
Max Flows in O(nm) Time, or Better

James B. Orlin
Sloan School of Management and Operations Research Center
Massachusetts Institute of Technology, Cambridge, MA 02139

jorlin@mit.edu

ABSTRACT
In this paper, we present improved polynomial time algo-
rithms for the max flow problem defined on sparse networks
with n nodes and m arcs. We show how to solve the max
flow problem in O(nm + m31/16 log2 n) time. In the case
that m = O(n1.06), this improves upon the best previous al-
gorithm due to King, Rao, and Tarjan, who solved the max
flow problem in O(nm logm/(n log n) n) time. This establishes
that the max flow problem is solvable in O(nm) time for all
values of n and m. In the case that m = O(n), we improve
the running time to O(n2/ log n).

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

Keywords
max flows, maximum flow problem

1. INTRODUCTION
Network flow problems form an important class of op-

timization problems and are central problems in operations
research, computer science, and combinatorial optimization.
A special network flow problem, the max flow problem, has
been widely investigated since the seminal research of Ford
and Fulkerson in the 1950s. The max flow problem has appli-
cations in transportation, logistics, telecommunications, and
scheduling. Numerous efficient algorithms for this problem
exist including [4] and [3]. A comprehensive discussion of
such algorithms and applications can be found in [1].

We consider the max flow problem on a directed graph
with n nodes, m arcs, and integer valued arc capacities
uij (possibly infinite), in which the largest finite capacity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1-4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

is bounded by U . The fastest strongly polynomial time
algorithm is due to King et al. [9]. Its running time is
O(nm logm/(n log n) n). When m = Ω(n1+ε) for any posi-
tive constant ε, the running time is O(nm). When m =
O(n log n), the running time is O(nm log n). The fastest
weakly polynomial time algorithm is due to Goldberg and
Rao [7]. Their algorithm solves the max flow problem as
a sequence of O(logU) scaling phases, each of which trans-
forms a ∆-optimal flow into a ∆/2-optimal flow. The run-
ning time per scaling phase is O(Λm log(n2/m)), where Λ =

min{n2/3,m1/2}.

Our contribution.
We show that the max flow problem can be solved in

O(nm+m31/16 log2 n) time. When m = O(n(16/15)−ε), this
running time is O(nm). Because the algorithm by King
et al. [9] solves the max flow problem in O(nm) time for
m > n1+ε , our improvement establishes that the max flow
problem can be solved in O(nm) time for all n and m. We
also develop an O(n2/ log n) algorithm for max flow prob-
lems in which m = O(n).

Our algorithm solves the max flow problem as a sequence
of improvement phases, similar to the scaling phases in the
Goldberg-Rao algorithm. In the case that logU ≤ m7/16,

the Goldberg-Rao algorithm already runs in Õ(m31/16) time.

(The Õ notation ignores log factors of m and n). In the

case that logU > m7/16, we reduce the time at an improve-
ment phase by running the Goldberg-Rao scaling phase on
a smaller network called the “compact network”, where the
average number of nodes per improvement phase is C =
O(m/ logU). The time to run the Goldberg-Rao scaling
phase on a network with at most C nodes and O(C2) arcs is

Õ(C7/3) time. A first-order approximation in the case that

logU ≥ m7/16 implies that the total running time over all

phases is Õ(C7/3 logU) = Õ(m7/3 log−4/3 U) = Õ(m31/16).
The compact network is obtained from the original net-

work through two operations: contraction and compaction.
Contraction is a standard operation used in strongly poly-
nomial time (and other) algorithms. One can contract a di-
rected cycle if each of its arcs has a residual capacity larger
than the max residual flow in the network. “Compaction” is
new to this paper. The idea underlying compaction is the
following. Suppose that every arc incident to node j has in-
finite (or sufficiently large) capacity. One can then eliminate
node j and replace each pair of arcs (i, j) and (j, k) by an
arc (i, k) with infinite capacity. Every flow in the compact

network has a corresponding flow with the same flow value
in the original graph.

In order to create the compact networks efficiently, one
needs to dynamically maintain the transitive closure of the
subnetwork of G containing arcs with large residual capac-
ity. We rely on Italian’s [8] algorithm in order to maintain
the dynamic transitive closure in O(nm) time. This is a
bottleneck operation for our algorithm. When m = O(n),
dynamic transitive closure can be replaced by static dynamic
closures, and the running time can be improved by a factor
of log n.

Our paper is organized as follows. In Section 2, we provide
preliminary notation and definitions. Section 3 reviews how
to solve the max flow problem as a sequence of improvement
phases. Section 4 reviews contraction. In Sections 5 and 6,
we define the compact network and analyze its properties.
In Section 7, we show how to find the max flow in sparse
networks in O(nm) time. Section 8 shows how to improve
the running time by a factor of log n in the case that m =
O(n). The appendices justifies the running times of the
procedures that rely on the dynamic trees data structure.

2. PRELIMINARIES
We consider the max flow problem in a network G =

(N,A). There are two distinguished nodes in N : a source s
and a sink t. A single commodity must be routed through
G from s to t. The arcs incident to s or t are referred to as
external arcs. The remaining arcs are called internal arcs.
A node i is internal if i �= s and i �= t. To simplify notation,
we assume without loss of generality that whenever an in-
ternal arc (i, j) is in A, arc (j, i) is also in A, possibly with
a capacity of 0. For every internal node i, we assume that
(s, i) and (i, t) are in A.

To contract an arc (i, j) is to replace the nodes i and j
by a single new node, referred to as the contracted node.
Any arc that was formerly incident to node i or j before
contraction is incident to the contracted node subsequently.
Contraction is a standard operation in graph and network
algorithms.

A flow is a function x : A → R+ ∪ {0} that satisfies the
flow conservation constraints; that is,∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = 0 for all i ∈ N \ {s, t}.

A flow x is called feasible if it obeys the capacity con-
straints, that is, xij ≤ uij for each arc (i, j) ∈ A. We refer
to xij as the flow on arc (i, j). The value of a flow x is the
net flow out of the source, which is equal to the net flow into
the sink. In a max flow problem, one seeks a feasible flow
whose value is maximum.

Suppose that x is a feasible flow. For each internal node
i, the residual capacity of arc (s, i) is rsi = usi − xsi. The
residual capacity of arc (i, t) is rit = uit − xit. For each
internal arc (i, j) ∈ A, rij = uij + xji − xij . The residual
capacity expresses how much additional flow can be sent
from i to j, starting with the flow x. We let r[x] denote
the vector of residual capacities. Often, we will denote the
residual capacities more briefly as r. The residual network
is denoted G[r]. The arcs (i, s) and (t, i) are not present in
G and they are also not present in G[r].

An s-t cut is a partition of the node set N into two parts,
S and T , such that s ∈ S and t ∈ T . We denote the cut

as [S, T]. Arc (i, j) is a forward arc of [S, T] if i ∈ S and
j ∈ T . It is a backward arc of [S, T] if i ∈ T and j ∈ S.
The forward arcs of the cut will be denoted as (S, T). The
capacity of the cut [S, T] is u(S, T) =

∑
i∈S,j∈T uij , that is,

the sum of capacities of the forward arcs. If r is the vector
of residual capacities and if [S, T] is an s-t cut, then the
residual capacity of the cut [S, T] is r(S, T) =

∑
i∈S,j∈T rij .

