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Geometric Construction of 
Representations of Affine Algebras 

Hiraku Nakajima* 

A b s t r a c t 

Let F be a finite subgroup of S IAC) . We consider F-fixed point sets in 
Hilbert schemes of points on the affine plane C 2 . The direct sum of homology 
groups of components has a structure of a representation of the affine Lie 
algebra g corresponding to F. If we replace homology groups by equivariant 
A-homology groups, we get a representation of the quantum toroidal algebra 
Ug(Lg). We also discuss a higher rank generalization and character formulas 
in terms of intersection homology groups. 
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1. Finite subgroups of SL2(C) and simple Lie al­
gebras 

Let F be a finite subgroup of SL 2 (C) . The classification of such subgroups 
has been well-known to us, since they are essentially symmetry groups of regular 
polytopes. They are cyclic groups, binary dihedral groups, and binary polyhedral 
groups (Klein (1884)). 

It has been also known tha t we can associate a complex simple Lie algebra g 
to F. This can be done in two ways. The first one is geometric and due to Du Val 
(1934). The second one is algebraic, and is due to McKay (1979). 

Let us explain the two constructions and subsequent developments briefly. 
More detailed account can be found in [17]. 

1.1. Minimal resolution of C 2 /r 
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Let us consider the quotient space C 2 /F . This space has an isolated singularity 
at the origin. We have a unique minimal resolution n: M —t C 2 /F , in the sense 
that all other resolutions factor through n. (For general singularities, we have many-
resolutions. This speciality occurs in 2-dimensional case.) This singularity is called 
a simple singularity, and has been intensively studied from various points of view. 
In particular, the following are known (see e.g., [2]): 

1. The exceptional set TT - 1(0) consists of the union of projective lines. 
2. We draw a diagram so that vertices correspond to projective lines (irreducible 

components) and two vertices are connected by an edge if they intersect. Then 
we obtain a Dynkin diagram of type ADE. 

We thus have bijections 

{irreducible components of 7r_1(0)} <—• {vertices of the Dynkin diagram} . 

The Dynkin diagram appears in the classification of simple Lie algebras. Thus 
we have a complex simple Lie algebra g corresponding to F. Since vertices of the 
Dynkin diagram correspond to simple coroots of g, the above bijection gives an 
isomorphism (of vector spaces) 

li^H2(n-1(0),C), (1.1) 

where \) is the complex Cartan subalgebra of g. 
This correspondence F —t g is based on the classification of simple Lie algebras 

since they attach a Dynkin diagram to F. So the reason why such a result holds 
remained misterious. A deeper connection between two objects were conjectured by 
Grothendieck, and obtained by Brieskorn (1970) and Slodowy (1980). They con­
structed the simple singularity C 2 /F in g. Moreover, its semi-universal deformation 
and a simultaneous resolution were also constructed using geometry related to g. 
We do not recall their results here, so the interested reader should consult [40]. 

1.2. McKay correspondence 

Let {ßi}iei be the set of (isomorphism classes of) irreducible representations 
of F. It has a special element po, the class of trivial representation. Let Q be the 
2-dimensional representation given by the inclusion F c SL2(C). Let us decompose 
Q®Pi into irreducibles, Q®pi = ® • (HjP), where ay is the multiplicity. We draw a 
diagram so that vertices correspond to p,'s, and there are ay edges between pt and 
Pj. (Note that ay = a^ thanks to the self-duality of Q). Then McKay [26] observed 
that the graph is an affine Dynkin diagram of Ä„ , Dn , Âg ,Ë7 or Ês , i.e., the 
Dynkin diagram of an untwisted affine Lie algebra g attached to a simple Lie algebra 
g of type ADE. Furthermore it is also known that the Dynkin diagram given in 
the previous subsection is obtained by the affine Dynkin diagram by removing the 
vertex corresponding to the trivial representation p0. We thus have bijections 

{irreducible representations of F} <—y {vertices of the affine Dynkin diagram} . 
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The original McKay's proof was based on the explicit calculation of charac­
ters. The reason why such a result holds remained misterious also in this case. 
A geometric explanation via the A-theory of the minimal resolution M of C 2 /F 
was subsequently given by Gonzalez-Sprinberg and Verdier [14]. In particular, they 
proved that there exists a natural geometric construction of an isomorphism (of 
abelian groups) 

R(T) ^ K(M), 

where R(T) is the representation ring of F, and K(M) is the Grothendieck group of 
the abelian category of algebraic vector bundles over M. This result is strengthened 
and generalized to the higher dimensional case F c SL3(C) [5]. 

