dimensional
(1D) CGLE [23] is a generic equation which describes dissipative
systems near a subcritical bifurcation to traveling waves. The 1D
CGLE possesses a rich variety of solutions such as pulses (solitary
waves), breathing solitons, pulsating, erupting and creeping solitons,
multisolitons, fronts (shock waves), sinks (propagating hole with
negative asymptotic group velocity), sources (propagating hole with
positive asymptotic group velocity), periodic and quasi periodic
solutions, periodic unbounded solutions [24]. For some dissipative
systems, 1D CGLE needs to be modified to include nonlinear gradient
terms resulting in 1D modified CGLE (1DMCGLE) [25]. For example,
to observe the influences of vacuum dissipation effects on the collective
motion on top of a super fluid covariant nondissipative chaotic
background, the 1D MCGLE needs to be solved. The complex field
Ψ(z, t) of a 1D MCGLE is represented by
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where the operator ∇2 ≡ ∂2

∂x2 and the system parameters p, q, c, d
and γ may be real, complex or a combination of the two. Different
combinations of the above system parameters describe different types
of wave propagation in different physical systems. In systems modeled
by complex values of p, q, c, d and γ, Yomba and Kofane [26], using
a combination of Painleve analysis and Hirota bilinear technique
have found pulses, fronts, periodic unbounded waves, sources and
sink solutions. Mohamadau et al. [27] have studied the modulation
instabilities in the 1DMCGLE and reported the existence of several
special soliton solutions with complex p, q, c, d and γ. They obtained
explicit expressions for fixed amplitude, arbitrary amplitude and
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chirp free solutions. Recently, using the method of paraxial ray
approximation, Hong [28] has reported the existence of a family of
stationary solitons in a system modeled by real values of p, q, c, d
and purely imaginary γ. These solitons have been found to be robust
against small perturbations in positive dispersion, positive nonlinearity
and negative dispersion, negative nonlinearity regimes. The purpose
of the present work is to obtain the soliton solution of the 1D MCGLE
employing the variational iteration method for the system represented
by real values of p, q, c, d and γ.

2. MATHEMATICAL METHOD

The one dimensional MCGLE can be recasted in the following form
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We look for the solitary wave solution of the above equation in the
form

Ψ (x, t) = f (ξ) ei(mx−nt), ξ = x − Ut (3)

where f{ξ} is a real function, U represents the wave speed, m and
n are constants. We substitute (3) into (2) to get following complex
equation for f ,
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The real and imaginary parts of Equation (4) are separated which yield
the following equations.
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and

(2pm − U)
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Equation (5a), can be integrated once to get
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where K is a constant. The constancy of Equation (6) is utilized in
constructing a stationary integral J as follows
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The shape function of the solitary wave f (ξ) is assumed to be of the
form

f (ξ) = A Sech (Bξ) , (8)

where A and B are constants. Substitution of solution (8) in
Equation (7) yields the following expression
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The value of the unknown constants A and B can be easily obtained
by imposing the stationary condition on J with respect to A and B,
thus requiring ∂J

∂A = 0 and ∂J
∂B = 0, resulting in, after some simple

algebra, a set of simultaneous equations of A and B as follows
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These equations can easily be solved to obtain A and B as follows
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and

B =

√√√√√
{

n − m2 (p + c) − cγ2

(2pm − U)2

}
p − d

. (12b)

Thus, the solitary wave solution of the 1D MCGLE turns out to be
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and the above solution is obtainable only if√√√√√
{

n − m2 (p + c) − cγ2

(2pm − U)2

}
p − d

> 0

3. CONCLUSION

In conclusion, following the variational iteration approach, we have
found soliton solution of one dimensional modified complex Ginzburg
Landau equation. The parametric regime where such solution is
possible has been also identified.
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