The following is the max-flow min-cut theorem of Ford and
Fulkerson [5], as applied to the residual network.

Lemma 1. (Max residual flow, min residual cut).
Suppose that r is a vector of residual capacities and [S, T] is
an s-t cut. Then r(S, T) is an upper bound on the maximum
amount of flow that can be sent from source to sink in the
residual network G[r]. Moreover, the maximum flow with
respect to r is the minimum residual capacity of an s-t cut.

3. IMPROVEMENT PHASES
Our algorithm solves the max flow problem as a sequence

of improvement phases. The input for an improvement phase
is a flow x, a vector r = r[x] of residual capacities, and an
s-t cut [S, T]. We typically denote the input for an improve-
ment phase as the triple (r, S, T). We refer to the phase as
the ∆-improvement phase, where ∆ = r(S, T). Thus ∆ is
an upper bound on the maximum residual flow from s to t.
We refer to ∆ as the flow bound for the improvement phase.

Associated with the ∆-improvement phase is the “com-
pactness parameter” Γ, where Γ ≤ ∆. We explain this pa-
rameter in Section 6. The output of the ∆-improvement
phase is a flow x′, a vector r′ = r[x′] of residual capacities
and an s-t cut (S′, T ′) such that r′(S′, T ′) ≤ Γ/(8m). At
the next improvement phase, the flow bound ∆′ = r′(S′, T ′).
Often, Γ = ∆. Even in this case, ∆′ ≤ ∆/(8m). That is,
the flow bound improves by at least a factor of 8m at each
phase.

4. ABUNDANT ARCS AND CONTRACTION
Let (r, S, T) be the input for an improvement phase, and

let ∆ = r(S,T). An arc (i, j) is called ∆-abundant if rij ≥
2∆. We sometimes refer to it as abundant if ∆ is obvious
from context. The change in flow in any arc is at most ∆
during the ∆-improvement phase, and thus its ending resid-
ual capacity is at least ∆, which in turn is greater than
2∆′, where ∆′ = r′(S′, T ′), and (r′, S′, T ′) is the input for
some subsequent improvement phase. Therefore, the follow-
ing lemma is true.

Lemma 2. Suppose that (r, S, T) is the input at the be-
ginning of an improvement phase and ∆ = r(S, T). If arc
(i, j) is ∆-abundant at the beginning of the ∆-improvement
phase, then (i, j) is also ∆′-abundant at the beginning of the
∆′-improvement phase if ∆′ < ∆.

Each improvement phase begins and ends with a flow on
the original network. At the beginning of an improvement
phase, the original network may be replaced by a smaller
network called the “compact network.” This compact net-
work is expanded at the end of the improvement phase.
Abundant arcs play an important role in contraction, as de-
scribed in this section, and in compaction, as described in
Sections 5 and 6.

The abundance graph is a subgraph of G. Its node set is
N and its arc set is the set of abundant arcs. We denote

it as Gab. By Lemma 2, once an arc becomes abundant, it
remains abundant. The abundance graph increases dynam-
ically over time.

An arc (i, j) is in the transitive closure of Gab if there is a
directed path in Gab from node i to node j. Our algorithm
maintains the transitive closure of Gab over all iterations.
This may be accomplished in O(nm) time using Italiano’s [8]
algorithm for dynamically maintaining the transitive closure
of a graph. This algorithm does not require the original
graph to be acyclic.

If there is an abundant path from node i to node j, we de-
note it as i ⇒ j. The transitive closure algorithm maintains
a matrix M. If i ⇒ j, then Mij is the node that precedes
j on some path in Gab from i to j. The time it takes to
reconstruct a path P from the matrix M is O(|P |).

At the beginning of an improvement phase, the algorithm
contracts directed cycles of the abundance graph. It also
contracts abundant external arcs. At the end of the im-
provement phase, the algorithm expands these contracted
cycles and contracted external arcs. Any feasible flow in the
contracted graph can be expanded to a flow in the original
graph with the same flow value.

The total time for contraction in an improvement phase
is O(m). The time for expansion of contracted cycles is also
O(m). We will show in Section 7 that the number of im-

provement phases is bounded by O(m2/3). Therefore, con-
traction of cycles and their expansion will not be a bottle-
neck operation. For more details on contraction and expan-
sion of cycles, see Goldberg and Rao [7].

5. COMPACTIBLE AND CRITICAL NODES
Our algorithm’s improved running time is achieved by

finding flows on the Γ-compact network, which we describe
in this section and the next. We also show that the number
of nodes in Γ-compact networks over all improvement phases
is O(m).

Recall that rij + rji = uij + uji. Suppose that (r, S, T)
is the input at the beginning of the ∆-improvement phase,
immediately subsequent to contracting abundant cycles and
abundant external arcs.

We then partition the set of arcs into four subsets, which
are defined with respect to the compactness parameter Γ.
The algorithm selects the parameter Γ as part of the max
flow algorithm in Section 7. In each improvement phase,
Γ ≤ ∆, which is the flow bound.

An arc (i, j) is said to have Γ-small capacity if uij +uji <
Γ/(64m3). Arc (i, j) is said to have Γ-medium capacity at
the ∆-improvement phase if Γ/(64m3) ≤ uij + uji, and nei-
ther (i, j) nor (j, i) is ∆-abundant.

The third subset of arcs is the set of abundant arcs, which
we denote as Aab. Because we have contracted abundant
cycles, if (i, j) ∈ Aab, then (j, i) /∈ Aab

Finally, we say that an arc (i, j) is called anti-abundant
at the ∆-improvement phase if (j, i) is abundant (and thus
(i, j) is not abundant). We let A−ab denote the set of anti-
abundant arcs at the beginning of the ∆-improvement phase.

We let the terms r̂out and r̂in refer to the total residual
capacity out of a node and the total residual capacity into
a node as restricted to the anti-abundant arcs.

r̂out(j) =
∑

(j,k)∈A−ab

rjk.

r̂in(j) =
∑

(i,j)∈A−ab

rij .

We say that a node j is Γ-critical if it is incident to a
Γ-medium arc or if |r̂out(j)− r̂in(j)| > Γ/(16m2). If a node
is not Γ-critical, we refer to it as Γ-compactible.

The algorithm will create a “compact network” in which
every node is Γ-critical, and thus all of the compactible nodes
have been eliminated. We will later show how a nearly opti-
mal flow on this compact network can be transformed into a
nearly optimal flow on the original network. We first bound
the number of Γ-critical nodes over all improvement phases.

Let ∆ and Γ denote the flow bound and compactness pa-
rameter at an improvement phase. Recall that Γ ≤ ∆. Let
∆′ be the flow bound at the end of the improvement phase
(and thus at the beginning of the next phase). Our algo-
rithm satisfies the following important property at each im-
provement phase: ∆′ ≤ Γ/(8m). We refer to this as the
improvement property, and we prove that it is always satis-
fied in Section 6.

Theorem 1. Suppose that each improvement phase satis-
fies the improvement property. Then the number of Γ-critical
nodes over all improvement phases is O(m).