Note that the above isomorphism together with the Chern character homo­
morphism leads to an isomorphism R(T) ®z C - ^ H*(M,C), which gives an iso­
morphism 

R(T) ® z C ^ (t) e Cho)*, (1.2) 

combined with (1.1). Here ho is the Oth simple coroot of the affine Lie algebra 
g, and corresponds to the dual of the trivial representation p0. It corresponds to 
A 0 (M,C)-A 0 (7T- 1 (0 ) ,C) . 

Compared with correspondence in §1.1, our situation is less satisfactory: we 
only get \) and the role of g or g is less clear. This is the starting point of our whole 
construction. We construct g entirely from F in some sense. For another approach, 
see [13]. 

2. Hilbert schemes of points and their T-flxed point 
components — quiver varieties 

In 1986, Kronheimer [20] constructed a simple singularity C 2 /F , its defor­
mation and simultaneous resolution, i.e., those spaces constructed by Brieskorn-
Slodowy by a totally different method. His construction is based on the theory 
of 'quivers', which is a subject in noncommutative algebras. (See also [6] for a 
different approach.) Subsequently in 1989, Kronheimer and the author [21] gave a 
description of moduli spaces of instantons (and coherent sheaves) on those spaces in 
terms of a quiver. It is an analog of the celebrated ADHM description of instantons 
on S4. In 1994, this description was further generalized under the name of 'quiver 
varieties' by the author [27]. The purpose of this and next sections is to define 
quiver varieties from a slightly different point of view. This is a most economical 
approach to introduce quiver varieties, while it does not explain why it is something 
to do with quivers. 

Let Hilb" (C2) be the Hilbert scheme of n points in the affine plane C2 . As 
a set, it consists of ideals J of the polynomial ring C[x, y] such that the quotient 
C[x, y]/I has dimension n as a vector space. Grothendieck constructed Hilb" (C2) 
as a quasi-projective scheme (for more general setting), but we do not go to this 
direction in detail. A typical point of Hilb" (C2) is an ideal of functions vanishing 
at n distinct points in C2 . The space parametrizing (unordered) n distinct points 
is an open subset of the nth symmetric product ^"(C 2 ) = (C2)n/Sn of C2 , where 
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Sn is the symmetric group of n letters acting on (C2)" by permutation of factors. 
The symmetric product parametrises unordered n points with multiplicities. The 
Hilbert scheme Hilb" (C2) is a different completion of the open set. Two comple­
tions are related: Mapping J to its support counted with multiplicities, we get a 
morphism n: Hilb" (C2) —¥ Sn(C2) which is called a Hilbert-Chow morphism. We 
have following important geometric results on Hilb" (C2): 

1. Hilb" (C2) is a resolution of singularities of Sn(C2) (Fogarty). 
2. Hilb" (C2) has a holomorphic symplectic structure (Beauville, Mukai). 

In fact, the author constructed a hyper-Kähler structure on Hilb" (C2), which in­
duces Beauville-Mukai's symplectic form, by describing it as a hyper-Kähler quo­
tient. See [29] and Göttsche's article in this ICM proceeding for more recent results 
on Hilb" (C2). 

Let F be a finite subgroup of SL2(C) as above. Its natural action on C2 

induces an action on Hilb" (C2) and Sn(C2) such that the Hilbert-Chow morphism 
n is F-equivariant. Let us consider the fixed point set Hilb" (C2) , (Sn(C2j)r. The 
latter is easy to describe: 

(S"(C 2 ) ) r = A"(C 2 /F ) , 

where m is the largest integer less than or equal to n / # F . The difference n — m # F 
is the multiplicity of the origin. The former space Hilb" (C2) is a union of nonsin­
gular submanifolds of Hilb" (C2). If J G Hilb" (C2) , the quotient C[x,y]/I has a 
structure of a representation of F. For an isomorphism class v of a representation 
of F, we define M(v) as 

M(v) = { J G Hilb" (C 2 ) r [C[x, y]/I] = v} , 

where [C[x, y]/I] is the isomorphism class of C[x,y]/I. Since isomorphism classes 
are parametrized by discrete data, i.e., dimensions of isotropic components, the 
isomorphism class of [C[x, y]/I] is constant on each connected component. There­
fore M(v) is a union of connected component. In fact, Crawley-Boevey recently 
proves that M(v) is connected (in fact, he proved it for more general case including 
varieties discussed in next section) [9]. Moreover, M(v) has induced holomorphic 
symplectic and hyper-Kähelr structures. It is an example of quiver varities of affine 
type. (See remark at the end of the next section.) 

The simplest but nontrivial example is the case when v is the class of the 
regular representation of F. Under (1.2), the regular representation corresponds 
to the imaginary root ö, which is the positive generator of the kernel of the affine 
Cartan matrix, is identified with the dimension vector of the regular representation 
of F. The dimension of the regular representation is equal to # F , and thus the 
fixed point set in the symmetric product is ( S # r ( C 2 ) ) r = C 2 /F . We can consider 
this as the space of F-orbits. A typical point is a free F-orbit, and is also a point 
in Hilb# (C2) as the ideal vanishing at the orbit. In fact, it is not difficult to 
see that M(v) is isomorphic to the minimal resolution M of C 2 /F . The resolution 
map n: M —t C 2 /F is given by the restriction of the Hilbert-Chow morphism. This 
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result was obtained by Ginzburg-Kapranov (unpublished) and Ito-Nakamura [17] 
independently, but is also a re-interpretation of Kronheimer's construction [20]. The 
precise explanation was given in [29, Chapter 4]. 

Recently higher dimensional M (v) attract attention in connection with the 
McKay correspondence for wreath products F ; Sn [44, 22, 15]. These M(v) are 
diffeomorphic to the Hilbert schemes of points on the minimal resolution Hilb" M. 

3. A higher rank generalization of Hilbert schemes 
We give a higher rank generalization of Hilbert schemes in this section. But 

geometric structures remain unchanged for general cases. So a reader, who wants 
to catch only a rough picture, could safely skip this section. 

Let P 2 be the projective plane with a fixed line IA- So P 2 = C2 U IA. Let 
9Jt(n, r) be the framed moduli space of torsion free sheaves on P 2 with rank r and 
c-2 = n, i.e. the set of isomorphism classes of pairs (E,(p), where A is a torsion 
free sheaf of rank A = r, 02(E) = n, which is locally free in a neighbourhood of 
Aoj and ip is an isomorphism ip: E].^ ^ öfr (framing at infinity). It is known 
that this space has a structure of a quasi-projective variety [16]. This is a higher 
rank generalization of the Hilbert scheme Hilb" (C2). The analog of C[x, y]/I is 
A 1 (P 2 ,A(^1) ) and it is known that A°(P 2 ,A(^1)) = A 2 (P 2 ,A(^1) ) = 0 [29, 
Chapter 2]. It is also known that 9Jt(n,r) has a holomorphic symplectic (in fact, 
hyper-Kähler) structure [29, Chapter 3]. 

The higher rank generalization of the symmetric product Sn(C2) is the so-
called Uhlenbeck compactification of the framed moduli space of locally free sheaves. 
(On the other hand, 9Jt(n,r) is called Gieseker-Maruyama compactification.) It is 

ÜJto(n,r)= [ J tBÇs(n',r) xSn"c2, 
n'+n"=n 

where 9JtrQS(n',r) is the open subset of 9Jt(n',r) consisting of framed locally free 
sheaves (E,(p). It is known that 9Jto(n,r) has a structure of an affine algebraic 
variety [10, Chapter 3]. Moreover, the map 

(A,<A.^(Av v ,<ASupp(Av v /A)) 

gives a projective morphism n: 9Jt(n,r) —¥ 9Jto(n,r) [29, Chapter 3], where A v v is 
the double dual of E, which is locally free on surfaces, and Supp(Av v /A) is the 
support of A v v / A , counted with multiplicities. 

When r = 1, there exists only one locally free sheaf which is trivial at l œ , i.e., 
the trivial line bundle ö-pi. So the first factor of the above disappears : HfJlo(n, 1) = 
^ " C 2 . Moreover, for E £ 9Jt(n, 1), the double dual A v v must be the trivial line 
bundle by the same reason. It means that E is an ideal sheaf of the structure sheaf 
ÖP2, so is a point in the Hilbert scheme Hilb" (C2). Thus we recover the situation 
studied in §2. 

Let F be a finite subgroup of SL2(C) as before. We take and fix a lift of 
the F-action to Ofr. It is written as W ®c Oi^, where W is a representation 
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W of F. We denote by w the isomorphism class of W as before. Now F acts on 
9Jt(n,r), 9Jto(n,r) and we can consider the fixed point sets 9Jt(n,r) r , d]l0(n,r)r. 
We decompose the former as 

9Jt(n,r) r = L|9Jt(v,w), 
V 

where 9Jt(v, w) consists of the framed torsion free sheaves (A, tp) such that the 
isomorphism class of A 1 (P 2 ,A(^1)) , as a representation of F, is v. Each 9Jt(v,w), 
if it is nonempty, inherits a holomorphic symplectic and hyper-Kähler structures 
from 9Jt(n,r). 