Proof. We first claim that the number of Γ-medium ca-
pacity arcs over all improvement phases is O(m). In fact,
we will show that an arc can have medium capacity for at
most 3 consecutive phases. Suppose that arc (i, j) has Γ-
medium capacity at an improvement phase. Then uij+uji ≥
Γ/(64m3). Let ∆′ be the flow bound at the next phase.
Then uij + uji ≥ ∆′/(8m2). If ∆∗ is the flow bound two
phases after ∆′, then uij + uji ≥ 8∆∗. In this case (i, j)
or (j, i) is ∆∗-abundant, and (i, j) is no longer of medium
capacity.

We next consider the remaining critical nodes, which we
will refer to as “special nodes”. Let Γ be the compactness
parameter at the ∆-improvement phase. Let ∆∗ be flow
bound four phases later. We say that j is Γ-special if it
is Γ-critical and if it is not incident to an arc that has Γ-
medium capacity. If node j is Γ-special, we will show that
there is some node k such that (j, k) and (k, j) are both ∆∗-
abundant, and hence will be contracted within four phases.
This will complete the proof that there are O(m) Γ-critical
nodes over all improvement phases.

If (j, k) and (k, j) are both abundant, we say that (j, k)
(and also (k, j)) is doubly-abundant. Let r∗ and y be the
residual capacities and flows at the beginning of the ∆∗-
improvement phase. We assume that the flow vector y is
expressed with respect to the residual capacities r. That
is, 0 ≤ yik ≤ rik for all arcs (i, k) ∈ A, and r∗ik = rik −
yik + yki. By Lemma 2, any ∆-abundant arc is also ∆∗-
abundant. Also, if r∗ik > Γ/(64m3), then r∗ik > 8∆∗, and
(i, k) is ∆∗-abundant.

We now consider the case that there is some ∆-abundant
arc (j, k) such that yjk > Γ/(64m3). In this case, since
r∗kj ≥ yjk, (j, k) and (k, j) are both ∆∗-abundant. Similarly,

if (k, j) is ∆-abundant and if ykj > Γ/(64m3), then (j, k)
and (k, j) are both ∆∗-abundant.

The remaining case to consider is the case in which there
is no ∆-abundant arc incident to node j that has flow greater

than Γ/(64m3). By assumption,

|r̂out(j) − r̂in(j)| > Γ/(16m2).

We consider the case that r̂out(j) − r̂in(j) > Γ/(16m2).
The other case can be proved similarly. Then

∑
(j,k)∈A−ab

yjk ≤
∑

(j,k)∈A

yjk =
∑

(i,j)∈A

yij

<
∑

(i,j)∈A−ab

yij +
∑

(i,j)∈Aab

yij + mΓ/(64m3)

< r̂in(j) + 2mΓ/(64m3)

< (r̂out(j) − Γ/(16m2)) + Γ/(32m2)

< r̂out(j) − Γ/(32m2)

=
∑

(j,k)∈A−ab

rjk − Γ/(32m2).

The inequality of the second line follows from the fact
that every arc incident to node j is either anti-abundant,
abundant, or of small capacity. The first term in the third
line is true because yij ≤ rij . The second term in the third
line is true because we have assumed that yij ≤ Γ/(64m3)
for (i, j) ∈ Aab.

It follows that there is some arc (j, k) ∈ A−ab with yjk <
rjk − Γ/(32m3). Thus r∗jk ≥ rjk − yjk > Γ/(32m3) > 16∆∗.
Therefore, (j, k) is ∆∗-abundant. But (j, k) ∈ A−ab; so (k, j)
is also ∆∗-abundant, completing the proof.

6. THE COMPACT NETWORK
In the case that the number of ∆-critical nodes is suffi-

ciently small (fewer than m9/16), our algorithm will replace
the residual network by the “compact network” in which ev-
ery node is Γ-critical. The Γ-compactible nodes do not ap-
pear in the compact network. In this section, we describe
the arcs of the compact network, which we denote as Ac.

At the beginning of the improvement phase, the algorithm
first contracts abundant cycles as well as the abundant ex-
ternal arcs. As before, we let (r, S, T) denote the input after
contraction. We let Nc denote the set of Γ-critical nodes.

There are three types of arcs that comprise Ac, which we
denote as A1∪A2∪A3. We let rc denote the vector of residual
capacities of arcs in Ac. The arcs in A1 are “original” arcs.
Suppose that i ∈ Nc and j ∈ Nc. If (i, j) ∈ A, then there is
an arc (i, j) ∈ A1 with residual capacity rcij = rij .

The arcs in A2 are abundant pseudo-arcs. If i ∈ Nc and
j ∈ Nc, and if i ⇒ j (i.e., there is an abundant path from i
to j), then there is an abundant pseudo-arc (i, j) ∈ A2 with
rcij = 2∆.

The arcs in A3 are the anti-abundant pseudo-arcs. These
arcs are created through Procedure transfer-capacity(r, Γ),
which we describe next. This procedure is very similar to
procedures used to create flow decompositions. It works
with a vector q of residual capacities, where initially q = r.
At the end of the procedure, q = 0.

Suppose that P is a path in the residual network, and let
q(P) denote its (positive) residual capacity with respect to
vector q. We say that P has transferrable capacity if the
following is true: (i) the first and last nodes of P are Γ-
critical, (ii) the remaining nodes of P are Γ-compactible,
and (iii) all arcs of P are anti-abundant.

Procedure transfer-capacity iteratively identifies paths with

transferrable capacity and then adds anti-abundant pseudo-
arc to A3. The capacity rcij of the pseudo-arc (i, j) is q(P).
After creating the pseudo-arc (i, j), for each arc (k, �) of P ,
qk� is reduced by rcij . At the end of the procedure, all of
the pseudo-arcs from node i to node j are aggregated (by
summing capacities) into a single pseudo-arc (i, j).

Procedure transfer-capacity(r, Γ);
01. Initialize; let H be the subset of arcs of A−ab

02. incident to Γ-compactible nodes;
03. for each (i, j) ∈ H , qij := rij ;
04. while H �= ∅ do
05. select a node i of H with no incoming arcs;
06. use depth first search to find a path P that
07. starts at node i and ends
08. at a node � such that � ∈ Nc or
09. � has no outgoing arc (or both);
10. let δ = min{qjk : (j, k) ∈ P};
11. if i, � ∈ Nc, then A3 = A3 ∪ {(i, �)} and rci� = δ;
12. for all (j, k) ∈ P , qjk := qjk − δ.
13. delete each arc (j, k) from H such that qjk = 0.
14. for all pairs of nodes i, j ∈ Nc, aggregate all
15. arcs in A3 from i to j into a single arc (i, j).

All paths in the procedure transfer-capacity consist en-
tirely of anti-abundant arcs. In line 11, the procedure trans-
fers residual capacity from a path P to a pseudo-arc in Ac

provided that both endpoints of the path are critical. If
both endpoints of P were not critical, then no pseudo-arc is
created. In this case, we say that δ units of residual capacity
were lost. We note that lines 14 and 15 are needed to ensure
that |A3| = O(|Nc|2).

We next prove four lemmas concerning the compact net-
work followed by two theorems. The first theorem implies
that an approximately optimal flow in the compact network
induces an approximately optimal flow in the original net-
work. The second theorem bounds the running time for
creating the compact networks. In the following section, we
analyze the time it takes to transform flows from the com-
pact network to the original network.

The first lemma bounds the amount of lost capacity. The
second lemma shows that a flow with value α in the compact
network induces a flow with value α in the residual network.
The third lemma is a technical lemma concerning the paths
involved in the procedure transfer-capacity. This lemma is
needed in the proof of the fourth lemma, which shows that
for all β < 2∆, a cut of capacity at most β in the compact
network induces a cut of capacity at most β + Γ/(16m) in
the residual network.

We let P∪Q denote the set of paths created in Procedure
transfer-capacity(r, Γ). The set P is the subset of paths that
begin and end at Γ-critical nodes. The set Q is the subset
of paths that begin or end at Γ-compactible nodes. All the
capacity from paths in Q is lost.

Each of the following lemmas restricts attention to s-t
cuts [S′, T ′] such that no forward arc is abundant. The flow
bound at the improvement phase is less than ∆. There is
no need to consider s-t cuts with an abundant arc, which
would have residual capacity greater than 2∆.

If P is a path whose capacity was lost (and thus not trans-
ferred), then the residual capacity of a cut in Gc may be less
than the residual capacity of the corresponding cut in G[r].
The next lemma bounds the lost capacity.

Lemma 3. The total amount of residual capacity that is
lost when running procedure transfer-capacity(r, Γ) is less
than Γ/(16m).

Proof. Capacity is lost when the path created in lines
6 to 10 is in Q, and thus the path begins or ends at a Γ-
compactible node. We next bound the residual capacities of
paths of Q beginning or ending at a Γ-compactible node j.

Let qout(j) (resp., qin(j)) denote the residual capacity out
of (resp., into) node j for capacity vector q at some iteration
of the procedure transfer-capacity. Let Φ(j, q) = qout(j) −
qin(j). At the beginning of the procedure, |Φ(j, q)| = |r̂out(j)−
r̂in(j)| ≤ Γ/(16m2). At the end of the procedure Φ(j, q) = 0
because qout(j) = qin(j) = 0.

Consider first the case that r̂out(j)− r̂in(j) > 0. Note that
Φ(j, q) does not change when capacity is transferred from a
path in P. The node j cannot begin a path in line 5 of the
procedure until qin(j) = 0. When j is selected for the first
time in line 5, qout(j) = r̂out(j)− r̂in(j) ≤ Γ/(16m2). Thus,
the total amount of flow that is lost because of a path that
begins at node j is at most Γ/(16m2). A similar argument
shows that the total amount of flow that is lost because of a
path that ends at a Γ-compactible node is at most Γ/(16m2).
We conclude that the total lost flow is less than nΓ/(16m2),
which is less than Γ/(16m).

The next lemma relies on a correspondence between flows
in the compact network and flows in the residual network.
Suppose y is a flow in the compact network. We transform y
into a flow y′ in G[r] as follows. If yij > 0 and if (i, j) ∈ A1,
then y′

ij = yij . If yij > 0 and if (i, j) ∈ A2, then the value
yij is added to y′

k� for each arc (k, �) of the corresponding
abundant path from i to j in G[r]. (This path is obtainable
in O(n) time from the matrix M maintained by the dynamic
transitive closure algorithm.) Suppose now that yij > 0 and
(i, j) ∈ A3. Recall that in the last step of Procedure transfer-
capacity, we aggregated one or more anti-abundant pseudo-
arcs into a single arc (i, j). Thus yij is the sum of flows of
one or more pseudo-arcs from i to j created in Procedure
transfer-capacity. In order to transform yij into flows in
G[r], we apply an inverse version of transfer-capacity. This
leads to sending flow on the union of those paths in G[r] that
led to the creation of anti-abundant pseudo-arcs. We provide
implementation details on sending flow on the anti-abundant
path(s) in Appendix B. We show that the running time
for the anti-abundant paths is O(m log n) per improvement
phase.

We refer to y′ as the flow induced by y. The following
lemma follows from the construction of the induced flows.

Lemma 4. Suppose that y is flow of α units from s to t in
the compact network. Let y′ be the flow induced by y. Then
y′ is a flow of α units from s to t.

The following lemma states that each anti-abundant path
P includes at most one forward arc of an s-t cut, assuming
that no forward arc of the cut is abundant. If P had two for-
ward arcs of the cut, then it would also contain a backward
arc (j, k) of the cut, and (k, j) would be abundant.

Lemma 5. Suppose that P ∈ P∪Q is a path from node i
to node j. Suppose further that [S′, T ′] is an s-t cut with no
abundant forward arc. If i ∈ S′ and if j ∈ T ′, then P has
exactly one arc in (S′, T ′). If i /∈ S′ or j /∈ T ′, then no arc
of P is in (S′, T ′).

We will rely on Lemma 5 in proving Lemma 6, which is
the next lemma.

We next define types of correspondences between cuts in
the compact network and cuts in G[r]. Suppose that [S′, T ′]
is an s-t cut of G[r], and suppose that there is no abundant
forward arc of the cut. The cut of Gc induced by [S′, T ′] is
the cut [Sc, T c], where Sc = S′ ∩Nc, and T c = T ′ ∩Nc.

Similarly, suppose that [Sc, T c] is an s-t cut in Gc, and
suppose that there are no abundant forward arcs. We can
extend [Sc, T c] to an s-t cut [S′, T ′] of G[r] by letting S′

be the set of nodes of N that are reachable from a node in
Sc ⊆ N by an abundant path in G[r]. We refer to [S′, T ′]
as the cut induced by [Sc, T c]. We observe that if [S′, T ′]
is induced by [Sc, T c], then [Sc, T c] is induced by [S′, T ′].
(The converse is not true. Different cuts in G[r] can induce
the same cut in Gc).

Lemma 6. Suppose that [Sc, T c] is an s-t cut in Gc with
no abundant forward arcs. Let [S′, T ′] be the induced cut of
G. Then rc(Sc, T c) ≤ r(S′, T ′) ≤ rc(Sc, T c) + Γ/16m.

Proof. Our proof partitions the set (Sc, T c) of forward
arcs according as to whether the arc is an original arc or not.
The original arcs were in A1, and they are also in (S′, T ′).
The arcs of (Sc, T c) \ A1 are all anti-abundant pseudo-arcs
that were created in the procedure transfer-capacity.

LetD = r(S′, T ′)−rc(Sc, T c). We will show that 0 ≤ D ≤
Γ/16m. We first note that we the arcs in A1 contribute the
same amount to r(S′, T ′) and to rc(Sc, T c). Accordingly,

D =
∑

(k,�)∈(S′,T ′)\A1

rk� −
∑

(i,j)∈(Sc,Tc)\A1

rcij . (1)

We now consider the arcs in (S′, T ′)\A1. Each of these are
anti-abundant arcs whose capacity was transferred or lost in
the procedure transfer-capacity. Let PF and QF denote the
subsets of paths of P and Q that contain an arc of (S′, T ′).
By Lemma 5, each path of PF ∪ QF contains exactly one
arc of (S′, T ′). Therefore,

∑
(k,�)∈(S′,T ′)\A1

rk� =
∑

P∈PF∪QF

∑
(k,�)∈P

δ(P). (2)

Each path P ∈ PF transferred its capacity to an anti-
abundant pseudo-arc in (Sc, T c). Therefore,

∑
P∈PF

∑
(k,�)∈P

δ(P) =
∑

(i,j)∈(Sc,Tc)\A1

rcij . (3)

Each path P ∈ QF resulted in lost capacity. Thus by
Lemma 3,

∑
P∈QF

∑
(k,�)∈P

δ(P) ≤ Γ/16m. (4)

By (1) to (4), we conclude that 0 ≤ D ≤ Γ/16m.