Arbitrary quiver varieties of affine types with complex parameter equal to 0 
are some 9Jt(v,w). The identification with original definition was implicitly given 
in [29]. It was independently rediscovered by Lusztig [24]. See also [42]. Arbitrary-
quiver varieties of affine types with nonzero complex parameter are also important 
in representation theory [12], though we do not discuss here. Original definition of 
the varieties was given in terms of quivers. Later these were identified with framed 
moduli spaces of instantons on a noncommutative deformation R 4 [36] or those of 
torsion free sheaves on a noncommutative deformation of P 2 [18, 1]. 

4. Stratification and fibers of w 
This technical section will be used to state character formulas later. A reader 

who only want to know only a rough picture can be skip this section. 
We have the following stratification of (Sn(C2j)r and its higher rank analog 

9Jto(n,r)r. The space 9Jto(n,r)r also decompose as 

(S"(C2))r = [J S?(C2/T), 

m0(n,rf = [J mr
0

es(v0,w)xS^(C2/T), ( 4 > 1 ) 
v°,A 

m+ |v° |<n 

where 9Jtoeg(v°,w) is defined exactly as above (it is possibly an empty set), |v°| is 
the dimension of v° as a complex vector space, À = (Ai , . . . , Ar) is a partition of m 
and 

S?(C2/T)= 5 > M e A"(C2/F) Xi ^ 0 and Xi ^ Xj for i ^ j > . 

The differences n — m and n — (ro + |v°|) are the multiplicity of the cycle at the 
origin 0. 

Now it becomes clear that the case (Sn(C2j)r is the special case of 9Jto(n,r)r 

with w = po, v° = 0. So from now, we only consider the second case. 
For x £ 9Jto(n,r)r, let 9Jt(v,w)x bethe inverse image ir^1(x) in 9Jt(v,w). The 

most important one is the central fiber, i.e., the fiber over 

x= (W®cOP2,ip,0). 
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In this case, we use the special notation £(v,w). It is known that this is a La-
grangian subvariety of 9Jt(v,w). Suppose that x = (EQ,ip,C) is contained in the 
stratum 9JtQeg(v°,w) x S,™(C2/F). Then the fiber 9Jt(v, w)x is a pure dimensional 
subvariety in 9Jt(v, w), which is a product of £ (v s ,w s ) and copies of punctual 
Hilbert schemes Hilbg' (C2) for some v s , w s . The proof of this statement in [27, 
§6], [31, §3] was given only when ro = 0 and explained in terms of quivers, so we 
give more direct argument in our situation. The fiber 9Jt(v,w)x parametrises F-
invariant subsheaves E of E0 such that [A1 (P2 , E( — l))] = v and Supp E0/E = C. 
Equivalently, it parametrises F-equivariant O-dimensional quotients E0 —¥ Q such 
that [H°(P2,Q)] = v — v° and SuppQ = C. Such quotients depend only on a 
local structure on E0, so we can replace E0 by Ws ®c Op2) where Ws is the fiber of 
E0 at the origin considered as a representation of F. The isomorphism class w s of 
Ws is given by w s = w — Cv°, where C is the class of the virtural representation 
f\Q-/\ Q + /\^Q = 2po—Q, and Cv° means the tensor product C®v°. Therefore 
it becomes clear now that we have 

M(v,w)x ^£.(v-v° -mö,ws) x JJffilb^ (C2), 
ì 

where Ô is considered as the class of the regular representation, and Hilb0' (C2) is 
the punctural Hilbert scheme, i.e., the inverse image of A,[0] by the Hilbert-Chow 
morphism TT: HilbAi (C2) —̂  S'Ai(C2). The punctural Hilbert schemes are known to 
be irreducible, thus 9Jt(v, w)x is pure-dimensional if and only if £(v — v° — mö, ws) 
is so. But the latter statement is known [27, §5]. 