Theorem 2. Let y be an α-optimal flow vector in the
Γ-compact network Gc. Let (Sc, T c) be a cut in Gc with
r(Sc, T c) ≤ v+α, where v is the flow value of y. Let y′ and
(S′, T ′) be the induced flow vector and cut in G. Then y′

has a flow of v and is α′-optimal, where α′ = α+ Γ/(16m).
Moreover, r(S′, T ′) ≤ v + α′.

Proof. Lemma 4 establishes that the flow value of y′ is v.
Lemma 6 establishes that r(S′, T ′) ≤ r(Sc, T c)+Γ/(16m) =
v + α′.

Theorem 3. Suppose that the algorithm maintains the
dynamic transitive closure of the abundance graph. Suppose
further that each compact network Gc = (Nc, Ac) has at

most n16/9 nodes. Then the time it takes to create Gc is
O(m9/8).

Proof. We assume that the parameter Γ is given, and we
do not consider the time to compute Γ here. (We consider
how to compute Γ in the next section.) The first step is
to contract the abundant cycles. The strongly connected
components of the abundance graph can be determined in
O(m) time, and thus the cycles can be contracted in O(m)
time. The contracted cycles can be expanded at the end of
an improvement phase in O(m) time.

The time it takes to determine the critical and compactible
nodes is O(m). The time it takes to determine the set A1

of original arcs is O(m). To determine the set A2 of abun-
dant pseudo-arcs, one can inspect O(|Nc|2) components of

the matrix M in O(|Nc|2) time. Because |Nc| < m16/9, this

time is O(m9/8). The time it takes to determine the set A3

of anti-abundant pseudo-arcs is O(m log n) using dynamic
trees. The proof of this latter result appears in Appendix
B.

7. MAXIMUM FLOWS IN O(nm) TIME
In this section, we show that for m < n1.06, the running

time for our max flow algorithm is O(nm). The bottleneck
is due to the maintenance of the transitive closure of Gab.

The procedure improve-approx-2 finds an approximately
optimal flow in an improvement phase. The procedure con-
siders three different cases according to the number of ∆-
critical nodes.

Procedure Improve-approx-2(r, S, T);
01. ∆ := r(S,T);
02. let C be the number of ∆-critical nodes;
03. if C ≥ m9/16 then let Γ = ∆;
04. find a Γ/(8m)-optimal flow in G[r];

05. else, if m1/3 ≤ C < m9/16 then let Γ = ∆;
06. let Gc denote the Γ-compact network;
07. find a Γ/(16m)-optimal flow y on Gc;
08. let y′ be the induced Γ/(8m)-opt flow on G[r];
09. update the residual capacities;
10. else, if C < m1/3 then
11. choose the minimum value Γ such that
12. the number C of Γ-critical nodes in the
13. network is less than m1/3;
14. let Gc denote the Γ-compact network;
15. find an optimal flow y on Gc;
16. let y′ be the induced Γ/(16m)-opt flow in G[r];
17. update the residual capacities;

The Γ/(8m)-optimality of the flow in line 08 follows from
Theorem 2. Similarly, the Γ/(16m)-optimality of the flow in
line 16 follows from Theorem 2. Accordingly, the improve-
ment phases satisfy the improvement property described in
Section 5.

If we run Procedure improve-approx-2 at each improve-
ment phase, it will eventually determine the optimum so-
lution. We will show that the running time is O(nm +

m31/16 log2 n) over all improvement phases. Our proof relies
on four lemmas that establish the following:

1. The number of improvement phases is O(m2/3).

2. The time to create all of the compact networks isO(nm+

m43/24).

3. The time to find all of the approximately optimal or
optimal flows is O(m31/16 log2 n).

4. Given the flows in compact networks, the time it takes
to find the induced flows over all iterations is O(nm+

m5/3 log n).

We now address the subtlety that led us to consider the
parameter Γ in the first place. The time for our procedure
to create a compact network is bounded below by m log n.
To achieve a time bound of O(nm), we need to bound the
number of improvement phases. The choice of Γ in lines
11 to 13 ensure that the number of compact networks is
O(m2/3), as we state and prove in Lemma 7.

We also address a second subtlety. The induced flows
(as described in the discussion following Lemma 3) includes
a term that is n times the number of abundant pseudo-
arcs with positive flow. To maintain O(nm) as an upper
bound on running time, we need to ensure that the number
of abundant pseudo-arcs with positive flow is at most C,
the number of Γ-critical nodes. So, prior to finding the flow
induced by y, we transform y into an equivalent flow in which
there are at most C abundant pseudo-arcs with positive flow.
This can be accomplished efficiently using the dynamic tree
data structure. We will mention this again later in this
section, and will provide more detail in Appendix B.

Lemma 7. The number of improvement phases is O(m2/3).

Proof. By Theorem 1, the number of Γ-critical nodes
over all improvement phases is O(m). The proof of Theorem
1 also shows that the number of (Γ/2)-critical nodes over all
improvement phases is O(m). In each case in Procedure
improve-approx-2, the number of (Γ/2)-critical nodes is at

least m1/3. Therefore, the number of improvement phases
is O(m2/3).

Lemma 8. The time to create all of the compact networks
is O(nm +m43/24).

Proof. One aspect of creating the compact network is
the selection of the parameter Γ in lines 11-13. The param-
eter Γ can be chosen in O(m+ n log n) time as follows. For
each node j, we scan its incident arcs to compute the great-
est value of Γ for which j is in the Γ-compact network. We
then sort the nodes by these values and select the minimum
value of Γ such that the compact network has at most m1/3

nodes.
We now consider the remaining time to create all of the

compact networks. By Theorem 3, the time to create each
compact network is O(m9/8) assuming that we maintain the
transitive closure of the abundance graph. The time for
maintaining the transitive closure is O(nm). Because the

number of distinct compact networks is O(m2/3), the total
time for maintaining the transitive closure and creating the
compact networks is O(nm +m43/24).

The following lemma refers to the time it takes to find the
approximately optimal flows in lines 04 and 07 and the op-
timal flows in line 15 of improve-approx-2. It does not refer
to the time to find induced flows in the original network.

Lemma 9. Procedure improve-approx-2 determines the op-
timal or approximately optimal flows in all of the compact
networks in O(m31/16 log2 n) time. In iterations in which

the number of ∆-critical nodes is less than m9/16, the time
to find approximately optimal flows in the residual networks
is O(m31/16 log n).