5. A geometric construction of the affine Lie alge­
bra 

After writing [21], the author tried to use this generalized ADHM description 
to study these varieties 9Jt(v,w). But it turned out to be not so easy as he had 
originally hoped. When he struggled the problem, he heard a talk by Lusztig in 
ICM 90 Kyoto on a construction of canonical bases by using quivers. Lusztig's 
construction [23] was motivated by Ringel's construction [37] of the upper half 
part of the quantized enveloping algebra via the Hall algebra. The author thought 
that this construction should be useful to attack the problem. Two years later, 
he began to understand the picture. Quiver varieties 9Jt(v, w) are, very roughly, 
cotangent bundles of varieties used by Ringel and Lusztig, and similar construction 
is possible [27]. A little later, he graduately realized that quiver varieties are also 
similar to cotangent bundles of flag varieties and the map n is an analog of Springer 
resolution. These varieties had been used to give geometric constructions of Weyl 
groups (Springer representations) and affine Hecke algebras (Deligne-Langlands con­
jecture). (See a beautifully written text book by N. Chriss and V. Ginzburg [8] and 
the references therein for these matereial.) The technique is the convolution prod­
uct (see below) and works quite general. So he (and some others) conjectured that 
these construction should be adapted to quiver varieties. This conjecture turned 
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out to be true [28, 31]. We explain the constructions in this and next sections. The 
relation between our constructions and Ringel-Lusztig construction was explained 
in [30] and will not be reproduced here. 

5.1. Convolution algebra 
We apply the theory of the convolution algebra to varieties introduced in 

the previous sections to obtain the universal enveloping algebra U(g) of the affine 
algebra g. 

We continue to fix a representation W of F and denote by w its isomorphism 
class. For the F-fixed point set of Hilbert schemes, studied in §2, W is the trivial 
representation. 

We introduce the following notation: 

ÜJt(w) d= ' [ J M(n,rf = [ J 9K(v, w), £(w) d= ' | J £(v,w), 
n v v 

9Jt0(oo,w) d={Jm0(n,rf. 
n 

The first and second are disjoint union. For the last, we use the inclusion 9Jt0(n, r ) r c 
9Jto(n',r)r for n < n! given by 

(A, ip, C) -> (A, <p,C + (A - n)0). 

For r = 1, these are 

[J (Hilb" (C2))r , [J(S"C2)r = (J S"(C2/F), 
n n n 

where the inclusion Sn(C2/T) c Sn (C2 /F) is given by adding (A — n)0 as above. 
Rigorously speaking, we cannot study 9Jt(w) and 9Jto(oo, w) directly since they 

are infinite dimensional. We need to work individual spaces 9Jt(v, w), d]l0(n,r)r. 
But we use those spaces as if they are finite dimensional spaces for a notational 
convenience. 

We consider the fiber product 

Z(w) d= M(w) xOTo(o0jW) 9Jt(w). 

It consists of pairs (E,ip), (E',ipr) such that 
i pVV ~ rpiVV 

2. Supp A v v and Supp A ' v v are equal in the complement of the origin. 

The multiplicities of Supp A v v and Supp A ' v v at the origin may be different since 
we consider the inclusion above. 

One can show that this is a lagrangian subvariety in 9Jt(w) x 9Jt(w). (The 
same remark as 9Jt(v, w)x in §4 applies here also.) Let us consider its top degree 
Borel-Moore homology group 

Htop(Z(w),C). 
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More precisely, it is the subspace of 

J ] Htop(Z(w) n (9Jt(v\w) x 9Jt(v2,w)) ,C) 
V1 , v 2 

consisting of elements (Fv iv2) such that 

1. for fixed v1 , FvijV2 = 0 for all but finitely many choices of v2 , 
2. for fixed v2 , FvijV2 = 0 for all but finitely many choices of v1 . 

The degree top depends on v1 , v2 , but we supress the dependency for brevity. 
Let us consider the convolution product 

* : Htop(Z(w), C) <g> Htop(Z(w), C) - • A t o p (^(w) , C) 

given by 

c*c' =_Pi3» (p*2(
c) n P23( c ' ) )> 

where py is the projection from the triple product 9Jt(w) x 9Jt(w) x 9Jt(w) to the 
double product 9Jt(w) x 9Jt(w) of the ith and j th factors. More detail for the 
definition of the convolution product, say p\2, A is explained in [8], but we want 
to emphasize one point. The statement that the result c* c' has top degree is the 
consequence of dim^(w) = |dim9Jt(w) x 9Jt(w). Although we are considering 
Z(w) having infinitely many connected components, the convolution is well-defined 
and Htop(Z(w), C) is an associative algebra with unit, thanks to the above definition 
of the subspace in the direct product. 

For x £ 9Jto(oo,w), let 9Jt(w)x be the inverse image ir^1(x) in 9Jt(w). We 
consider the top degree homology group 

Htop(M(w)x,C) 

which is the usual direct sum of Htop(9Jt(w)x n 9Jt(v, w),C) (unlike the case of 
Z(wj). The convolution product makes this space into a module of Htop(Z(w), C). 