Proof. Let C denote the number of Γ-critical nodes in
the network in one iteration of improve-approx-2. Let T de-
note an upper bound on the running time for the max flow
subroutine of Procedure improve-approx-2. We will next
bound the ratio T/C. If C ≥ m9/16, then T = O(m3/2 log2 n),

and T/C = O(m15/16 log2 n). (Recall that an improve-
ment phase requires O(log n) of the usual scaling phases

of the Goldberg-Rao algorithm.) If m1/3 ≤ C < m9/16,

then T = O(C8/3 log n). Therefore, T/C = O(C5/3 log n) =

O(m15/16 log n). If C < m1/3, then T = O(C3), and T/C =

O(C2) = O(m2/3). In all cases, the time for finding the flow

is at most O(m15/16 log2 n) per Γ-critical node. By Theo-
rem 1, the number of Γ-critical nodes over all improvement
phases is O(m). Therefore, the total time for finding flows

is O(m31/16 log2 n).

Lemma 10. The total time it takes to transform the flows
in compact networks to the flows in the residual networks is
O(nm +m5/3 log n).

Proof. Let C = |Nc| be the number of nodes in the
compact network at some phase. Let y be the flow in the
compact network Gc. Recall that Ac = A1 ∪ A2 ∪ A3. Let
y′ be the induced flow in the residual network. We obtain
y′ as follows. If (i, j) ∈ A1, then y′

ij = yij .

If (i, j) ∈ A2, we can determine the abundant path P
from i to j in G[r] in O(n) time because we maintain the
transitive closure of Gab. We can then replace yij in Gc by
increasing the flow in each arc of P by the amount yij . This
approach takes O(n) time for each arc of A2. In Appendix
B.3 we show how to reduce the number of arcs with positive
flow in A2 to fewer than C. The time for this procedure is
O(m log n) per improvement phase, and thus O(m5/3 log n)
over all phases.

Subsequently, there are fewer than C arcs of A2 with pos-
itive flow. Computing the flow in G that is induced by these
arcs takes O(nC) time in an improvement phase and O(nm)
over all improvement phases.

We next consider arcs in A3. If (i, j) ∈ A3, we transform
the flow yij into the flow on path(s), using dynamic trees.
We describe this procedure in Appendix B.2. The time for
this procedure is O(m log n) per improvement phase, and

thus O(m5/3 log n) over all phases.
The time for maintaining the transitive closure of the

abundance graph and the time for transforming flows from
abundant pseudo-arcs is O(nm). Thus the total time for

this procedure over all phases is O(nm+m5/3 log n).

We summarize the results of this section with a theorem.

Theorem 4. If the flow in each improvement phase is
obtained using improve-approx-2, then the running time to
find a maximum flow is O(nm + m31/16 log2 n). If m =
O(n1.06), the running time is O(nm).

8. A SPEEDUP FOR SPARSE NETWORKS
In this section, we describe how to solve the max flow

problem in O(n2/ log n) time when m = O(n). In this case,
the number of Γ-critical nodes in all iterations is O(n). In
order to achieve the O(n2/ log n) running time, we need to
create a compact network with C nodes in O(Cn/ log n)
time. We also need to transform the flow in the compact
network into a flow in the residual network in O(Cn/ log n)
time.

To determine the abundant pseudo-arcs, our procedure
determines all nodes of Gab reachable from the C critical
nodes using an abundant path. A standard implementation
of a breadth first search takes O(m) time per critical node
and O(Cm) time in total. We obtain a factor log n speedup
using an approach due to Gabow and Tarjan [6] in the con-
text of a set union data structure. (A related and more
general approach is due to Blelloch et al. [2]).

Let K = �(log n)/3�. In a similar manner to Gabow
and Tarjan, we represent subsets of the ground set S =
{1, 2, 3, ..., K} using integers in the range [0, n1/3]. We con-
sider the case in which every element i ∈ S has an associated
value ai. In this case, we create six tables in O(n) time so
that each operation on one or two subsets of S takes O(1)
time using table look-up, improving upon the usual running
time by a factor of log n.

Our algorithm relies on the following six operations.

1. (Union.) W := S ∪ T .
2. (Intersection.) W := S ∩ T .
3. (Set difference.) W := S\T .
4. (Subset sum.) w :=

∑
i∈S ai.

5. (First element.) First(S) is the first element of S.
If S = ∅, then First(S) = ∅.

6. (Is an element of.) Element(S, x) = TRUE if x ∈ S;
otherwise, Element(S, x) = FALSE.

The procedure forward-search determines in O(m) time
the set of pairs {i, j : i ∈ S , j ∈ N, and i ⇒ j}. By carrying
out this procedure from all nodes of Nc, K nodes at a time,
one can obtain all of the abundant pseudo-arcs of Ac in
O(mC/ log n) time.

We assume that the arc set Aab has no directed cycles, or
equivalently that we have already contracted the abundant
directed cycles. We then topologically order the nodes in
O(m) time so that if (i, j) ∈ Aab, then i < j.

For each j ∈ N , we let F (j) = {k ∈ S : k ⇒ j}. For each
k ∈ F (j), our algorithm will (implicitly) identify an abun-
dant path Pk(j). We let F (i, j) = {k ∈ S : (i, j) ∈ Pk(j)}.
The procedure forward-search determines F (·) and F (·, ·).

Procedure forward-search;
01. Initialize;
02. for each i ∈ S , F (i) := {i};
03. for each j ∈ N\S , F (j) := ∅;
04. for each (i, j) ∈ Aab, F (i, j) := ∅;
05. scan nodes of N in topological order;
06. for each node i ∈ N and for each (i, j) ∈ Aab do
07. F (i, j) := F (i)\F (j);
08. F (j) := F (i) ∪ F (j);

Line 07 identifies nodes of S that can reach node j using
arc (i, j), and for which no previous path from that node to
node j had been found. Line 08 updates F (j).

Procedure forward-search correctly identifies the sets F (·)
and F (·, ·) in O(m) time. This procedure can be used to
create the compact networks, and obviates a need for main-
taining the transitive closure of Gab.

We now consider the other bottleneck in the max flow
algorithm, that of transforming flows on abundant pseudo-
arcs in the compact network into flows on paths in G[r].
As in the proof of Lemma 10 and as described in Appendix
B.3, we first find an equivalent flow in Gc with fewer than C
abundant pseudo-arcs with positive flow. Let yc denote the
resulting flow in Gc, as restricted to the abundant pseudo-
arcs. We find the flow in G[r] induced by yc in three stages,
as described next.

1. In the first stage, there is a node i ∈ Nc that is incident
to at least K pseudo-arcs with positive flow in yc.

2. In the second stage, one uses a greedy algorithm to
determine K independent arcs with positive flow. (A
set of arcs is independent if no two arcs have a node
of Nc in common.)

3. The second stage ends and the third stage begins when
the greedy algorithm fails to determine K independent
arcs.

Consider the first of these stages. Let i ∈ Nc be a node
incident to at least K abundant pseudo-arcs with positive
flow. Let W = {j : yc

ij > 0}. We next show how find the
flows induced by the arcs (i, j) : j ∈ W . (A similar proce-
dure shows how to find the flows induced by arcs entering
node i.)