Theorem 5.1. Let U(g) be the universal enveloping algebra of the untwisted affine 
algebra g corresponding to T. (NB: not a 'quantum' version). There exists an 
algebra homomorphism 

U(g) ^ Htop(Z(w),C). 

Furthermore, if we consider Htop(9Jt(w)x,C) as a U(g)-module via the homomor­
phism, it is an irreducible integrable highest weight representation and the direct 
summands Htop(9Jt(w)x n9Jt(v, w),C) are weight spaces. 

This theorem was essentially proved in [27] with a modification for general x 
mentioned above. 

The highest weight of Htop(9Jt(w)x, C) and weights of At0p(9Jt(w)xn9Jt(v, w), C) 
are determined explicitly in terms of v, w and the stratum to which x belongs. For 
example, in the case of the central fiber £(v, w), the highest weight is w, considered 
as a dominant integral weight as w = ^ . w,Aj, where w, is the p, component of 



432 H. Nakajima 

w, and Aj is the zth fundamental weight. Here we use the identification of the irre­
ducible representation pt and a vertex of the affine Dynkin diagram given by McKay-
correspondence. The weight of A t o p(£(v, w), C) is w — v, where v = ^ . vidi with 
the pj-component w, of v and zth simple root a,. The highest weight vector is the 
fundamental class [£(0,w)], where 9Jt(0,w) = £(0,w) consists of a single point 
E = W®cOV2. 

For the case studied in §2, w is the Oth fundamental weight A0. The corre­
sponding integrable highest weight representation is called the basic representation 
in literature. If we vary w, we get all integrable highest weight representations 
as 0 V A t o p(£(v, w) ,C) . It is worth while remarking that this is an extension of 
(1.1) since the Cartan subalgebra fi is naturally contained in the Cartan subalge­
bra. Furthermore, the finite dimensional Lie algebra g is embedded in the basic 
representation, and we get 

3= 0fftop(M(v),C), 
1)0=1 

where vo is the po-isotropic component of v. This is an extension of (1.1), mentioned 
before. In fact, it is easy to see that if v is not Ö, then M(v) is either empty, or a 
single point. The latter holds if and only if v, considered as an element of h* by-
removing vo, is a root of g. 

If we fix w and vary x, we still obtain various integrable highest weight repre­
sentations. The highest weight of Htop(9Jt(w)x,C) is w ^ v ° -mo, where v°, ro are 
determined by x as in §4, and w, v° are considered as weights as above. The weight 
of Htop(9Jt(w)x n 9Jt(v, w),C) is equal to w - v. All of their highest weights are 
less than or equal to w with respect to the dominance order. In particular, when 
w = A0, those have highest weights A0 — nö for some n £ Z>0. They are essentially 
isomorphic to the basic representation. 

We explain how the algebra homomorphism XJ(g) —¥ Htop(Z(w), C) is defined. 
It is enough to define the image of Chevalley generators e», / , , hi (i £ J), d of 
U(fl) (and check the defining relations). The images of hi and d are multiples of 
fundamental classes of diagonales in 9Jt(w) x 9Jt(w). More precisely, the multiple 
is determined so that the weight of Htop(9Jt(w)x n 9Jt(v, w), C) is equal t o w - v . 
The image of e, is the fundamental classe of the so-called 'Hecke correspondence': 

\_\{((E,ip),(E',<p')) €tm(v,w) xM(v + pi,w)\Ec A ' } . (5.1) 
V 

It is known that each component is a nonsingular lagrangian subvariety of 9Jt(v, w) x 
9Jt(v + Pi,w). Hence it is an irreducible component of Z(w). The image of / , is 
given by swapping the first and second factors, up to sign. 

As an application of the above construction, we get a base of Htop(9Jt(w)x, C) 
indexed by the irreducible components of 9Jt(w)x. It has a structure of the crystal 
in the sense of Kashiwara, and is isomorphic to the crystal of the corresponding 
integrable highest weight module of the quantum affine algebra by Kashiwara-Saito 
[19, 38]. (See also [32] for a different proof.) However, the base itself is different 
from the specialization of the canonical (= global crystal) base of the quantum 
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affine algebra module at q = 1. A counter example was found in [19]. The base 
given by irreducible components is named semicanonical base by Lusztig [25]. 