Using breadth first search, determine a tree T ⊆ Gab di-
rected out of node i and containing all nodes j such that
i ⇒ j. Thus W ⊆ T . Then convert the flows yc

ik for k ∈ W
into a flow y′ for G as follows: y′ is the unique flow in T
such that (i) for each k ∈ W , the flow into node k is yik, and
(ii) the flow out of node i is

∑
k∈W yik. The time to carry

out this procedure for node i is O(m).
Then we carry out in O(m) time an analogous procedure

for all arcs with positive flow directed into node i. Subse-
quently, we eliminate node i and all incident arcs from the
compact network. We repeat this procedure until there is no
node in Gc that has at least K incident abundant pseudo-
arcs with positive flow. Then we go to the second stage.

In the second stage, we use a greedy algorithm to deter-
mine K independent pseudo-arcs with positive flow. We let
y denote the flow as restricted to these K arcs. The greedy
algorithm requires O(m) time to identify these arcs. If the
greedy algorithm fails to find K independent arcs, our pro-
cedure moves on to the third stage.

Suppose that the greedy algorithm succeeded in obtaining
K independent arcs with positive flow. We next exploit the
independence of the pseudo-arcs and we relabel the nodes
so that the K pseudo-arcs are (i,K + i) for i = 1 to K.

We then run forward-search to determine F (·) and F (·, ·),
which are defined as above. This procedure implicitly de-
termines the paths Pk(j) for all k ∈ S and j ∈ N . For each
k ∈ S, we will be sending flow on the path Pk(K+k), which
is the abundant path corresponding to pseudo-arc (k,K+k).
And we will be sending all K flows in a total of O(m) time.

Let B(i, j) = {k ∈ [1,K] : (i, j) ∈ Pk(K + k)}. Let
B(j) = {k ∈ [1,K] : j ∈ Pk(K + k)}. The procedure
backward-search determines B(i, j) and B(j) by relying on
the following recurrence relations.

1. The arc (i, j) is on path Pk(K + k) if and only if j ∈
Pk(K + k) and (i, j) ∈ Pk(j).

2. If i ∈ Pk(K + k), then i = K + k or else there is some
arc (i, j) that is on path Pk(K + k).

We determine B(i, j) and B(j) in Lines 1 to 8 of procedure
backward-search. Line 09 of backward-search transforms the
flows on the K pseudo-arcs into flows on abundant paths.

Procedure backward-search;
01. Initialize;
02. for each j ∈ [1, K], B(j) := {j +K};
03. for each j ∈ N\[1, K], B(j) := ∅;
04. for each (i, j) ∈ Gab, B(i, j) := ∅;
05. scan nodes of Gab in reverse topological order;
06. for each node i and for each arc (i, j) do
07. B(i, j) := B(j) ∩ F (i, j);
08. B(i) := B(i) ∪B(i, j);
09. for all (i, j) ∈ Gab, do y′

ij := y′
ij +

∑
k∈B(i,j) yk,k+K

10. for k = 1 to K do yk,k+K := 0;

We note that Step 9 takes O(m) time because it consists
of m calls of the subset sum operation, each on a subset of
[1, K].

Eventually, there is an iteration in Stage 2 in which the
greedy algorithm fails to determineK independent arcs with
positive flow. Because each node is incident to fewer than K
arcs with positive flow (because Stage 1 has ended), and be-
cause the greedy algorithm failed, it follows that that there
are fewer than 2K2 abundant pseudo-arcs remaining that
have positive flow. These final arcs can be transformed it-
eratively in O(mK2) = O(m log2 n) time, which is not a
bottleneck.

Summarizing the results of the three stages, when m =
O(n), we can find the flows induced by C abundant pseudo-
arcs in O(nC/ log n) time. This is O(nm/ log n) time over
all improvement phases.

9. ACKNOWLEDGMENTS
The author thanks Ebrahim Nasrabadi for his help in im-

proving the readability of this paper. The author also thanks
him for many useful discussions on the technical results of
this paper. The author also gratefully acknowledge support
of this research through the Office of Naval Research grant
N000141110056.

10. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

Network Flows. Theory, Algorithms, and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] G. Blelloch, V. Vassilevska, and R. Williams. A new
combinatorial approach for sparse graph problems.
Automata, Languages and Programming, pages
108–120, 2008.

[3] B. Chandran and D. Hochbaum. A computational
study of the pseudoflow and push-relabel algorithms
for the maximum flow problem. Operations research,
57(2):358, 2009.

[4] B. Cherkassky and A. Goldberg. On implementing the
push—relabel method for the maximum flow problem.
Algorithmica, 19(4):390–410, 1997.

[5] L. R. Ford and D. R. Fulkerson. Maximal flow through
a network. Canadian Journal of Mathematics,
8:399–404, 1956.

[6] H. Gabow and R. Tarjan. A linear-time algorithm for
a special case of disjoint set union. Journal of
computer and system sciences, 30(2):209–221, 1985.

[7] A. V. Goldberg and S. Rao. Beyond the flow
decomposition barrier. Journal of the ACM,
45:783–797, 1998.

[8] G. Italiano. Amortized efficiency of a path retrieval
data structure. Theoretical Computer Science,
48(0):273–281, 1986.

[9] V. King, S. Rao, and R. Tarjan. A faster deterministic
maximum flow algorithm. J. Algorithms, 23:447–474,
1994.

[10] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Computer and System Sciences,
24:362–391, 1983.

APPENDIX
A. DYNAMIC TREES

Sleator and Tarjan [10] developed the data structure dy-
namic trees, which supports various operations, each with an
amortized time complexity of O(log n) per operation. That
is, over a sequence of q > n consecutive operations on the
dynamic trees, the running time is O(q log n). In this sec-
tion, we present a variant of dynamic trees in which the
trees maintain both nodes and arcs. Each of the operations
presented here can be simulated via O(1) operations of the
standard version of dynamic trees. In the next section, we
apply dynamic trees to the procedures described earlier in
this paper.

A dynamic tree is a data structure that represents a dy-
namically changing rooted forest T on a directed graph D =
(V,E). The root node in the component of T containing
node i will be denoted as root(i). For each non-root node
j, we let p(j) denote the node that follows node j on the
path from j to root(j). Associated with each arc (i, j) ∈ E
is a non-negative real number value(i, j), which represents
residual capacities in our applications of dynamic trees.

In the standard description of dynamic trees, the value
associated with node i implictly represents a value on arc
(i, p(i)). In the description here, if i ∈ T , then we associate
values with arcs (i, p(i)) and (p(i), i) rather than place values
on the nodes. Our description can be implemented using
the original data structure by maintaining two values for
node i, one representing arc (i, p(i)) and one representing
arc (p(i), i).

If nodes i and j are in the same component of T , we let
Path(i, j) denote the unique path in T from node i to node
j.

We next list eight dynamic tree operations that are suffi-
cient for our purposes. We assume that the reader is familiar
with the dynamic tree data structure, as described in [10].

(i) create-tree. This operation initializes an empty dy-
namic tree.

(ii) link(i, j). This operation assumes that i and j belong
to two different trees. It merges the tree containing
node i with the tree containing node j, lets p(i) = j,
and sets the root of the merged tree to root(j).