5.2. Lower degree homology groups 

The construction in the previous subsection, in fact, gives us a structure of a 
representation of g on 

Htop^d(M(w)x,C) 

for each fixed integer d. It is an integrable representation, and decomposes into 
irreducible representations. The multiplicity formula can be expressed in terms 
of the intersection cohomology thanks to Beilinson-Bernstein-Deligne-Gabber's de­
composition theorem [3] applied to the morphism n: 9Jt(w) —¥ 9Jto(co, w). In our 
situation, n is a semi-small morphism, i.e., the restriction of n to the inverse image 
of the stratum (4.1) is a topological fiber bundle, and 

2dim9Jt(w)x < codini €>x, 

where öx is the stratum containing x. Then as observed by Borho-MacPherson [4], 
the decomposition theorem is simplified. We introduce several notation to describe 
the formula. We choose a point y from each stratum in (4.1). We denote the 
stratum containing y by Oy. Let IC(Oy) is the intersection homology complex of 
Oy with respect to the trivial local system. 

Theo rem 5.2. We have the following decomposition as a representation ofg: 

Htop^d(M(w)x,C) = 0A r f + d i m ^(4/C(O,)) ® Atop(9Jt(w)„C), 
y 

where ix : {x} —¥ 9Jto(oo, w) is the inclusion. Here g acts trivially on the first factor 
of the right hand side. 

For a general semi-small morphism, we may have an intersection homology 
complex with respect to a nontrivial local system in the decomposition. In order 
to show that such a summand does not appear, the fact that Htop(d]l(w)y,C) is a 
highest weight module plays a crucial role (see [31] for detail). 

Note also that when w = p0, the closure of each stratum is a symmetric 
product of C 2 /F (4.1). In particular, they only have finite quotient singularities, 
and their intersection homology complex are equal to the constant sheaf. Therefore 
our formula are simplified. One finds that A»(£(w),C) is isomorphic to the so-
called 'Fock space'. Later we will show that the total homology A»(£(w), C) has a 
structure of a representation of a specialized quantum toroidal algebra in the next 
section. Then this observation generalizes a result [41, 39] for type An to untwisted 
affine Lie algebras of type ADE. 
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6. Equivariant üC-theory and quantum toroidal al­
gebras 

In this section, we replace the top degree homology group A t o p in the previous 
section by equivariant A-groups. Then we obtain a geometric construction of a 
quantum toroidal algebra Uq(Lg). It is a ^-analog of the loop algebra Lg = g ®c 
C[z, z^1] of the affine algebra g. Since g is already a (central extension of) loop 
alebra of g, Lg is a 'double-loop' algebra of g. The quantum toroidal algebra is 
defined by replacing g by g in the so-called Drinfeld realization of the quantum 
loop algebra Uq(Lg), which is a subquotient of the quantum affine algebra Ug(g), 
defined by Drinfeld, Jimbo. 

Let Gw = Autr(W) be the group of automorphisms of the F-module W. If 
w, is the multiplicity of p, in W, we have Gw = JL GLœ; (C). We have a natural 
action of Gw on 9Jt(w) and 9Jto(oo,w) by the change of the framing: 

ip^goip, j ë G w . 

The projective morphism 9Jt(w) —¥ 9Jto(oo,w) is equivariant. 
Let C* act on C 2 by t • (x,y) = (tx,ty). It extends to an action on P 2 , where 

it acts trivially on IA. Note that this action commutes with the F-action. Then we 
have a natural induced C*-action on 9Jt(w) and 9Jto(oo,w) so that the projection 
n is equivariant. Combining two actions we have an action of Gw x C* on 9Jt(w) 
and 9Jto(co, w). (This action is different from the action studied in [31] for type 
A{ . We need to change the definition of Ug (Lg) in that paper to apply the result 
in this section. This comes from the umbiguity of the definition of a q-analog of the 
Cartan matrix.) 

Let KG™xC (Z(wj) be the equivariant A-homology group of Z(w) with re­
spect to the above Gw x C*-action. (More precisely, it should be defined as a sub-
space of the direct product as in the case of homology groups.) It is a module over 
the representation ring R(GV, x C*) = Z[q, q^1] ®z -R(GW), where q is the natural 1-
dimensional representation of C*. The convolution product makes KG™xC (Z(wj) 
into a R(Gy, x C*)-algebra. We divide its torsion part over Z[q, q^1] and denote it 
by KG™xC (Z(wj)/torsion. (It is conjectured that the torsion is, in fact, 0.) 

Theo rem 6.1. There exists a Z[q,q~1]-algebra homomorphism 

U^(Lß) - • A G - x C *(^(w)) / tors ion , 

where U^(Lg) is a certain Z[q,q~1]-subalgebra (conjecturally an integral form) of 
Vq(Lg). 

The definition of the homomorphism is similar to the case of homology groups. 
The image of the g-analog of e, ® zr is given by a natural line bundles on the Hecke 
correspondence (5.1) whose fiber at ((E,tp), (E',ipr)) is H°(E'/E)0r. 

Let us explain how we can use this algebra homomorphism to study represen­
tations of specialized quantum toroidal algebra Ue(Lg) = U^(Lg)\q=e, where e is 
a nonzero complex number which may or may not be a root of unity. A natural 
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generalization of finite dimensional representations of U e (Lg) are Aintegrable rep­
resentations. (See [31] for the definition.) The Drinfeld-Chari-Pressley classification 
[11, 7] of irreducible finite dimensional reprentation of Ue(Lg) has a natural analog 
in Ue(Lg): Irreducible Aintegrable representations of Ue(Lg) are parametrized by 
Atuple of polynomials F,(«) with F,(0) = 1, where J is the set of vertices of the 
affine Dynkin diagram. 

Irreducible representations are obtained in the following way. Let us consider 
the equivariant homology KG™xC (£(w)), which is without torsion. It is a module 
of U^(Lfl) and called a universal standard module. For a semisimple element (s, e) £ 
Gw x C*, we consider the evaluation homomorphism R(GV, x C ) 4 C. Then the 
specialization 

/ f G - x C * ( £ ( w ) ) ® i i ( G w X C . ) C 

is a representation of Ue(Lg). This is called a standard module. It has a unique irre­
ducible quotient, and the associated polynomials are the characteristic polynomials 
of components of s. (Recall Gw = Y\ieI GLœ; (C).) 

In order to state character formulas, which is very similar to Theorem 5.2, 
we need a little more notation. Let A be the Zariski closure of powers of (s,e) in 
Gw x C*. Let 9Jt(w)A, 9Jt0(oo,w)A, Z(w)A be the fixed point sets. We have a 
chain of natural algebra homomorphisms 

KG-xC't(Z(w))R{G^xC,)C -+ KA(Z(w))R{A)C 

-+ K(Z(w)A) ® z C - • Hr.(Z(w)A,C), 

where the first one is induced by the inclusion A c Gw x C*, the second one is 
given by the localization theorem in the equivariant A-theory, and the last one is 
the Chern character homomorphism. (In fact, we need 'twists' for the last two. See 
[8] for detail.) 

There exists a natural stratification of 9Jto(oo, w)A similar to (4.1). We choose 
a point y in each stratum and denote by Oy the stratum containing y. If 9Jt(w)A de­
notes the inverse image of y in 9Jt(w)A under n, the homology group H*(9Jt(w)A, C) 
is a representation of H*(Z(w)A,C), and hence that of Ue(Lg). (When y = 0, it 
is the standard module.) Analog of Theorem 5.2 is the following: 

Theo rem 6.2. We have the following in the Grothendieck group of the abelian 
category of I-integrable representations ofUe(Lg) 

H4M(w)A,C) = ^2H*(i'xIC(Oy)) <g> Ly, 
y 

where Ly is the unique irreducible quotient of H*(9Jt(w)A,C). 

(The right hand side is an infinite sum, so we must understand it in an appropriate 
way. But it should be clear how it can be done.) 

In this case, we apply the decomposition theorem to 9Jt(w)A —t 9Jt0(oo,w)A. 
It is not semi-small any more. So the degrees in the left and righ hand sides do not 
have clear relations. 
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Remarks 6.3. (1) We stated our results for the affine Lie algebraß and the quantum 
toroidal algebra Uq(Lg). But they also hold for the finite dimensional Lie algebra 
g and the quantum loop algebra Ug(Lg), if we impose the condition u0 = wo = 0. 
It is known that Ug (Lg) is a Hopf algebra (since it is a subquotient of the quantum 
affine algebra), and the standard modules are isomorphic to tensor products of A 
fundamental representations when e is not a root of unity [43]. Here Afundamental 
representations are irreducible representations corresponding to w = pt. In partic­
ular, the tensor product decomposition in the representation ring can be expressed 
in terms of intersection homology groups. 

(2) Our remaining tasks are computing dimensions of H*(ixIC(Oyj) appear­
ing in Theorems 5.2, 6.2. In [33, 34] we gave a purely combinatorial algorithm 
to compute them. This algorithm can be made into a computer program. The 
algorithm was stated for the quantum loop algebra Ug(Lg), but works also for 
Ug(Lß). This means that for any given stratum Oy, dimH*(ixIC(Oyj) is, in prin­
ciple, computable. However, it is practically difficult to compute because we need 
lots of memory. And, for Ug(Lg), the summation is infinite. So having an algo­
rithm to compute each term is not a strong statement. It is desirable to have an 
alternative method to compute them. That has be done in some special classes of 
representations [35]. 
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