(iii) cut(j). This operation breaks the dynamic tree contain-
ing node j into two trees by deleting the arc (j, p(j)).
Node j becomes the root of its tree.

(iv) find-root(i). Returns root(i).

(v) make-root(j). This operation makes node j the root of
its component in the dynamic tree.

(vi) add-value(i, j, val). This operation replaces value(k, �)
by value(k, �)+val for all arcs (k, �) of Path(i, j). This
operation is only applied if i and j are in the same
component of T .

(vii) find-min-value(i, j). This operation finds min{value(k, �) :
(k, �) ∈ Path(i, j)}.

(viii) find-min(i, j). This operation finds argmin{value(k, �) :
(k, �) ∈ Path(i, j)}.

The operations (i), (ii), (iii), (iv) and (v) are all opera-
tions that are implemented in a standard version of dynamic
trees. Operations (vi), (vii) and (viii) are new to this pa-
per, but they are easily implemented. If j = root(i), then
the operations add-value(i, j, val), find-min-value(i, j), and
find-min(i, j) are essentially the same as standard dynamic
tree operations described in [10]. If j �= root(i), then the
operations can be carried out by first making j the root of
its component.

Each dynamic tree operation takes O(log n) time, includ-
ing the time it takes to compute value(i, p(i)) whenever
i ∈ T .

B. APPLICATIONS OF DYNAMIC TREES
In this section, we outline how to apply dynamic trees

to three different procedures: (1) transferring residual ca-
pacities from paths to anti-abundant pseudo-arcs, (2) trans-
forming flows in anti-abundant pseudo-arcs to flows in the
original network, and (3) transforming a flow in abundant
pseudo-arcs into an equivalent flow in a forest.

B.1 Transferring residual capacities
We first consider the procedure transfer-capacity. This

procedure carries out a depth first search. Nodes and arcs
of the depth first search path are added to the dynamic tree
via link operations. This implies that each arc is added to
the dynamic tree at most once and deleted at most once,
resulting in O(m) links and cuts in total. Removing the
residual capacity of a path in line 12 relies on the opera-
tion add-value. Accordingly, the procedure transfer-capacity
takes O(m log n) time per improvement phase using dynamic
trees.

B.2 Flows induced by anti-abundant pseudo-
arcs

After finding a flow y in the compact network Gc, one
needs to be able to transform y into a flow on G[r]. We next
describe the transformation. Let y3 denote the flows in y as
restricted to the anti-abundant pseudo-arcs of A3.

There is no efficient way of storing all of the paths that
were determined using the procedure transfer-capacity. In-
stead, we store the operations that were carried out on dy-
namic trees in the procedure transfer-capacity. We later
reproduce these operations and recreate paths as needed.

We assume that the procedure transfer-capacity was en-
hanced so that it maintained a list of records that we refer
to as OpList. Thus OpList contains a list of records of the

dynamic tree operation executed during Procedure transfer-
capacity.

We let op(k) denote the k-th dynamic tree operation.
Thus, op(k) is “link”or “cut”or“find−root”, etc. If op(k) =
“add-value”, then this corresponds to the case in which ca-
pacity was reduced in a path P . In this case, we let α(k)
denote the first node of P . And we let γ(k) denote the
amount by which the residual capacity in P was reduced.
The last node of P is root(α(k)). All of these are part of the
k−th record of OpList .

Recall that there may be more than one path from node i
to node j that had its residual capacity transferred. These
arcs in Ac were combined into a single pseudo-arc (i, j).
We consider these paths one at a time in the procedure
transform-flows.

The following procedure determines the flow induced by
y3. We initialize by letting w = y3. We use the notation T ′

to represent the dynamic tree.

Procedure transform-flows(y3);
01. w := y3; y′ := 0;
02. create an empty dynamic tree T’;
03. K := number of records of OpList;
04. for k = 1 to K do
05. if op(k) �= “add-value”, then reproduce
06. the k-th operation of OpList on T ′;
07. else do
08. i := α(k)
09. δ := min{γ(k), wi,root(i)};
10. if δ > 0 then do
11. add-value(i, δ);
12. // that is, y′

j� := y′
j� + δ for all (j, �) ∈ Pk //

13. wi,root(i) := wi,root(i) − δ;

There may be many pseudo-arcs that were aggregated into
a single arc (i, j). Lines 7 to 12 ensure that the flow y3

ij

is transformed into a flow in G[r] one path at a time, in
the order that the paths were created in procedure transfer
capacity. The flow added to path P in transform-flows is
bounded by the residual capacity that was subtracted from
P in transfer capacity.

Theorem 5. The procedure transform-flows determines
the flows induced by the non-abundant pseudo-arcs of Gc in
O(m log n) time per improvement phase.

B.3 Adjusting flows in abundant pseudo-arcs
After finding a flow y in the compact network, one needs to

ensure that there are at most C abundant pseudo arcs (that
is, arcs of A2) with positive flow, where C = |Nc|. This can
be achieved by sending flow around cycles of abundant arcs.
(To send δ units of flow around a cycle is to increase the
flow in the forward arcs of the cycle by δ and to decrease
the flow in the backward arcs of the cycle by δ.

The following procedure is well known in dynamic trees
folklore, but this author was unable to locate the appropriate
reference.

We let y2 denote the flow y as restricted to arcs of A2.
We will transform y2 into an equivalent flow y′ in Gc such
that the subset of arcs with positive flow in y′ is a forest.
We do so by sending flows around cycles. When we consider
an arc (i, j) with y2

ij > 0, we send flow around the cycle in
T ′ ∪{(j, i)}. That is, we send flow around the cycle so as to
reduce the flow in (i, j).

In this dynamic tree procedure, we first represent the flows
in abundant arcs using a vector r′ of residual capacities. If
y2
ij > 0, we let r′ji = y2

ij . Because (i, j) is abundant, we let
r′ij = ∞. Increasing the flow in (i, j) by δ is achieved by
decreasing r′ij by δ and increasing r′ji by δ. The following

procedure transforms y2 into an equivalent flow on a forest
in O(m log n) time. In the dynamic tree T , value(i, j) refers
to r′ij .

Procedure flows-around-cycles(y2);
01. A′ := {(i, j) : y2

ij > 0};
02. for all (i, j) ∈ A′, r′ij := ∞ and r′ji := y2

ij ;
03. create an empty dynamic tree T ;
04. for each arc (i, j) ∈ A′ do
05. if root(i) �= root(j), then link(i, j);
06. else do //send flow around the cycle//
07. γ := find-min-value(i, j);
08. δ := min{r′ji, γ} ;
09. r′ji := r′ji − δ; r′ij := r′ij + δ;
10. add-value(i, j,−δ) and delete
11. any arc (k, �) from T if r′k� = 0.
12. add-value(j, i, δ);
13. if root(i) �= root(j), then link(i, j);

The deletion in lines 10 and 11 can be achieved by using
the operations find-min and cut. The number of links is
O(C2). The number of all other dynamic tree operations is
also O(C2). We conclude with the following theorem.

Theorem 6. Procedure flows-around-cycles(y2) transforms
a flow on abundant pseudo-arcs of A2 into an equivalent flow
in which there are fewer than C arcs with positive flow. The
running time for the procedure is O(C2 log n) per improve-
ment phase.

